Citation: Hao Leiduan, Sun Zhenyu. Metal Oxide-Based Materials for Electrochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200903. doi: 10.3866/PKU.WHXB202009033 shu

Metal Oxide-Based Materials for Electrochemical CO2 Reduction


  • Author Bio:
    Zhenyu Sun was born in April 1977. He is currently a full professor in the College of Chemical Engineering at Beijing University of Chemical Technology (China). He completed his Ph.D. at Institute of Chemistry, Chinese Academy of Sciences in 2006. He did postdoctoral research in Trinity College Dublin (Ireland) from 2006 to 2008, at Ruhr University, Bochum (Germany) from 2011 to 2014, and University of Oxford from 2014 to 2015. He has obtained a Humboldt Research Fellowship for Experienced Researchers (Germany). His current research focuses on energy conversion reactions using two-dimensional materials
  • Corresponding author: Sun Zhenyu, sunzy@mail.buct.edu.cn
  • Received Date: 9 September 2020
    Revised Date: 24 October 2020
    Accepted Date: 5 November 2020
    Available Online: 16 November 2020

    Fund Project: This work was supported by National Natural Science Foundation of China (21972010) and Beijing Natural Science Foundation, China (2192039)Beijing Natural Science Foundation, China 2192039National Natural Science Foundation of China 21972010

  • The CO2 level in the atmosphere has been increasing since the industrial revolution owing to anthropogenic activities. The increased CO2 level has led to global warming and also has detrimental effects on human beings. Reducing the CO2 level in the atmosphere is urgent for balancing the carbon cycle. In this regard, reduction in CO2 emission and CO2 storage and usage are the main strategies. Among these, CO2 usage has been extensively explored, because it can reduce the CO2 level and simultaneously provide opportunities for the development in catalysts and industries to convert CO2 as a carbon source for preparing valuable products. However, transformation of CO2 to other chemicals is challenging owing to its thermodynamic and kinetic stabilities. Among the CO2 utilization techniques, electrochemical CO2 reduction (ECR) is a promising alternative because it is generally conducted under ambient conditions, and water is used as the economical hydrogen source. Moreover, ECR offers a potential route to store electrical energy from renewable sources in the form of chemical energy, through generation of CO2 reduction products. To improve the energy efficiency and viability of ECR, it is important to decrease the operational overpotential and maintain large current densities and high product selectivities; the development of efficient electrocatalysts is a critical aspect in this regard. To date, many kinds of materials have been designed and studied for application in ECR. Among these materials, metal oxide-based materials exhibit excellent performance as electrocatalysts for ECR and are attracting increasing attention in recent years. Investigation of the mechanism of reactions that involve metallic electrocatalysts has revealed the function of trace amount of oxidized metal species—it has been suggested that the presence of metal oxides and metal-oxygen bonds facilitates the activation of CO2 and the subsequent formation and stabilization of the reaction intermediates, thereby resulting in high efficiency and selectivity of the ECR. Although the stability of metal oxides is a concern as they are prone to reduction under a cathodic potential, the catalytic performance of metal oxide-based catalysts can be maintained through careful designing of the morphology and structure of the materials. In addition, introducing other metal species to metal oxides and fabricating composites of metal oxides and other materials are effective strategies to achieve enhanced performance in ECR. In this review, we summarize the recent progress in the use of metal oxide-based materials as electrocatalysts and their application in ECR. The critical role, stability, and structure-performance relationship of the metal oxide-based materials for ECR are highlighted in the discussion. In the final part, we propose the future prospects for the development of metal oxide-based electrocatalysts for ECR.
  • 加载中
    1. [1]

      He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620. doi: 10.1002/anie.201209384  doi: 10.1002/anie.201209384

    2. [2]

      Shih, C. F.; Zhang, T.; Li, J.; Bai, C. Joule 2018, 2, 1925. doi: 10.1016/j.joule.2018.08.016  doi: 10.1016/j.joule.2018.08.016

    3. [3]

      Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. Joule 2018, 2, 825. doi: 10.1016/j.joule.2017.09.003  doi: 10.1016/j.joule.2017.09.003

    4. [4]

      Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.; Qiao, S. -Z. J. Am. Chem. Soc. 2019, 141, 7646. doi: 10.1021/jacs.9b02124  doi: 10.1021/jacs.9b02124

    5. [5]

      Ning, H.; Wang, W. H.; Mao, Q. H.; Zheng, S. R.; Yang, Z. X.; Zhao, Q. S.; Wu, M. B. Acta Phys. -Chim. Sin. 2018, 34, 938.  doi: 10.3866/PKU.WHXB201801263

    6. [6]

      Gao, Y. N.; Liu, S. Z.; Zhao, Z. Q.; Tao, H. C.; Sun, Z. Y. Acta Phys. -Chim. Sin. 2018, 34, 858.  doi: 10.3866/PKU.WHXB201802061

    7. [7]

      Fan, Q.; Zhang, M.; Jia, M.; Liu, S.; Qiu, J.; Sun, Z. Mater. Today Energy 2018, 10, 280. doi: 10.1016/j.mtener.2018.10.003  doi: 10.1016/j.mtener.2018.10.003

    8. [8]

      Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S. Nano Today 2018, 21, 41. doi: 10.1016/j.nantod.2018.05.001  doi: 10.1016/j.nantod.2018.05.001

    9. [9]

      Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135, 16833. doi: 10.1021/ja409445p  doi: 10.1021/ja409445p

    10. [10]

      Yang, M.; Zhang, J.; Cao, Y.; Wu, M.; Qian, K.; Zhang, Z.; Liu, H.; Wang, J.; Chen, W.; Huang, W. ChemCatChem 2018, 10, 5128. doi: 10.1002/cctc.201801423  doi: 10.1002/cctc.201801423

    11. [11]

      Chen, Z.; Yao, S.; Liu, L. J. Mater. Chem. A 2017, 5, 24651. doi: 10.1039/C7TA07495F  doi: 10.1039/C7TA07495F

    12. [12]

      Zhang, T.; Qiu, Y.; Yao, P.; Li, X.; Zhang, H. ACS Sustainable Chem. Eng. 2019, 7, 15190. doi: 10.1021/acssuschemeng.9b01985  doi: 10.1021/acssuschemeng.9b01985

    13. [13]

      Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.  doi: 10.3866/PKU.WHXB202006034

    14. [14]

      Jia, M.; Fan, Q.; Liu, S.; Qiu, J.; Sun, Z. Curr. Opin. Green Sustainable Chem. 2019, 16, 1. doi: 10.1016/j.cogsc.2018.11.002  doi: 10.1016/j.cogsc.2018.11.002

    15. [15]

      Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Science 2010, 327, 313. doi: 10.1126/science.1177981  doi: 10.1126/science.1177981

    16. [16]

      Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X. -F.; Ma, Q.; Brudvig, G. W.; Batista, V. S.; et al. Nat. Commun. 2018, 9, 415. doi: 10.1038/s41467-018-02819-7  doi: 10.1038/s41467-018-02819-7

    17. [17]

      Ma, T.; Fan, Q.; Tao, H.; Han, Z.; Jia, M.; Gao, Y.; Ma, W.; Sun, Z. Nanotechnology 2017, 28, 472001. doi: 10.1088/1361-6528/aa8f6f  doi: 10.1088/1361-6528/aa8f6f

    18. [18]

      Ma, T.; Fan, Q.; Li, X.; Qiu, J.; Wu, T.; Sun, Z. J. CO2 Util. 2019, 30, 168. doi: 10.1016/j.jcou.2019.02.001  doi: 10.1016/j.jcou.2019.02.001

    19. [19]

      Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Chem 2017, 3, 560. doi: 10.1016/j.chempr.2017.09.009  doi: 10.1016/j.chempr.2017.09.009

    20. [20]

      Bandi, A. J. Electrochem. Soc. 1990, 137, 2157. doi: 10.1149/1.2086903  doi: 10.1149/1.2086903

    21. [21]

      Tayyebi, E.; Hussain, J.; Abghoui, Y.; Skúlason, E. J. Phys. Chem. C 2018, 122, 10078. doi: 10.1021/acs.jpcc.8b02224  doi: 10.1021/acs.jpcc.8b02224

    22. [22]

      Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. -W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; et al. Nat. Commun. 2016, 7, 12123. doi: 10.1038/ncomms12123  doi: 10.1038/ncomms12123

    23. [23]

      Zhang, R.; Lv, W.; Lei, L. Appl. Surf. Sci. 2015, 356, 24. doi: 10.1016/j.apsusc.2015.08.006  doi: 10.1016/j.apsusc.2015.08.006

    24. [24]

      Permyakova, A. A.; Herranz, J.; El Kazzi, M.; Diercks, J. S.; Povia, M.; Mangani, L. R.; Horisberger, M.; Pătru, A.; Schmidt, T. J. ChemPhysChem 2019, 20, 3120. doi: 10.1002/cphc.201900468  doi: 10.1002/cphc.201900468

    25. [25]

      Chu, S.; Yan, X.; Choi, C.; Hong, S.; Robertson, A.; Masa, J.; Han, B.; Jung, Y.; Sun, Z. Green Chem. 2020, 22, 6540. doi: 10.1039/D0GC02279A  doi: 10.1039/D0GC02279A

    26. [26]

      Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073. doi: 10.1021/acs.jpclett.5b01559  doi: 10.1021/acs.jpclett.5b01559

    27. [27]

      Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Angew. Chem. Int. Ed. 2017, 56, 3645. doi: 10.1002/anie.201612194  doi: 10.1002/anie.201612194

    28. [28]

      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. Energy Environ. Sci. 2010, 3, 1311. doi: 10.1039/C0EE00071J  doi: 10.1039/C0EE00071J

    29. [29]

      Cheng, T.; Xiao, H.; Goddard, W. A. J. Am. Chem. Soc. 2016, 138, 13802. doi: 10.1021/jacs.6b08534  doi: 10.1021/jacs.6b08534

    30. [30]

      Schouten, K. J. P.; Qin, Z.; Pérez Gallent, E.; Koper, M. T. M. J. Am. Chem. Soc. 2012, 134, 9864. doi: 10.1021/ja302668n  doi: 10.1021/ja302668n

    31. [31]

      Gao, D.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Nat. Catal. 2019, 2, 198. doi: 10.1038/s41929-019-0235-5  doi: 10.1038/s41929-019-0235-5

    32. [32]

      Yang, Y.; Zhang, Y.; Hu, J. S.; Wan, L. J. Acta Phys. -Chim. Sin. 2020, 36, 1906085.  doi: 10.3866/PKU.WHXB201906085

    33. [33]

      Mistry, H.; Reske, R.; Zeng, Z.; Zhao, Z. -J.; Greeley, J.; Strasser, P.; Cuenya, B. R. J. Am. Chem. Soc. 2014, 136, 16473. doi: 10.1021/ja508879j  doi: 10.1021/ja508879j

    34. [34]

      Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Angew. Chem. Int. Ed. 2017, 56, 796. doi: 10.1002/anie.201610432  doi: 10.1002/anie.201610432

    35. [35]

      Zhang, Y. -J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. ACS Catal. 2014, 4, 3742. doi: 10.1021/cs5012298  doi: 10.1021/cs5012298

    36. [36]

      Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282  doi: 10.1002/anie.201601282

    37. [37]

      Xiang, H.; Rasul, S.; Hou, B.; Portoles, J.; Cumpson, P.; Yu, E. H. ACS Appl. Mater. Interfaces 2020, 12, 601. doi: 10.1021/acsami.9b16862  doi: 10.1021/acsami.9b16862

    38. [38]

      Wang, H.; Matios, E.; Wang, C.; Luo, J.; Lu, X.; Hu, X.; Li, W. Nano Lett. 2019, 19, 3925. doi: 10.1021/acs.nanolett.9b01197  doi: 10.1021/acs.nanolett.9b01197

    39. [39]

      Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231. doi: 10.1021/ja3010978  doi: 10.1021/ja3010978

    40. [40]

      Eilert, A.; Cavalca, F.; Roberts, F. S.; Osterwalder, J.; Liu, C.; Favaro, M.; Crumlin, E. J.; Ogasawara, H.; Friebel, D.; Pettersson, L.; et al. J. Phys. Chem. Lett. 2017, 8, 285. doi: 10.1021/acs.jpclett.6b02273  doi: 10.1021/acs.jpclett.6b02273

    41. [41]

      Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J. Proc. Natl. Acad. Sci. 2017, 114, 6706. doi: 10.1073/pnas.1701405114  doi: 10.1073/pnas.1701405114

    42. [42]

      Fields, M.; Hong, X.; Nørskov, J. K.; Chan, K. J. Phys. Chem. C 2018, 122, 16209. doi: 10.1021/acs.jpcc.8b04983  doi: 10.1021/acs.jpcc.8b04983

    43. [43]

      Garza, A. J.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. Lett. 2018, 9, 601. doi: 10.1021/acs.jpclett.7b03180  doi: 10.1021/acs.jpclett.7b03180

    44. [44]

      Xiao, H.; Goddard, W. A.; Cheng, T.; Liu, Y. Proc. Natl. Acad. Sci. 2017, 114, 6685. doi: 10.1073/pnas.1702405114  doi: 10.1073/pnas.1702405114

    45. [45]

      Chou, T. -C.; Chang, C. -C.; Yu, H. -L.; Yu, W. -Y.; Dong, C. -L.; Velasco-Vélez, J. -J.; Chuang, C. -H.; Chen, L. -C.; Lee, J. -F.; Chen, J. -M.; et al. J. Am. Chem. Soc. 2020, 142, 2857. doi: 10.1021/jacs.9b11126  doi: 10.1021/jacs.9b11126

    46. [46]

      Velasco-Vélez, J. -J.; Jones, T.; Gao, D.; Carbonio, E.; Arrigo, R.; Hsu, C. -J.; Huang, Y. -C.; Dong, C. -L.; Chen, J. -M.; Lee, J. -F.; et al. ACS Sustainable Chem. Eng. 2019, 7, 1485. doi: 10.1021/acssuschemeng.8b05106  doi: 10.1021/acssuschemeng.8b05106

    47. [47]

      Yang, P. -P.; Zhang, X. -L.; Gao, F. -Y.; Zheng, Y. -R.; Niu, Z. -Z.; Yu, X.; Liu, R.; Wu, Z. -Z.; Qin, S.; Chi, L. -P.; et al. J. Am. Chem. Soc. 2020, 142, 6400. doi: 10.1021/jacs.0c01699  doi: 10.1021/jacs.0c01699

    48. [48]

      Zhu, Q.; Sun, X.; Yang, D.; Ma, J.; Kang, X.; Zheng, L.; Zhang, J.; Wu, Z.; Han, B. Nat. Commun. 2019, 10, 3851. doi: 10.1038/s41467-019-11599-7  doi: 10.1038/s41467-019-11599-7

    49. [49]

      Zhang, W.; Huang, C.; Xiao, Q.; Yu, L.; Shuai, L.; An, P.; Zhang, J.; Qiu, M.; Ren, Z.; Yu, Y. J. Am. Chem. Soc. 2020, 142, 11417. doi: 10.1021/jacs.0c01562  doi: 10.1021/jacs.0c01562

    50. [50]

      Tan, X.; Yu, C.; Zhao, C.; Huang, H.; Yao, X.; Han, X.; Guo, W.; Cui, S.; Huang, H.; Qiu, J. ACS Appl. Mater. Interfaces 2019, 11, 9904. doi: 10.1021/acsami.8b19111  doi: 10.1021/acsami.8b19111

    51. [51]

      Irfan Malik, M.; Malaibari, Z. O.; Atieh, M.; Abussaud, B. Chem. Eng. Sci. 2016, 152, 468. doi: 10.1016/j.ces.2016.06.035  doi: 10.1016/j.ces.2016.06.035

    52. [52]

      Gao, D.; Zhang, Y.; Zhou, Z.; Cai, F.; Zhao, X.; Huang, W.; Li, Y.; Zhu, J.; Liu, P.; Yang, F.; et al. J. Am. Chem. Soc. 2017, 139, 5652. doi: 10.1021/jacs.7b00102  doi: 10.1021/jacs.7b00102

    53. [53]

      Lee, C. W.; Shin, S. -J.; Jung, H.; Nguyen, D. L. T.; Lee, S. Y.; Lee, W. H.; Won, D. H.; Kim, M. G.; Oh, H. -S.; Jang, T.; et al. ACS Energy Letters 2019, 4, 2241. doi: 10.1021/acsenergylett.9b01721  doi: 10.1021/acsenergylett.9b01721

    54. [54]

      Chu, S. L.; Li, X.; Robertson, A. W.; Sun, Z. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009023.  doi: 10.3866/PKU.WHXB202009023

    55. [55]

      Lee, S.; Park, G.; Lee, J. ACS Catal. 2017, 7, 8594. doi: 10.1021/acscatal.7b02822  doi: 10.1021/acscatal.7b02822

    56. [56]

      He, J.; Dettelbach, K. E.; Salvatore, D. A.; Li, T.; Berlinguette, C. P. Angew. Chem. Int. Ed. 2017, 56, 6068. doi: 10.1002/anie.201612038  doi: 10.1002/anie.201612038

    57. [57]

      Li, Y.; Chu, S.; Shen, H.; Xia, Q.; Robertson, A. W.; Masa, J.; Siddiqui, U.; Sun, Z. ACS Sustainable Chem. Eng. 2020, 8, 4948. doi: 10.1021/acssuschemeng.0c00800  doi: 10.1021/acssuschemeng.0c00800

    58. [58]

      Ren, D.; Ang, B. S. -H.; Yeo, B. S. ACS Catal. 2016, 6, 8239. doi: 10.1021/acscatal.6b02162  doi: 10.1021/acscatal.6b02162

    59. [59]

      Chen, K.; Zhang, X.; Williams, T.; Bourgeois, L.; MacFarlane, D. R. Electrochim. Acta 2017, 239, 84. doi: 10.1016/j.electacta.2017.04.019  doi: 10.1016/j.electacta.2017.04.019

    60. [60]

      An, X.; Li, S.; Yoshida, A.; Yu, T.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. ACS Appl. Mater. Interfaces 2019, 11, 42114. doi: 10.1021/acsami.9b13270  doi: 10.1021/acsami.9b13270

    61. [61]

      Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. ACS Catal. 2016, 6, 6265. doi: 10.1021/acscatal.6b02067  doi: 10.1021/acscatal.6b02067

    62. [62]

      Yang, H. -P.; Yue, Y. -N.; Qin, S.; Wang, H.; Lu, J. -X. Green Chem. 2016, 18, 3216. doi: 10.1039/C6GC00091F  doi: 10.1039/C6GC00091F

    63. [63]

      Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K. Angew. Chem. Int. Ed. 2015, 54, 2146. doi: 10.1002/anie.201410233  doi: 10.1002/anie.201410233

    64. [64]

      Yang, D.; Zhu, Q.; Sun, X.; Chen, C.; Lu, L.; Guo, W.; Liu, Z.; Han, B. Green Chem. 2018, 20, 3705. doi: 10.1039/C8GC01552J  doi: 10.1039/C8GC01552J

    65. [65]

      Peña, M. A.; Fierro, J. L. G. Chem. Rev. 2001, 101, 1981. doi: 10.1021/cr980129f  doi: 10.1021/cr980129f

    66. [66]

      Lu, J.; Zhu, C.; Pan, C.; Lin, W.; Lemmon, J. P.; Chen, F.; Li, C.; Xie, K. Sci. Adv. 2018, 4, eaar5100. doi: 10.1126/sciadv.aar5100  doi: 10.1126/sciadv.aar5100

    67. [67]

      Chen, S.; Su, Y.; Deng, P.; Qi, R.; Zhu, J.; Chen, J.; Wang, Z.; Zhou, L.; Guo, X.; Xia, B. Y. ACS Catal. 2020, 10, 4640. doi: 10.1021/acscatal.0c00847  doi: 10.1021/acscatal.0c00847

    68. [68]

      Nur Hossain, M.; Chen, S.; Chen, A. Appl. Catal. B 2019, 259, 118096. doi: 10.1016/j.apcatb.2019.118096  doi: 10.1016/j.apcatb.2019.118096

    69. [69]

      Pang, Y.; Burdyny, T.; Dinh, C. -T.; Kibria, M. G.; Fan, J. Z.; Liu, M.; Sargent, E. H.; Sinton, D. Green Chem. 2017, 19, 4023. doi: 10.1039/C7GC01677H  doi: 10.1039/C7GC01677H

    70. [70]

      Wu, M.; Zhu, C.; Wang, K.; Li, G.; Dong, X.; Song, Y.; Xue, J.; Chen, W.; Wei, W.; Sun, Y. ACS Appl. Mater. Interfaces 2020, 12, 11562. doi: 10.1021/acsami.9b21153  doi: 10.1021/acsami.9b21153

    71. [71]

      Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H. J. Am. Chem. Soc. 2019, 141, 6986. doi: 10.1021/jacs.9b00911  doi: 10.1021/jacs.9b00911

    72. [72]

      Jitaru, M.; Lowy, D. A.; Toma, M.; Toma, B. C.; Oniciu, L. J. Appl. Electrochem. 1997, 27, 875. doi: 10.1023/A:1018441316386  doi: 10.1023/A:1018441316386

    73. [73]

      Chen, Y.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 1986. doi: 10.1021/ja2108799  doi: 10.1021/ja2108799

    74. [74]

      Wu, J.; Risalvato, F. G.; Ma, S.; Zhou, X. -D. J. Mater. Chem. A 2014, 2, 1647. doi: 10.1039/C3TA13544F  doi: 10.1039/C3TA13544F

    75. [75]

      An, X.; Li, S.; Yoshida, A.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. ACS Sustainable Chem. Eng. 2019, 7, 9360. doi: 10.1021/acssuschemeng.9b00515  doi: 10.1021/acssuschemeng.9b00515

    76. [76]

      Zhang, Q.; Zhang, Y.; Mao, J.; Liu, J.; Zhou, Y.; Guay, D.; Qiao, J. ChemSusChem 2019, 12, 1443. doi: 10.1002/cssc.201802725  doi: 10.1002/cssc.201802725

    77. [77]

      Cui, C.; Han, J.; Zhu, X.; Liu, X.; Wang, H.; Mei, D.; Ge, Q. J. Catal. 2016, 343, 257. doi: 10.1016/j.jcat.2015.12.001  doi: 10.1016/j.jcat.2015.12.001

    78. [78]

      Deng, W.; Zhang, L.; Li, L.; Chen, S.; Hu, C.; Zhao, Z. -J.; Wang, T.; Gong, J. J. Am. Chem. Soc. 2019, 141, 2911. doi: 10.1021/jacs.8b13786  doi: 10.1021/jacs.8b13786

    79. [79]

      Zhang, W.; Qin, Q.; Dai, L.; Qin, R.; Zhao, X.; Chen, X.; Ou, D.; Chen, J.; Chuong, T. T.; Wu, B.; Zheng, N. Angew. Chem. Int. Ed. 2018, 57, 9475. doi: 10.1002/anie.201804142  doi: 10.1002/anie.201804142

    80. [80]

      Lee, S.; Ju, H.; Machunda, R.; Uhm, S.; Lee, J. K.; Lee, H. J.; Lee, J. J. Mater. Chem. A 2015, 3, 3029. doi: 10.1039/C4TA03893B  doi: 10.1039/C4TA03893B

    81. [81]

      Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. J. Am. Chem. Soc. 2015, 137, 4288. doi: 10.1021/jacs.5b00046  doi: 10.1021/jacs.5b00046

    82. [82]

      Zhu, W.; Zhang, Y. -J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2014, 136, 16132. doi: 10.1021/ja5095099  doi: 10.1021/ja5095099

    83. [83]

      Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J. -J.; Sun, S. J. Am. Chem. Soc. 2017, 139, 4290. doi: 10.1021/jacs.7b00261  doi: 10.1021/jacs.7b00261

    84. [84]

      Huo, S.; Weng, Z.; Wu, Z.; Zhong, Y.; Wu, Y.; Fang, J.; Wang, H. ACS Appl. Mater. Interfaces 2017, 9, 28519. doi: 10.1021/acsami.7b07707  doi: 10.1021/acsami.7b07707

    85. [85]

      Cheng, Y.; Hou, P.; Pan, H.; Shi, H.; Kang, P. Appl. Catal. B 2020, 272, 118954. doi: 10.1016/j.apcatb.2020.118954  doi: 10.1016/j.apcatb.2020.118954

    86. [86]

      Wang, K.; Liu, D.; Deng, P.; Liu, L.; Lu, S.; Sun, Z.; Ma, Y.; Wang, Y.; Li, M.; Xia, B. Y.; et al. Nano Energy 2019, 64, 103954. doi: 10.1016/j.nanoen.2019.103954  doi: 10.1016/j.nanoen.2019.103954

    87. [87]

      Fan, L.; Xia, Z.; Xu, M.; Lu, Y.; Li, Z. Adv. Funct. Mater. 2018, 28, 1706289. doi: 10.1002/adfm.201706289  doi: 10.1002/adfm.201706289

    88. [88]

      Liu, S.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Angew. Chem. Int. Ed. 2019, 58, 8499. doi: 10.1002/anie.201903613  doi: 10.1002/anie.201903613

    89. [89]

      Li, F.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 505. doi: 10.1002/anie.201608279  doi: 10.1002/anie.201608279

    90. [90]

      Xie, X.; Li, Y.; Liu, Z. -Q.; Haruta, M.; Shen, W. Nature 2009, 458, 746. doi: 10.1038/nature07877  doi: 10.1038/nature07877

    91. [91]

      Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. ACS Nano 2010, 4, 1259. doi: 10.1021/nn9015423  doi: 10.1021/nn9015423

    92. [92]

      Sun, Y.; Gao, S.; Lei, F.; Liu, J.; Liang, L.; Xie, Y. Chem. Sci. 2014, 5, 3976. doi: 10.1039/C4SC00565A  doi: 10.1039/C4SC00565A

    93. [93]

      Huang, X.; Cao, T.; Liu, M.; Zhao, G. J. Phys. Chem. C 2013, 117, 26432. doi: 10.1021/jp408630s  doi: 10.1021/jp408630s

    94. [94]

      Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Nature 2016, 529, 68. doi: 10.1038/nature16455  doi: 10.1038/nature16455

    95. [95]

      Gao, S.; Jiao, X.; Sun, Z.; Zhang, W.; Sun, Y.; Wang, C.; Hu, Q.; Zu, X.; Yang, F.; Yang, S.; et al. Angew. Chem. Int. Ed. 2016, 55, 698. doi: 10.1002/anie.201509800  doi: 10.1002/anie.201509800

    96. [96]

      Yang, H.; Han, N.; Deng, J.; Wu, J.; Wang, Y.; Hu, Y.; Ding, P.; Li, Y.; Li, Y.; Lu, J. Adv. Energy Mater. 2018, 8, 1801536. doi: 10.1002/aenm.201801536  doi: 10.1002/aenm.201801536

    97. [97]

      Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-018-03712-z  doi: 10.1038/s41467-018-03712-z

    98. [98]

      Lee, C. W.; Hong, J. S.; Yang, K. D.; Jin, K.; Lee, J. H.; Ahn, H. -Y.; Seo, H.; Sung, N. -E.; Nam, K. T. ACS Catal. 2018, 8, 931. doi: 10.1021/acscatal.7b03242  doi: 10.1021/acscatal.7b03242

    99. [99]

      Koh, J. H.; Won, D. H.; Eom, T.; Kim, N. -K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. ACS Catal. 2017, 7, 5071. doi: 10.1021/acscatal.7b00707  doi: 10.1021/acscatal.7b00707

    100. [100]

      Kim, S.; Dong, W. J.; Gim, S.; Sohn, W.; Park, J. Y.; Yoo, C. J.; Jang, H. W.; Lee, J. -L. Nano Energy 2017, 39, 44. doi: 10.1016/j.nanoen.2017.05.065  doi: 10.1016/j.nanoen.2017.05.065

    101. [101]

      Gong, Q.; Ding, P.; Xu, M.; Zhu, X.; Wang, M.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J.; et al. Nat. Commun. 2019, 10, 2807. doi: 10.1038/s41467-019-10819-4  doi: 10.1038/s41467-019-10819-4

    102. [102]

      Deng, P.; Wang, H.; Qi, R.; Zhu, J.; Chen, S.; Yang, F.; Zhou, L.; Qi, K.; Liu, H.; Xia, B. Y. ACS Catal. 2020, 10, 743. doi: 10.1021/acscatal.9b04043  doi: 10.1021/acscatal.9b04043

    103. [103]

      Deng, P.; Yang, F.; Wang, Z.; Chen, S.; Zhou, Y.; Zaman, S.; Xia, B. Y. Angew. Chem., Int. Ed. 2020, 59, 10807. doi: 10.1002/anie.202000657  doi: 10.1002/anie.202000657

    104. [104]

      Chen, Z.; Mou, K.; Wang, X.; Liu, L. Angew. Chem. Int. Ed. 2018, 57, 12790. doi: 10.1002/anie.201807643  doi: 10.1002/anie.201807643

    105. [105]

      Li, T.; Wei, H.; Liu, T.; Zheng, G.; Liu, S.; Luo, J. -L. ACS Appl. Mater. Interfaces 2019, 11, 22346. doi: 10.1021/acsami.9b04580  doi: 10.1021/acsami.9b04580

    106. [106]

      Rabiee, A.; Nematollahi, D. Mater. Chem. Phys. 2017, 193, 109. doi: 10.1016/j.matchemphys.2017.02.016  doi: 10.1016/j.matchemphys.2017.02.016

    107. [107]

      Xia, Z.; Freeman, M.; Zhang, D.; Yang, B.; Lei, L.; Li, Z.; Hou, Y. ChemElectroChem 2018, 5, 253. doi: 10.1002/celc.201700935  doi: 10.1002/celc.201700935

    108. [108]

      Sun, X.; Lu, L.; Zhu, Q.; Wu, C.; Yang, D.; Chen, C.; Han, B. Angew. Chem. Int. Ed. 2018, 57, 2427. doi: 10.1002/anie.201712221  doi: 10.1002/anie.201712221

    109. [109]

      Chu, S.; Hong, S.; Masa, J.; Li, X.; Sun, Z. Chem. Commun. 2019, 55, 12380. doi: 10.1039/C9CC05435A  doi: 10.1039/C9CC05435A

    110. [110]

      White, J. L.; Bocarsly, A. B. J. Electrochem. Soc. 2016, 163, H410. doi: 10.1149/2.0681606jes  doi: 10.1149/2.0681606jes

    111. [111]

      Mou, K.; Chen, Z.; Yao, S.; Liu, L. Electrochim. Acta 2018, 289, 65. doi: 10.1016/j.electacta.2018.09.026  doi: 10.1016/j.electacta.2018.09.026

    112. [112]

      Won, D. H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I. Angew. Chem. Int. Ed. 2016, 55, 9297. doi: 10.1002/anie.201602888  doi: 10.1002/anie.201602888

    113. [113]

      Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. ACS Catal. 2015, 5, 4586. doi: 10.1021/acscatal.5b00922  doi: 10.1021/acscatal.5b00922

    114. [114]

      Quan, F.; Zhong, D.; Song, H.; Jia, F.; Zhang, L. J. Mater. Chem. A 2015, 3, 16409. doi: 10.1039/C5TA04102C  doi: 10.1039/C5TA04102C

    115. [115]

      Nguyen, D. L. T.; Jee, M. S.; Won, D. H.; Jung, H.; Oh, H. -S.; Min, B. K.; Hwang, Y. J. ACS Sustainable Chem. Eng. 2017, 5, 11377. doi: 10.1021/acssuschemeng.7b02460  doi: 10.1021/acssuschemeng.7b02460

    116. [116]

      Jeon, H. S.; Sinev, I.; Scholten, F.; Divins, N. J.; Zegkinoglou, I.; Pielsticker, L.; Cuenya, B. R. J. Am. Chem. Soc. 2018, 140, 9383. doi: 10.1021/jacs.8b05258  doi: 10.1021/jacs.8b05258

    117. [117]

      Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.; Zeng, J. Angew. Chem. Int. Ed. 2018, 57, 6054. doi: 10.1002/anie.201711255  doi: 10.1002/anie.201711255

    118. [118]

      Bachiller-Baeza, B.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. Langmuir 1998, 14, 3556. doi: 10.1021/la970856q  doi: 10.1021/la970856q

    119. [119]

      Miao, Z.; Hu, P.; Nie, C.; Xie, H.; Fu, W.; Li, Q. J. Energy Chem. 2019, 38, 114. doi: 10.1016/j.jechem.2019.01.010  doi: 10.1016/j.jechem.2019.01.010

    120. [120]

      Sekimoto, T.; Deguchi, M.; Yotsuhashi, S.; Yamada, Y.; Masui, T.; Kuramata, A.; Yamakoshi, S. Electrochem. Commun. 2014, 43, 95. doi: 10.1016/j.elecom.2014.03.023  doi: 10.1016/j.elecom.2014.03.023

    121. [121]

      Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T. J. Phys. Chem. C 2010, 114, 8892. doi: 10.1021/jp910835k  doi: 10.1021/jp910835k

    122. [122]

      Yuliati, L.; Itoh, H.; Yoshida, H. Chem. Phys. Lett. 2008, 452, 178. doi: 10.1016/j.cplett.2007.12.051  doi: 10.1016/j.cplett.2007.12.051

    123. [123]

      Spataru, N.; Tokuhiro, K.; Terashima, C.; Rao, T. N.; Fujishima, A. J. Appl. Electrochem. 2003, 33, 1205. doi: 10.1023/B:JACH.0000003866.85015.b6  doi: 10.1023/B:JACH.0000003866.85015.b6

    124. [124]

      Karamad, M.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. ACS Catal. 2015, 5, 4075. doi: 10.1021/cs501542n  doi: 10.1021/cs501542n

    125. [125]

      Lum, Y.; Ager, J. W. Angew. Chem. Int. Ed. 2018, 57, 551. doi: 10.1002/anie.201710590  doi: 10.1002/anie.201710590

  • 加载中
    1. [1]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    2. [2]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    3. [3]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    4. [4]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    5. [5]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    6. [6]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    7. [7]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    8. [8]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    9. [9]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    10. [10]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    11. [11]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    12. [12]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    13. [13]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    14. [14]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    15. [15]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    18. [18]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    19. [19]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    20. [20]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

Metrics
  • PDF Downloads(17)
  • Abstract views(457)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return