Citation: Huang Lei, Zaman Shahid, Wang Zhitong, Niu Huiting, You Bo, Xia Bao Yu. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200903. doi: 10.3866/PKU.WHXB202009035 shu

Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells


  • Author Bio:




    Dr. Bao Yu Xia is currently a full professor in the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology (HUST), China. He received his Ph.D. degree in materials science at Shanghai Jiao Tong University (SJTU) in 2010. He worked at Nanyang Technological University (NTU) from 2011 to 2016. His research involves functional materials in sustainable energy and clean environment technologies including fuel cells, batteries, and electrocatalysis
  • Corresponding author: Xia Bao Yu, byxia@hust.edu.cn
  • Received Date: 9 September 2020
    Revised Date: 11 October 2020
    Accepted Date: 12 October 2020
    Available Online: 23 October 2020

    Fund Project: the Program for HUST Academic Frontier Youth Team 2018QYTD15The project was supported by the National Natural Science Foundation of China (22075092), the Program for HUST Academic Frontier Youth Team (2018QYTD15) and the National 1000 Young Talents Program of Chinathe National Natural Science Foundation of China 22075092

  • Although platinum (Pt)-based catalysts are suffering from high costs and limited reserves, they are still irreplaceable in a short period of time in terms of catalytic performance. Structural optimization, composition regulation and carrier modification are the common strategies to improve the activity and stability of Pt-based catalyst. Strikingly, the morphological evolution of Pt-based electrocatalyst into nanoframes (NFs) have attracted wide attention to reduce the Pt consumption and improve the electrocatalytic activity simultaneously. Contrary to Pt-based solid nanocrystalline materials, Pt-based NFs have many advantages in higher atomic utilization, open space structure and larger specific surface area, which facilitate electron transfer, mass transport and weaken surface adsorption by more unsaturated coordination sites. Here we introduce the detailed preparation strategies of Pt-based NFs with different etching methods (oxidative etching, chemical etching, galvanic replacement and carbon monoxide etching), crystal structure evolution and formation mechanism, efficient applications for oxygen reduction reaction (ORR), methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) in direct alcohol fuel cells (DAFCs). Based on the high-efficiency atom utilization, open space structure and diverse alloy composition, Pt-based NFs exhibit superior activity, stability and anti-poisoning than commercial counterparts in the application of DAFCs. The current challenges and future development of Pt-based NFs are prospected on the type of NFs materials, synthesis and etching methods, crystal control and catalytic performance. We propose a series of improvement mechanisms of Pt-based NFs, such as small size effect, high-energy facets, Pt-skin construction and Pt-C integration, thereby weakening the molecule absorption, increasing the Pt utilization, strengthening the intrinsic stability, and alleviating the metal dissolution and support corrosion. Additionally, the scale-up synthesis of catalytic materials, membrane electrodes assembly, and development of the start-stop system and the circulation system design are essential for the commercial application of Pt-based NFs and industrial manufacturing of DAFCs. More importantly, the reaction mechanism, active site distribution and dynamic changes in the catalytic material during the catalytic reaction are crucial to further explain the maintenance and evolution of catalytic performance, which will open a window to elucidate the improvement mechanism of the catalyst in the fuel cell reactions. This review work would promote continuous upgradations and understandings on Pt-based NFs in the future development of DAFCs.
  • 加载中
    1. [1]

      Choi, S. I.; Shao, M.; Lu, N.; Ruditskiy, A.; Peng, H. C.; Park, J.; Guerrero, S.; Wang, J.; Kim, M. J.; Xia, Y. ACS Nano 2014, 8, 10363. doi: 10.1021/nn5036894  doi: 10.1021/nn5036894

    2. [2]

      Huang, L.; Wei, M.; Hu, N.; Tsiakaras, P.; Shen, P. K. Appl. Catal. B. Environ. 2019, 258, 117974. doi: 10.1016/j.apcatb.2019.117974  doi: 10.1016/j.apcatb.2019.117974

    3. [3]

      Li, M. G.; Xia, Z. H.; Huang, Y. R.; Tao, L.; Chao, Y. G.; Yin, K.; Yang, W. X.; Yang, W. W.; Yu, Y. S.; Guo, S. J. Acta Phys. -Chim. Sin. 2020, 36, 1912049.  doi: 10.3866/PKU.WHXB201912049

    4. [4]

      Lv, L.; Zhang, L. Y.; He, X. B.; Yuan, H.; Ouyang, S. X.; Zhang, T. R. Acta Phys. -Chim. Sin. 2021, 37, 2007079.  doi: 10.3866/PKU.WHXB202007079

    5. [5]

      Zhang, Y. J.; Zhu, Y. Z.; Li, J. F. Acta Phys. -Chim. Sin. 2021, 37, 2004052.  doi: 10.3866/PKU.WHXB202004052

    6. [6]

      Kongkanand, A.; Mathias, M. F. J. Phys. Chem. Lett. 2016, 7, 1127. doi: 10.1021/acs.jpclett.6b00216  doi: 10.1021/acs.jpclett.6b00216

    7. [7]

      Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. J. Am. Chem. Soc. 2017, 139, 5890. doi: 10.1021/jacs.7b01482  doi: 10.1021/jacs.7b01482

    8. [8]

      Li, K. X.; Zhang, T. L.; Li, H. Z.; Li, M. Z.; Song, Y. L. Acta Phys. -Chim. Sin. 2020, 36, 1911057.  doi: 10.3866/PKU.WHXB201911057

    9. [9]

      Kang, Y.; Snyder, J.; Chi, M.; Li, D.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2014, 14, 6361. doi: 10.1021/nl5028205  doi: 10.1021/nl5028205

    10. [10]

      Tang, Z. Y. Acta Phys. -Chim. Sin. 2020, 36, 2004050.  doi: 10.3866/PKU.WHXB202004050

    11. [11]

      You, H.; Yang, S.; Ding, B.; Yang, H. Chem. Soc. Rev. 2013, 42, 2880. doi: 10.1039/C2CS35319A  doi: 10.1039/C2CS35319A

    12. [12]

      Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Chem. Rev. 2020, doi: 10.1021/acs.chemrev.0c00454

    13. [13]

      Kwon, T.; Jun, M.; Lee, K. Adv. Mater. 2020, 32, 2001345. doi: 10.1002/adma.202001345  doi: 10.1002/adma.202001345

    14. [14]

      Park, J.; Kanti Kabiraz, M.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. ACS Nano 2017, 11, 10844. doi: 10.1021/acsnano.7b04097  doi: 10.1021/acsnano.7b04097

    15. [15]

      Yang, T. Y.; Cui, C.; Rong, H. P.; Zhang, J. T.; Wang, D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047.  doi: 10.3866/PKU.WHXB202003047

    16. [16]

      Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z.; et al. Science 2015, 349, 412. doi: 10.1126/science.aab0801  doi: 10.1126/science.aab0801

    17. [17]

      Nosheen, F.; Zhang, Z. C.; Zhuang, J.; Wang, X. Nanoscale 2013, 5, 3660. doi: 10.1039/C3NR00833A  doi: 10.1039/C3NR00833A

    18. [18]

      Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134, 8535. doi: 10.1021/ja300756y  doi: 10.1021/ja300756y

    19. [19]

      Mourdikoudis, S.; Liz-Marzán, L. M. Chem. Mater. 2013, 25, 1465. doi: 10.1021/cm4000476  doi: 10.1021/cm4000476

    20. [20]

      Liu, H. L.; Nosheen, F.; Wang, X. Chem. Soc. Rev. 2015, 44, 3056. doi: 10.1039/C4CS00478G  doi: 10.1039/C4CS00478G

    21. [21]

      Kong, F.; Ren, Z.; Norouzi Banis, M.; Du, L.; Zhou, X.; Chen, G.; Zhang, L.; Li, J.; Wang, S.; Li, M.; et al. ACS Catal. 2020, 10, 4205. doi: 10.1021/acscatal.9b05133  doi: 10.1021/acscatal.9b05133

    22. [22]

      Liu, M. M.; Yang, M. M.; Shu, X. X.; Zhang, J. T. Acta Phys. -Chim. Sin. 2021, 37, 2007072.  doi: 10.3866/PKU.WHXB202007072

    23. [23]

      Ding, J.; Bu, L.; Guo, S.; Zhao, Z.; Zhu, E.; Huang, Y.; Huang, X. Nano Lett. 2016, 16, 2762. doi: 10.1021/acs.nanolett.6b00471  doi: 10.1021/acs.nanolett.6b00471

    24. [24]

      Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Adv. Funct. Mater. 2018, 28, 1706440. doi: 10.1002/adfm.201706440  doi: 10.1002/adfm.201706440

    25. [25]

      Park, J.; Wang, H.; Vara, M.; Xia, Y. ChemSusChem 2016, 9, 2855. doi: 10.1002/cssc.201600984  doi: 10.1002/cssc.201600984

    26. [26]

      Wang, Y.; Chen, Y.; Nan, C.; Li, L.; Wang, D.; Peng, Q.; Li, Y. Nano Res. 2014, 8, 140. doi: 10.1007/s12274-014-0603-z  doi: 10.1007/s12274-014-0603-z

    27. [27]

      Beermann, V.; Holtz, M. E.; Padgett, E.; de Araujo, J. F.; Muller, D. A.; Strasser, P. Energy Environ. Sci. 2019, 12, 2476. doi: 10.1039/C9EE01185D  doi: 10.1039/C9EE01185D

    28. [28]

      Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Nat. Mater. 2013, 12, 765. doi: 10.1038/nmat3668  doi: 10.1038/nmat3668

    29. [29]

      Zhu, C.; Du, D.; Eychmuller, A.; Lin, Y. Chem. Rev. 2015, 115, 8896. doi: 10.1021/acs.chemrev.5b00255  doi: 10.1021/acs.chemrev.5b00255

    30. [30]

      Bu, L.; Guo, S.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J.; Guo, J.; Huang, X. Nat. Commun. 2016, 7, 11850. doi: 10.1038/ncomms11850  doi: 10.1038/ncomms11850

    31. [31]

      Godinez-Salomon, F.; Mendoza-Cruz, R.; Arellano-Jimenez, M. J.; Jose-Yacaman, M.; Rhodes, C. P. ACS Appl. Mater. Interfaces 2017, 9, 18660. doi: 10.1021/acsami.7b00043  doi: 10.1021/acsami.7b00043

    32. [32]

      Huang, X. Y.; You, L. X.; Zhang, X. F.; Feng, J. J.; Zhang, L.; Wang, A. J. Electrochim. Acta 2019, 299, 89. doi: 10.1016/j.electacta.2019.01.002  doi: 10.1016/j.electacta.2019.01.002

    33. [33]

      Niu, H. J.; Chen, H. Y.; Wen, G. L.; Feng, J. J.; Zhang, Q. L.; Wang, A. J. J. Colloid. Interface Sci. 2019, 539, 525. doi: 10.1016/j.jcis.2018.12.066  doi: 10.1016/j.jcis.2018.12.066

    34. [34]

      Sun, X.; Huang, B.; Cui, X.; E, B.; Feng, Y.; Huang, X. ChemCatChem 2018, 10, 931. doi: 10.1002/cctc.201701768  doi: 10.1002/cctc.201701768

    35. [35]

      Ding, J.; Zhu, X.; Bu, L.; Yao, J.; Guo, J.; Guo, S.; Huang, X. Chem. Commun. 2015, 51, 9722. doi: 10.1039/C5CC03190G  doi: 10.1039/C5CC03190G

    36. [36]

      Huang, L.; Jiang, Z.; Gong, W.; Wang, Z.; Shen, P. K. J. Power Sources 2018, 406, 42. doi: 10.1016/j.jpowsour.2018.10.041  doi: 10.1016/j.jpowsour.2018.10.041

    37. [37]

      Ye, W.; Chen, S.; Ye, M.; Ren, C.; Ma, J.; Long, R.; Wang, C.; Yang, J.; Song, L.; Xiong, Y. Nano Energy 2017, 39, 532. doi: 10.1016/j.nanoen.2017.07.025  doi: 10.1016/j.nanoen.2017.07.025

    38. [38]

      Luo, S.; Tang, M.; Shen, P. K.; Ye, S. Adv. Mater. 2017, 29, 1601687. doi: 10.1002/adma.201601687  doi: 10.1002/adma.201601687

    39. [39]

      Zhang, Z.; Luo, Z.; Chen, B.; Wei, C.; Zhao, J.; Chen, J.; Zhang, X.; Lai, Z.; Fan, Z.; Tan, C.; et al. Adv. Mater. 2016, 28, 8712. doi: 10.1002/adma.201603075  doi: 10.1002/adma.201603075

    40. [40]

      Luo, S.; Shen, P. K. ACS Nano 2017, 11, 11946. doi: 10.1021/acsnano.6b04458  doi: 10.1021/acsnano.6b04458

    41. [41]

      Wang, Z.; Huang, L.; Tian, Z. Q.; Shen, P. K. J. Mater. Chem. A 2019, 7, 18619. doi: 10.1039/C9TA06119C  doi: 10.1039/C9TA06119C

    42. [42]

      Zhu, G.; Liu, J.; Li, S.; Zuo, Y.; Li, D.; Han, H. ACS Appl. Energy Mater. 2019, 2, 2862. doi: 10.1021/acsaem.9b00205  doi: 10.1021/acsaem.9b00205

    43. [43]

      Qin, Y.; Zhang, W.; Guo, K.; Liu, X.; Liu, J.; Liang, X.; Wang, X.; Gao, D.; Gan, L.; Zhu, Y.; et al. Adv. Funct. Mater. 2020, 30, 1910107. doi: 10.1002/adfm.201910107  doi: 10.1002/adfm.201910107

    44. [44]

      Becknell, N.; Kang, Y.; Chen, C.; Resasco, J.; Kornienko, N.; Guo, J.; Markovic, N. M.; Somorjai, G. A.; Stamenkovic, V. R.; Yang, P. J. Am. Chem. Soc. 2015, 137, 15817. doi: 10.1021/jacs.5b09639  doi: 10.1021/jacs.5b09639

    45. [45]

      Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; Chi, M.; et al. Science 2014, 343, 1339. doi: 10.1126/science.1249061  doi: 10.1126/science.1249061

    46. [46]

      Chen, S.; Niu, Z.; Xie, C.; Gao, M.; Lai, M.; Li, M.; Yang, P. ACS Nano 2018, 12, 8697. doi: 10.1021/acsnano.8b04674  doi: 10.1021/acsnano.8b04674

    47. [47]

      Becknell, N.; Son, Y.; Kim, D.; Li, D.; Yu, Y.; Niu, Z.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M.; et al. J. Am. Chem. Soc. 2017, 139, 11678. doi: 10.1021/jacs.7b05584  doi: 10.1021/jacs.7b05584

    48. [48]

      Wu, Y.; Wang, D.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. J. Am. Chem. Soc. 2014, 136, 11594. doi: 10.1021/ja5058532  doi: 10.1021/ja5058532

    49. [49]

      Lyu, L. M.; Kao, Y. C.; Cullen, D. A.; Sneed, B. T.; Chuang, Y. C.; Kuo, C. H. Chem. Mater. 2017, 29, 5681. doi: 10.1021/acs.chemmater.7b01550  doi: 10.1021/acs.chemmater.7b01550

    50. [50]

      Wang, K.; Du, H.; Sriphathoorat, R.; Shen, P. K. Adv. Mater. 2018, 30, e1804074. doi: 10.1002/adma.201804074  doi: 10.1002/adma.201804074

    51. [51]

      Ren, F.; Wang, Z.; Luo, L.; Lu, H.; Zhou, G.; Huang, W.; Hong, X.; Wu, Y.; Li, Y. Chem. Eur. J. 2015, 21, 13181. doi: 10.1002/chem.201501923  doi: 10.1002/chem.201501923

    52. [52]

      Shang, C.; Guo, Y.; Wang, E. J. Mater. Chem. A 2019, 7, 2547. doi: 10.1039/C9TA00191C  doi: 10.1039/C9TA00191C

    53. [53]

      Oh, A.; Baik, H.; Choi, D. S.; Cheon, J. Y.; Kim, B.; Kim, H.; Kwon, S. J.; Joo, S. H.; Jung, Y.; Lee, K. ACS Nano 2015, 9, 2856. doi: 10.1021/nn5068539  doi: 10.1021/nn5068539

    54. [54]

      Gruzel, G.; Piekarz, P.; Pawlyta, M.; Donten, M.; Parlinska-Wojtan, M. ACS Appl. Mater. Interfaces 2019, 11, 22352. doi: 10.1021/acsami.9b04690  doi: 10.1021/acsami.9b04690

    55. [55]

      Chen, S.; Li, M.; Gao, M.; Jin, J.; van Spronsen, M. A.; Salmeron, M. B.; Yang, P. Nano Lett. 2020, 20, 1974. doi: 10.1021/acs.nanolett.9b05251  doi: 10.1021/acs.nanolett.9b05251

    56. [56]

      Becknell, N.; Zheng, C.; Chen, C.; Yu, Y.; Yang, P. Surf. Sci. 2016, 648, 328. doi: 10.1016/j.susc.2015.09.024  doi: 10.1016/j.susc.2015.09.024

    57. [57]

      Yan, X.; Yu, S.; Tang, Y.; Sun, D.; Xu, L.; Xue, C. Nanoscale 2018, 10, 2231. doi: 10.1039/C7NR08899J  doi: 10.1039/C7NR08899J

    58. [58]

      Yoo, S.; Cho, S.; Kim, D.; Ih, S.; Lee, S.; Zhang, L.; Li, H.; Lee, J. Y.; Liu, L.; Park, S. Nanoscale 2019, 11, 2840. doi: 10.1039/C8NR08231F  doi: 10.1039/C8NR08231F

    59. [59]

      Fang, C.; Zhao, G.; Zhang, Z.; Ding, Q.; Yu, N.; Cui, Z.; Bi, T. Chem. Eur. J. 2019, 25, 7351. doi: 10.1002/chem.201900403  doi: 10.1002/chem.201900403

    60. [60]

      Saleem, F.; Ni, B.; Yong, Y.; Gu, L.; Wang, X. Small 2016, 12, 5261. doi: 10.1002/smll.201601299  doi: 10.1002/smll.201601299

    61. [61]

      Yuan, X.; Jiang, B.; Cao, M.; Zhang, C.; Liu, X.; Zhang, Q.; Lyu, F.; Gu, L.; Zhang, Q. Nano Res. 2020, 13, 265. doi: 10.1007/s12274-019-2609-z  doi: 10.1007/s12274-019-2609-z

    62. [62]

      Kwon, H.; Kabiraz, M. K.; Park, J.; Oh, A.; Baik, H.; Choi, S. I.; Lee, K. Nano Lett. 2018, 18, 2930. doi: 10.1021/acs.nanolett.8b00270  doi: 10.1021/acs.nanolett.8b00270

    63. [63]

      Tsuji, M.; Hamasaki, M.; Yajima, A.; Hattori, M.; Tsuji, T.; Kawazumi, H. Mater. Lett. 2014, 121, 113. doi: 10.1016/j.matlet.2014.01.093  doi: 10.1016/j.matlet.2014.01.093

    64. [64]

      Wang, C.; Zhang, L.; Yang, H.; Pan, J.; Liu, J.; Dotse, C.; Luan, Y.; Gao, R.; Lin, C.; Zhang, J.; et al. Nano Lett. 2017, 17, 2204. doi: 10.1021/acs.nanolett.6b04731  doi: 10.1021/acs.nanolett.6b04731

    65. [65]

      Zheng, Y.; Zeng, J.; Ruditskiy, A.; Liu, M.; Xia, Y. Chem. Mater. 2013, 26, 22. doi: 10.1021/cm402023g  doi: 10.1021/cm402023g

    66. [66]

      Yu, X.; Li, L.; Su, Y.; Jia, W.; Dong, L.; Wang, D.; Zhao, J.; Li, Y. Chem. Eur. J. 2016, 22, 4960. doi: 10.1002/chem.201600079  doi: 10.1002/chem.201600079

    67. [67]

      Liao, H. G.; Zherebetskyy, D.; Xin, H.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. Science 2014, 345, 916. doi: 10.1126/science.1253149  doi: 10.1126/science.1253149

    68. [68]

      Zhou, J.; Yang, Y.; Yang, Y.; Kim, D. S.; Yuan, A.; Tian, X.; Ophus, C.; Sun, F.; Schmid, A. K.; Nathanson, M.; et al. Nature 2019, 570, 500. doi: 10.1038/s41586-019-1317-x  doi: 10.1038/s41586-019-1317-x

    69. [69]

      Wang, D.; Li, Y. Adv. Mater. 2011, 23, 1044. doi: 10.1002/adma.201003695  doi: 10.1002/adma.201003695

    70. [70]

      Gan, L.; Cui, C.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Science 2014, 346, 1502. doi: 10.1126/science.1261212  doi: 10.1126/science.1261212

    71. [71]

      Chen, M.; Wu, B.; Yang, J.; Zheng, N. Adv. Mater. 2012, 24, 862. doi: 10.1002/adma.201104145  doi: 10.1002/adma.201104145

    72. [72]

      Xu, X.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X.; Gao, J.; Li, X.; Zhang, P.; Wang, H. H.; Yu, N. F.; Sun, S. G. Angew. Chem. Int. Ed. 2014, 53, 12522. doi: 10.1002/ange.201406497  doi: 10.1002/ange.201406497

    73. [73]

      Jin, H.; Hong, Y.; Yoon, J.; Oh, A.; Chaudhari, N. K.; Baik, H.; Joo, S. H.; Lee, K. Nano Energy 2017, 42, 17. doi: 10.1016/j.nanoen.2017.10.033  doi: 10.1016/j.nanoen.2017.10.033

    74. [74]

      Sun, X.; Jiang, K.; Zhang, N.; Guo, S.; Huang, X. ACS Nano 2015, 9, 7634. doi: 10.1021/acsnano.5b02986  doi: 10.1021/acsnano.5b02986

    75. [75]

      Ahmadi, M.; Cui, C.; Mistry, H.; Strasser, P.; Cuenya, B. R. ACS Nano 2015, 9, 10686. doi: 10.1021/acsnano.5b01807  doi: 10.1021/acsnano.5b01807

    76. [76]

      Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Angew. Chem. Int. Ed. 2016, 55, 2753. doi: 10.1002/anie.201510460  doi: 10.1002/anie.201510460

    77. [77]

      Saleem, F.; Zhang, Z.; Xu, B.; Xu, X.; He, P.; Wang, X. J. Am. Chem. Soc. 2013, 135, 18304. doi: 10.1021/ja4101968  doi: 10.1021/ja4101968

    78. [78]

      Li, Y.; Quan, F.; Chen, K.; Chen, L.; Chen, C. Catal. Today 2016, 278, 247. doi: 10.1016/j.cattod.2016.01.047  doi: 10.1016/j.cattod.2016.01.047

    79. [79]

      Wang, X.; Vara, M.; Luo, M.; Huang, H.; Ruditskiy, A.; Park, J.; Bao, S.; Liu, J.; Howe, J.; Chi, M.; et al. J. Am. Chem. Soc. 2015, 137, 15036. doi: 10.1021/jacs.5b10059  doi: 10.1021/jacs.5b10059

    80. [80]

      Zhu, J.; Xie, M.; Chen, Z.; Lyu, Z.; Chi, M.; Jin, W.; Xia, Y. Adv. Energy Mater. 2020, 10, 1904114. doi: 10.1002/aenm.201904114  doi: 10.1002/aenm.201904114

    81. [81]

      Luo, X.; Liu, C.; Wang, X.; Shao, Q.; Pi, Y.; Zhu, T.; Li, Y.; Huang, X. Nano Lett. 2020, 20, 1967. doi: 10.1021/acs.nanolett.9b05250  doi: 10.1021/acs.nanolett.9b05250

    82. [82]

      Huang, L.; Zhang, X.; Han, Y.; Wang, Q.; Fang, Y.; Dong, S. Chem. Mater. 2017, 29, 4557. doi: 10.1021/acs.chemmater.7b01282  doi: 10.1021/acs.chemmater.7b01282

    83. [83]

      Wang, Y.; Chen, S.; Wang, X.; Rosen, A.; Beatrez, W.; Sztaberek, L.; Tan, H.; Zhang, L.; Koenigsmann, C.; Zhao, J. ACS Appl. Energy Mater. 2020, 3, 768. doi: 10.1021/acsaem.9b01930  doi: 10.1021/acsaem.9b01930

    84. [84]

      Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. Angew. Chem. Int. Ed. 2013, 52, 12337. doi: 10.1002/anie.201307518  doi: 10.1002/anie.201307518

    85. [85]

      Zhu, X.; Huang, L.; Wei, M.; Tsiakaras, P.; Shen, P. K. Appl. Catal. B. Environ. 2021, 281, 119460. doi: 10.1016/j.apcatb.2020.119460  doi: 10.1016/j.apcatb.2020.119460

    86. [86]

      Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 13934. doi: 10.1021/ja3051662  doi: 10.1021/ja3051662

    87. [87]

      Lin, R.; Cai, X.; Zeng, H.; Yu, Z. Adv. Mater. 2018, 30, e1705332. doi: 10.1002/adma.201705332  doi: 10.1002/adma.201705332

    88. [88]

      Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Adv. Mater. 2019, 31, 1802234. doi: 10.1002/adma.201802234  doi: 10.1002/adma.201802234

    89. [89]

      Liu, L.; Samjeské, G.; Takao, S.; Nagasawa, K.; Iwasawa, Y. J. Power Sources 2014, 253, 1. doi: 10.1016/j.jpowsour.2013.12.028  doi: 10.1016/j.jpowsour.2013.12.028

    90. [90]

      Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Nat. Mater. 2013, 12, 81. doi: 10.1038/nmat3458  doi: 10.1038/nmat3458

    91. [91]

      Niu, Z.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. Nat. Mater. 2016, 15, 1188. doi: 10.1038/nmat4724  doi: 10.1038/nmat4724

    92. [92]

      Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M.; et al. Science 2015, 348, 1230. doi: 10.1126/science.aaa8765  doi: 10.1126/science.aaa8765

    93. [93]

      Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Science 2009, 324, 1302. doi: 10.1126/science.1170377  doi: 10.1126/science.1170377

    94. [94]

      Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Nat. Chem. 2010, 2, 454. doi: 10.1038/nchem.623  doi: 10.1038/nchem.623

    95. [95]

      Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941  doi: 10.1126/science.1135941

    96. [96]

      Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D.; Huang, X. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    97. [97]

      Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W. D.; Xia, B. Y. Science 2019, 366, 850. doi: 10.1126/science.aaw7493  doi: 10.1126/science.aaw7493

    98. [98]

      Pizzutilo, E.; Knossalla, J.; Geiger, S.; Grote, J. P.; Polymeros, G.; Baldizzone, C.; Mezzavilla, S.; Ledendecker, M.; Mingers, A.; Cherevko, S.; et al. Adv. Energy Mater. 2017, 7, 1700835. doi: 10.1002/aenm.201700835  doi: 10.1002/aenm.201700835

    99. [99]

      Cao, Y.; Yang, Y.; Shan, Y.; Huang, Z. ACS Appl. Mater. Interfaces 2016, 8, 5998. doi: 10.1021/acsami.5b11364  doi: 10.1021/acsami.5b11364

    100. [100]

      Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C. K. ACS Nano 2014, 8, 7239. doi: 10.1021/nn502259g  doi: 10.1021/nn502259g

    101. [101]

      Gunji, T.; Tanabe, T.; Jeevagan, A. J.; Usui, S.; Tsuda, T.; Kaneko, S.; Saravanan, G.; Abe, H.; Matsumoto, F. J. Power Sources 2015, 273, 990. doi: 10.1016/j.jpowsour.2014.09.182  doi: 10.1016/j.jpowsour.2014.09.182

    102. [102]

      Han, L.; Liu, H.; Cui, P.; Peng, Z.; Zhang, S.; Yang, J. Sci. Rep. 2014, 4, 6414. doi: 10.1038/srep06414  doi: 10.1038/srep06414

    103. [103]

      Bao, Y. F.; Feng, L. G. Acta Phys. -Chim. Sin. 2021, 37, 2008031.  doi: 10.3866/PKU.WHXB202008031

    104. [104]

      Yang, S.; Li, S.; Song, L.; Lv, Y.; Duan, Z.; Li, C.; Praeg, R. F.; Gao, D.; Chen, G. Nano Res. 2019, 12, 2881. doi: 10.1007/s12274-019-2530-5  doi: 10.1007/s12274-019-2530-5

    105. [105]

      Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2020, 142, 715. doi: 10.1021/jacs.9b12803  doi: 10.1021/jacs.9b12803

    106. [106]

      Fang, B.; Feng, L. G. Acta Phys. -Chim. Sin. 2020, 36, 1905023.  doi: 10.3866/PKU.WHXB201905023

  • 加载中
    1. [1]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    2. [2]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    3. [3]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    4. [4]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    5. [5]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    6. [6]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    7. [7]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    8. [8]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    9. [9]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    10. [10]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    11. [11]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    12. [12]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    13. [13]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    14. [14]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    15. [15]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    16. [16]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    17. [17]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    18. [18]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    19. [19]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    20. [20]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

Metrics
  • PDF Downloads(26)
  • Abstract views(522)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return