Citation: Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200903. doi: 10.3866/PKU.WHXB202009030 shu

Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction




  • Author Bio: Yunfeng Li received his Ph.D. from Northeast Normal University in 2018. He then joined College of Environmental and Chemical Engineering in Xi'an Polytechnic University as Assistant Professor. His research interests focus on environment and energy photocatalysis



    Zhansheng Wu, received his Ph.D. from Beijing Institute of Technology in 2011. He then joined School of Environmental and Chemical Engineering in Xi'an Polytechnic University as Professor. His research interests focus on environmental chemical engineering
    Yuhua Ma obtained her Ph.D. degree from Xinjiang University in 2017. She then became a lecturer at Xinjiang Normal University. Her main research background lies in the area of nanostructured semiconductor photocatalyst for energy and environmental applications
  • Corresponding author: Yunfeng Li, liyf377@nenu.edu.cn Zhansheng Wu, wuzhans@126.com Ma Yuhua, 15199141253@163.com
  • Received Date: 7 September 2020
    Revised Date: 30 September 2020
    Accepted Date: 8 October 2020
    Available Online: 19 October 2020

    Fund Project: the National Natural Science Foundation of China 22008185the National Natural Science Foundation of China 52063028Scientific Research Program Funded by Shaanxi Provincial Education Department 19JK0376Natural Science Basic Research Program of Shaanxi 2019JQ-841National Training Program of Innovation and Entrepreneurship for Undergraduates S202010709004

  • Solar energy is the largest renewable energy source in the world and the primary energy source of wind energy, tidal energy, biomass energy, and fossil fuel. Photocatalysis technology is a sunlight-driven chemical reaction process on the surface of photocatalysts that can generate H2 from water, decompose organic contaminants, and reduce CO2 into organic fuels. As a metal-free polymeric material, graphite-like carbon nitride (g-C3N4) has attracted significant attention because of its special band structure, easy fabrication, and low costs. However, some bottlenecks still limit its photocatalytic performance. To date, numerous strategies have been employed to optimize the photoelectric properties of g-C3N4, such as element doping, functional group modification, and construction of heterojunctions. Remarkably, these modification strategies are strongly associated with the surface behavior of g-C3N4, which plays a key role in efficient photocatalytic performance. In this review, we endeavor to provide a comprehensive summary of g-C3N4-based photocatalysts prepared through typical surface modification strategies (surface functionalization and construction of heterojunctions) and elaborate their special light-excitation and response mechanism, photo-generated carrier transfer route, and surface catalytic reaction in detail under visible-light irradiation. Moreover, the potential applications of the surface-modified g-C3N4-based photocatalysts for photocatalytic H2 generation and reduction of CO2 into fuels are summarized. Finally, based on the current research, the key challenges that should be further studied and overcome are highlighted. The following are the objectives that future studies need to focus on: (1) Although considerable effort has been made to develop a surface modification strategy for g-C3N4, its photocatalytic efficiency is still too low to meet industrial application standards. The currently obtained solar-to‑hydrogen (STH) conversion efficiency of g-C3N4 for H2 generation is approximately 2%, which is considerably lower than the commercial standards of 10%. Thus, the regulation of the surface/textural properties and electronic band structure of g-C3N4 should be further elucidated to improve its photocatalytic performance. (2) Significant challenges remain in the design and construction of g-C3N4-based S-scheme heterojunction photocatalysts by facile, low-cost, and reliable methods. To overcome the limitations of conventional heterojunctions thoroughly, a promising S-scheme heterojunction photocatalytic system was recently reported. The study further clarifies the charge transfer route and mechanism during the catalytic process. Thus, the rational design and synthesis of g-C3N4-based S-scheme heterojunctions will attract extensive scientific interest in the next few years in this field. (3) First-principle calculation is an effective strategy to study the optical, electrical, magnetic, and other physicochemical properties of surface strategy modified g-C3N4, providing important information to reveal the charge transfer path and intrinsic catalytic mechanism. As a result, density functional theory (DFT) computation will be paid increasing attention and widely applied in surface-modified g-C3N4-based photocatalysts.
  • 加载中
    1. [1]

      Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Angew. Chem. Int. Ed. 2015, 54, 12868. doi:10.1002/anie.201501788  doi: 10.1002/anie.201501788

    2. [2]

      Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Adv. Energy Mater. 2016, 6, 1601273. doi:10.1002/aenm.201601273  doi: 10.1002/aenm.201601273

    3. [3]

      Li, X. B.; Xiong, J.; Gao, X. M.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Zhu, Y. F. J. Alloys Compd. 2019, 802, 196. doi:10.1016/j.jallcom.2019.06.185  doi: 10.1016/j.jallcom.2019.06.185

    4. [4]

      Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Mater. Today 2018, 21, 1042. doi:10.1016/j.mattod.2018.04.008  doi: 10.1016/j.mattod.2018.04.008

    5. [5]

      He, R. A.; Xu, D. F.; Cheng, B.; Yu, J. G.; Ho, W. Nanoscale Horiz. 2018, 3, 464. doi:10.1039/c8nh00062j  doi: 10.1039/c8nh00062j

    6. [6]

      Shen, Y.; Han, Q. T.; Hu, J. Q.; Gao, W.; Wang, L.; Yang, L. Q.; Gao, C.; Shen, Q.; Wu, C. P.; Wang, X. Y.; et al. ACS Appl. Energy Mater. 2020, 3, 6561. doi:10.1021/acsaem.0c00750  doi: 10.1021/acsaem.0c00750

    7. [7]

      Cheng, Y. L.; Bai, M. S.; Su, J.; Fang, C. Q.; Li, H.; Chen, J.; Jiao, J. M. J. Mater. Sci. Technol. 2019, 35, 1515. doi:10.1016/j.jmst.2019.03.039  doi: 10.1016/j.jmst.2019.03.039

    8. [8]

      Zhang, R.; Bi, L. L.; Wang, D. J.; Lin, Y. H.; Zou, X. X.; Xie, T. F.; Li, Z. H. J. Colloid Interface Sci. 2020, 578, 431. doi:10.1016/j.jcis.2020.04.033  doi: 10.1016/j.jcis.2020.04.033

    9. [9]

      Boningari, T.; Inturi, S. N. R.; Surdan, M.; Smirniotis, P. G. J. Mater. Sci. Technol. 2018, 34, 1494. doi:10.1016/j.jmst.2018.04.014  doi: 10.1016/j.jmst.2018.04.014

    10. [10]

      Di, T. M.; Xu, Q. L.; Ho, W. K.; Tang, H.; Xiang, Q. J.; Yu, J. G. ChemCatChem 2019, 11, 1394. doi:10.1002/cctc.201802024  doi: 10.1002/cctc.201802024

    11. [11]

      Li, Y. F.; Wang, S.; Chang, W.; Zhang, L. H.; Wu, Z. S.; Jin, R. X.; Xing, Y. Appl. Catal. B 2020, 274, 119116. doi:10.1016/j.apcatb.2020.119116  doi: 10.1016/j.apcatb.2020.119116

    12. [12]

      Li, Y. F.; Yang, M.; Xing, Y.; Liu, X. C.; Yang, Y.; Wang, X.; Song, S. Y. Small 2017, 13, 1701552. doi:10.1002/smll.201701552  doi: 10.1002/smll.201701552

    13. [13]

      Sun, S. C.; Zhang, X. Y.; Liu, X. L.; Pan, L.; Zhang, X. W.; Zou, J. J. Acta Phys. -Chim. Sin. 2020, 36, 1905007.  doi: 10.3866/PKU.WHXB201905007

    14. [14]

      Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    15. [15]

      Li, Y. F.; Jin, R. X.; Fang, X.; Yang, Y.; Yang, M.; Liu, X. C.; Xing, Y.; Song, S. Y. J. Hazard. Mater. 2016, 313, 219. doi:10.1016/j.jhazmat.2016.04.011  doi: 10.1016/j.jhazmat.2016.04.011

    16. [16]

      Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Appl. Catal. B 2018, 224, 983. doi:10.1016/j.apcatb.2017.11.025  doi: 10.1016/j.apcatb.2017.11.025

    17. [17]

      Li, Y. F.; Fang, L.; Jin, R. X.; Yang, Y.; Fang, X.; Xing, Y.; Song, S. Y. Nanoscale 2015, 7, 758. doi:10.1039/c4nr06565d  doi: 10.1039/c4nr06565d

    18. [18]

      Li, J.; Yin, Y. C.; Liu, E. Z.; Ma, Y. N.; Wan, J.; Fan, J.; Hu, X. Y. J. Hazard. Mater. 2017, 321, 183. doi:10.1016/j.jhazmat.2016.09.008  doi: 10.1016/j.jhazmat.2016.09.008

    19. [19]

      Li, Y.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Zheng, Y. F.; Yeung, K. W. K.; Chu, P. K.; Wu, S. L. Adv. Funct. Mater. 2018, 28, 180099. doi:10.1002/adfm.201800299  doi: 10.1002/adfm.201800299

    20. [20]

      Wu, B. B.; Li, Y.; Su, K.; Tan, L.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; et al. J. Hazard. Mater. 2019, 377, 227. doi:10.1016/j.jhazmat.2019.05.074  doi: 10.1016/j.jhazmat.2019.05.074

    21. [21]

      Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. J. Am. Chem. Soc. 2016, 138, 6292. doi:10.1021/jacs.6b02692  doi: 10.1021/jacs.6b02692

    22. [22]

      Liu, M. J.; Wageh, S.; Al-Ghamdi, A. A.; Xia, P. F.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Chem. Commun. 2019, 55, 14023. doi:10.1039/c9cc07647f  doi: 10.1039/c9cc07647f

    23. [23]

      Han, C. Q.; Zhang, R. M.; Ye, Y. H.; Wang, L.; Ma, Z. L.; Su, F. Y.; Xie, H. Q.; Zhou, Y.; Wong, P. K.; Ye, L. Q.J. Mater. Chem. A 2019, 7, 9726. doi:10.1039/c9ta01061k  doi: 10.1039/c9ta01061k

    24. [24]

      Yu, W. L.; Xu, D. F.; Peng, T. Y. J. Mater. Chem. A 2015, 3, 19936. doi:10.1039/C5TA05503B  doi: 10.1039/C5TA05503B

    25. [25]

      Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi:10.1038/nmat2317  doi: 10.1038/nmat2317

    26. [26]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, T. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi:10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    27. [27]

      Li, Y. F.; Li, K.; Yang, Y.; Li, L. J.; Xing, Y.; Song, S. Y.; Jin, R. C.; Li, M. Chem. Eur. J. 2015, 21, 17739. doi:10.1002/chem.201502945  doi: 10.1002/chem.201502945

    28. [28]

      Hong, Y. Z.; Li, C. S.; Li, D.; Fang, Z. Y.; Luo, B. F.; Yan, X.; Shen, H. Q.; Mao, B. D.; Shi, W. D. Nanoscale 2017, 9, 14103. doi:10.1039/C7NR05155G  doi: 10.1039/C7NR05155G

    29. [29]

      Zhang, G. G.; Huang, C. J.; Wang, X. C. Small 2015, 11, 1215. doi:10.1002/smll.201402636  doi: 10.1002/smll.201402636

    30. [30]

      Yang, P. J.; Ou, H. H.; Fang, Y. X.; Wang, X. C. Angew. Chem. Int. Ed. 2017, 56, 3992. doi:10.1002/anie.201700286  doi: 10.1002/anie.201700286

    31. [31]

      Li, Y. F.; Jin, R. X.; Li, G. J.; Liu, X. C.; Yu, M.; Xing, Y.; Shi, Z. New J. Chem. 2018, 42, 6756. doi:10.1039/c8nj00298c  doi: 10.1039/c8nj00298c

    32. [32]

      Tong, T.; He, B. W.; Zhu, B. C.; Cheng, B.; Zhang, L. Y. Appl. Surf. Sci. 2018, 459, 385. doi:10.1016/j.apsusc.2018.08.007  doi: 10.1016/j.apsusc.2018.08.007

    33. [33]

      Tao, X. P.; Gao, Y. Y.; Wang, S. Y.; Wang, X. Y.; Liu, Y.; Zhao, Y.; Fan, F. T.; Dupuis, M.; Li, R. G.; Li, C. Adv. Energy Mater. 2019, 9, 1803951. doi:10.1002/aenm.201803951  doi: 10.1002/aenm.201803951

    34. [34]

      Yuan, J. L.; Tang, Y. H.; Yi, X. Y.; Liu, C. B.; Li, C.; Zeng, Y. X.; Luo, S. L. Appl. Catal. B 2019, 251, 206. doi:10.1016/j.apcatb.2019.03.069  doi: 10.1016/j.apcatb.2019.03.069

    35. [35]

      Li, H. H.; Wu, Y.; Li, C.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Jiang, Q.; Sun, C. Q.; Xu, S. Q. Appl. Catal. B 2019, 251, 305. doi:10.1016/j.apcatb.2019.03.079  doi: 10.1016/j.apcatb.2019.03.079

    36. [36]

      Xu, J.; Wang, Z. P.; Zhu, Y. F. J. Mater. Sci. Technol. 2020, 49, 133. doi:10.1016/j.jmst.2020.02.024  doi: 10.1016/j.jmst.2020.02.024

    37. [37]

      Jiang, W. J.; Luo, W. J.; Zong, R. L.; Yao, W. Q.; Li, Z. P.; Zhu, Y. F. Small 2016, 12, 4370. doi:10.1002/smll.201601546  doi: 10.1002/smll.201601546

    38. [38]

      Jiang, W. J.; Zhu, Y. F.; Zhu, G. X.; Zhang, Z. J.; Chen, X. J.; Yao, W. Q. J. Mater. Chem. A 2017, 5, 5661. doi:10.1039/c7ta00398f  doi: 10.1039/c7ta00398f

    39. [39]

      Li, L. Y.; Fang, W.; Zhang, P.; Bi, J. H.; He, Y. H.; Wang, J. Y.; Su, W. Y. J. Mater. Chem. A 2016, 4, 12402. doi:10.1039/C6TA04711D  doi: 10.1039/C6TA04711D

    40. [40]

      She, X. J.; Liu, L.; Ji, H. Y.; Mo, Z.; Li, Y. P.; Huang, L. Y.; Du, D. L.; Xu, H.; Li, H. M. Appl. Catal. B 2016, 187, 144. doi:10.1016/j.apcatb.2015.12.046  doi: 10.1016/j.apcatb.2015.12.046

    41. [41]

      Yu, H. J.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G. I. N.; Zhao, Y. F.; Zhou, C.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Adv. Mater. 2016, 28, 5080. doi:10.1002/adma.201600398  doi: 10.1002/adma.201600398

    42. [42]

      Liu, J.; Yu, Y.; Qi, R. L.; Cao, C. Y.; Liu, X. Y.; Zheng, Y. J.; Song, W. G. Appl. Catal. B 2019, 244, 459. doi:10.1016/j.apcatb.2018.11.070  doi: 10.1016/j.apcatb.2018.11.070

    43. [43]

      Chauhan, D. K.; Jain, S.; Battula, V. R.; Kailasam, K. Carbon 2019, 15, 40. doi:10.1016/j.carbon.2019.05.079  doi: 10.1016/j.carbon.2019.05.079

    44. [44]

      Hayat, A.; Raziq, F.; Khan, M.; Khan, J.; Mane, S. K. B.; Ahmad, A.; Rahman, M. U.; Khan, W. U. J. Colloid Interface Sci. 2019, 554, 627. doi:10.1016/j.jcis.2019.07.048  doi: 10.1016/j.jcis.2019.07.048

    45. [45]

      Tong, Z. W.; Yang, D.; Sun, Y. Y.; Nan, Y, H.; Jiang, Z, Y. Small 2016, 12, 4093. doi:10.1002/smll.201601660  doi: 10.1002/smll.201601660

    46. [46]

      Qiu, P. X.; Yao, J. H.; Chen, H.; Jiang, F.; Xie, X. C. J. Hazard. Mater. 2016, 317, 158. doi:10.1016/j.jhazmat.2016.05.069  doi: 10.1016/j.jhazmat.2016.05.069

    47. [47]

      Wei, X. B.; Shao, C. L.; Li, X. H.; Lu, N.; Wang, K. X.; Zhang, Z. Y.; Liu, Y. C. Nanoscale 2016, 8, 11034. doi:10.1039/C6NR01491G  doi: 10.1039/C6NR01491G

    48. [48]

      Yi, J. J.; El-Alami, W.; Song, Y. H.; Li, H. M.; Ajayan, P. M.; Xu, H. Chem. Eng. J. 2020, 382, 122812. doi:10.1016/j.cej.2019.122812  doi: 10.1016/j.cej.2019.122812

    49. [49]

      Tian, J. J.; Zhang, L. X.; Fan, X. Q.; Zhou, Y. J.; Wang, M.; Cheng, R. L.; Li, M. L.; Kan, X. T.; Jin, X. X.; Liu, Z. H.; et al. J. Mater. Chem. A 2016, 4, 13814. doi:10.1039/c6ta04297j  doi: 10.1039/c6ta04297j

    50. [50]

      Yang, H. Y.; Zhou, Y. M.; Wang, Y. Y.; Hu, S. C.; Wang, B. B.; Liao, Q.; Li, H. F.; Bao, J. H.; Ge, G. Y.; Jia, S. K. J. Mater. Chem. A 2018, 6, 16485. doi:10.1039/C8TA05723K  doi: 10.1039/C8TA05723K

    51. [51]

      He, F.; Wang, Z. X.; Li, Y. X.; Peng, S. Q.; Liu, B. Appl. Catal. B 2020, 269, 118828. doi:10.1016/j.apcatb.2020.118828  doi: 10.1016/j.apcatb.2020.118828

    52. [52]

      Zhang, M.; Duan, Y. Y.; Jia, H. Z.; Wang, F.; Wang, L.; Su, Z.; Wang, C. Y. Catal. Sci. Technol. 2017, 7, 452. doi:10.1039/c6cy02318e  doi: 10.1039/c6cy02318e

    53. [53]

      Xu, C. Q.; Zhang, W. D. Mol. Catal. 2018, 453, 85. doi:10.1016/j.mcat.2018.04.029  doi: 10.1016/j.mcat.2018.04.029

    54. [54]

      Che, H. N.; Li, C. X.; Zhou, P. J.; Liu, C. B.; Dong, H. J.; Li, C. M. Appl. Surf. Sci. 2020, 505, 144564. doi:10.1016/j.apsusc.2019.144564  doi: 10.1016/j.apsusc.2019.144564

    55. [55]

      Luo, L.; Zhang, M.; Wang, P.; Wang, Y. H.; Wang, F. New J. Chem. 2018, 42, 1087. doi:10.1039/c7nj03659k  doi: 10.1039/c7nj03659k

    56. [56]

      Cheng, R. L.; Jin, X. X.; Fan, X. Q.; Wang, M.; Tian, J. J.; Zhang, L. X.; Shi, J. L. Acta Phys. -Chim. Sin. 2017, 33, 1436.  doi: 10.3866/PKU.WHXB201704076

    57. [57]

      Zhang, Y.; Wu, L. L.; Zhao, X. Y.; Zhao, Y. N.; Tan, H. Q.; Zhao, X.; Ma, Y. Y.; Zhao, Z.; Song, S. Y.; Wang, Y. H.; et al. Adv. Energy Mater. 2018, 8, 1801139. doi:10.1002/aenm.201801139  doi: 10.1002/aenm.201801139

    58. [58]

      Vorobyeva, E.; Chen, Z.; Mitchell, S.; Leary, R. K.; Midgley, P.; Thomas, J. M.; Hauert, R.; Fako, E.; Lopez, N.; Perez-Ramirez, J. J. Mater. Chem. A 2017, 5, 16393. doi:10.1039/c7ta04607c  doi: 10.1039/c7ta04607c

    59. [59]

      Zhou, C. Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Cheng, M.; Zhang, C.; Xiong, W. P.; Lai, C.; Yang, Y.; et al. J. Hazard. Mater. 2019, 380, 120815. doi:10.1016/j.jhazmat.2019.120815  doi: 10.1016/j.jhazmat.2019.120815

    60. [60]

      Fan, X. Q.; Zhang, L. X.; Wang, M.; Huang, W. M.; Zhou, Y. J.; Li, M. L.; Cheng, R. L.; Shi, J. L. Appl. Catal. B 2016, 182, 68. doi:10.1016/j.apcatb.2015.09.006  doi: 10.1016/j.apcatb.2015.09.006

    61. [61]

      Jia, G. R.; Wang, Y.; Cui, X. Q.; Yang, Z. X.; Liu, L. L.; Zhang, H. Y.; Wu, Q.; Zheng, L. R.; Zheng, W. T. Appl. Catal. B 2019, 258, 117959. doi:10.1016/j.apcatb.2019.117959  doi: 10.1016/j.apcatb.2019.117959

    62. [62]

      Li, Y. F.; Wang, S.; Chang, W.; Zhang, L. H.; Wu, Z. S.; Song, S. Y.; Xing, Y. J. Mater. Chem. A 2019, 7, 20640. doi:10.1039/c9ta07014a  doi: 10.1039/c9ta07014a

    63. [63]

      Huang, Y. Y.; Li, D.; Fang, Z. Y.; Chen, R. J.; Luo, B. F.; Shi, W. D. Appl. Catal. B 2019, 254, 128. doi:10.1016/j.apcatb.2019.04.082  doi: 10.1016/j.apcatb.2019.04.082

    64. [64]

      Mohamed, M. A.; Zain, M. F. M.; Minggu, L. J.; Kassim, M. B.; Amin, N. A. S.; Salleh, W. N. W.; Salehmin, M. N. I.; Nasir, M. F. M.; Hir, Z. A. M. Appl. Catal. B 2018, 236, 265. doi:10.1016/j.apcatb.2018.05.037  doi: 10.1016/j.apcatb.2018.05.037

    65. [65]

      Wang, K.; Li, Q.; Liu, B. S.; Cheng, B.; Ho, W. K.; Yu, J. G. Appl. Catal. B 2015, 176, 44. doi:10.1016/j.apcatb.2015.03.045  doi: 10.1016/j.apcatb.2015.03.045

    66. [66]

      Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. J. Am. Chem. Soc. 2010, 132, 11642. doi:10.1021/ja103798k  doi: 10.1021/ja103798k

    67. [67]

      Wei, F. Y.; Liu, Y.; Zhao, H.; Ren, X. N.; Liu, J.; Hasan, T.; Chen, L. H.; Li, Y.; Su, B. L. Nanoscale 2018, 10, 4515. doi:10.1039/c7nr09660g  doi: 10.1039/c7nr09660g

    68. [68]

      Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Small 2017, 13, 1603938. doi:10.1002/smll.201603938  doi: 10.1002/smll.201603938

    69. [69]

      Fang, H. B.; Zhang, X. H.; Wu, J. J.; Li, N.; Zheng, Y. Z.; Tao, X. Appl. Catal. B 2018, 225, 397. doi:10.1016/j.apcatb.2017.11.080  doi: 10.1016/j.apcatb.2017.11.080

    70. [70]

      Liu, B.; Ye, L. Q.; Wang, R.; Yang, J. F.; Zhang, Y. X.; Guan, R.; Tian, L. H.; Chen, X. B. ACS Appl. Mater. Interfaces 2018, 10, 4001. doi:10.1021/acsami.7b17503  doi: 10.1021/acsami.7b17503

    71. [71]

      Fu, J. W.; Liu, K.; Jiang, K. X.; Li, H. J. W.; An, P. D.; Li, W. Z.; Zhang, N.; Li, H. M.; Xu, X. W.; Zhou, H. Q.; et al. Adv. Sci. 2019, 6, 1900796. doi:10.1002/advs.201900796  doi: 10.1002/advs.201900796

    72. [72]

      Wei, B.; Wang, W.; Sun, J. F.; Mei, Q.; An, Z. X.; Cao, H. J.; Han, D. D.; Xie, J.; Zhan, J. H.; He, M. X. Appl. Surf. Sci. 2020, 511, 145549. doi:10.1016/j.apsusc.2020.145549  doi: 10.1016/j.apsusc.2020.145549

    73. [73]

      Han, E. X.; Li, Y. Y.; Wang, Q. H.; Huang, W. Q.; Luo, L.; Hu, W. Y.; Huang, G. F. J. Mater. Sci. Technol. 2019, 35, 2288. doi:10.1016/j.jmst.2019.05.057  doi: 10.1016/j.jmst.2019.05.057

    74. [74]

      Zhang, G. G.; Zhang, M. W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Adv. Mater. 2014, 26, 805. doi:10.1002/adma.201303611  doi: 10.1002/adma.201303611

    75. [75]

      Wang, Y. Q.; Shen, S. H. Acta Phys. -Chim. Sin. 2020, 36, 1905080.  doi: 10.3866/PKU.WHXB201905080

    76. [76]

      Wang, Y. L.; Tian, Y.; Yan, L. K.; Su. Z. M. J. Phys. Chem. C 2018, 122, 7712. doi:10.1021/acs.jpcc.8b00098  doi: 10.1021/acs.jpcc.8b00098

    77. [77]

      Zhu, B. C.; Zhang, J. F.; Jiang, C. J.; Cheng, B.; Yu, J. G. Appl. Catal. B 2017, 207, 27. doi:10.1016/j.apcatb.2017.02.020  doi: 10.1016/j.apcatb.2017.02.020

    78. [78]

      Li, X. W.; Wang, B.; Yin, W. X.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Acta Phys. -Chim. Sin. 2020, 36, 1902001.  doi: 10.3866/PKU.WHXB201902001

    79. [79]

      Wang, Y. Y.; Zhang, Y. W.; Zhao, S.; Huang, Z. W.; Chen, W. X.; Zhou, Y. M.; Lv, X. S.; Yuan, S. H. Appl. Catal. B 2019, 248, 44. doi:10.1016/j.apcatb.2019.02.007  doi: 10.1016/j.apcatb.2019.02.007

    80. [80]

      Wang, N.; Wang, J.; Hu, J. H., Lu, X. Q.; Sun, J.; Shi, F.; Liu, Z. H.; Lei, Z. B.; Jiang, R. B. ACS Appl. Energy Mater. 2018, 1, 2866. doi:10.1021/acsaem.8b00526  doi: 10.1021/acsaem.8b00526

    81. [81]

      Li, H. P.; Xia, Y. G.; Hu, T. X.; Deng, Q. H.; Du, N.; Hou, W. G. J. Mater. Chem. A 2018, 6, 6238. doi:10.1039/C8TA00607E  doi: 10.1039/C8TA00607E

    82. [82]

      Wang, M.; Guo, P. Y.; Zhang, Y.; Lv, C. M.; Liu, T. Y.; Chai, T. Y.; Xie, Y. H.; Wang, Y. Z.; Zhu, T. J. Hazard. Mater. 2018, 349, 224. doi:10.1016/j.jhazmat.2018.01.058  doi: 10.1016/j.jhazmat.2018.01.058

    83. [83]

      Miao, W.; Liu, Y.; Chen, X. Y.; Zhao, Y. X.; Mao, S. Carbon 2020, 159, 461. doi:10.1016/j.carbon.2019.12.056  doi: 10.1016/j.carbon.2019.12.056

    84. [84]

      Zhang, H.; Tang, Y. Q.; Liu, Z. X.; Zhu, Z.; Tang, X.; Wang, Y. M. Chem. Phys. Lett. 2020, 751, 137467. doi:10.1016/j.cplett.2020.137467  doi: 10.1016/j.cplett.2020.137467

    85. [85]

      Wang, S. H.; Zhan, J. W.; Chen, K.; Ali, A.; Zeng, L. H.; Zhao, H.; Hu, W. L.; Zhu, L. X; Xu, X. L. ACS Sustainable Chem. Eng. 2020, 8, 8214. doi:10.1021/acssuschemeng.0c01151  doi: 10.1021/acssuschemeng.0c01151

    86. [86]

      Liu, X. Q.; Kang, W.; Zeng, W.; Zhang, Y. X.; Qi, L.; Ling, F. L.; Fang, L.; Chen, Q.; Zhou, M. Appl. Surf. Sci. 2020, 499, 143994. doi:10.1016/j.apsusc.2019.143994  doi: 10.1016/j.apsusc.2019.143994

    87. [87]

      Zhang, Z.; Lu, L. H.; Lv, Z. Z.; Chen, Y.; Jin, H. Y.; Hou, S. E.; Qiu, L. X.; Duan, L. M.; Liu, J. H.; Dai, K. Appl. Catal. B 2018, 232, 384. doi:10.1016/j.apcatb.2018.03.086  doi: 10.1016/j.apcatb.2018.03.086

    88. [88]

      Yang, C. W.; Xue, Z.; Qin, J. Q.; Sawangphruk, M.; Zhang, X. Y.; Liu, R. P. Appl. Catal. B 2019, 259, 118094. doi:10.1016/j.apcatb.2019.118094  doi: 10.1016/j.apcatb.2019.118094

    89. [89]

      Sun, N.; Liang, Y.; Ma, X. J.; Chen, F. Chem. Eur. J. 2017, 23, 15466. doi:10.1002/chem.201703168  doi: 10.1002/chem.201703168

    90. [90]

      Guo, S. E.; Tang, Y. Q.; Xie, Y.; Tian, C. G.; Feng, Q. M.; Zhou, W.; Jiang, B. J. Appl. Catal. B 2017, 218, 664. doi:10.1016/j.apcatb.2017.07.022  doi: 10.1016/j.apcatb.2017.07.022

    91. [91]

      Wu, M.; Gong, Y. S.; Nie, T.; Zhang, J.; Wang, R.; Wang, H. W.; He, B. B. J. Mater. Chem. A 2019, 7, 5324. doi:10.1039/c8ta12076e  doi: 10.1039/c8ta12076e

    92. [92]

      Yuan, J. L.; Liu, X.; Tang, Y. H.; Zeng, Y. X.; Wang, L. L.; Zhang, S. Q.; Cai, T.; Liu, Y. T.; Luo, S. L.; Pei, Y.; et al. Appl. Catal. B 2018, 237, 24. doi:10.1016/j.apcatb.2018.05.064  doi: 10.1016/j.apcatb.2018.05.064

    93. [93]

      Shi, L.; Yang, L. Q.; Zhou, W.; Liu, Y. Y.; Yin, L. S.; Hai, X.; Song, H.; Ye, J. H. Small 2018, 14, 1703142. doi:10.1002/smll.201703142  doi: 10.1002/smll.201703142

    94. [94]

      Zhang, X. Y.; Yang, C. W.; Xue, Z.; Zhang, C. X.; Qin, J. Q.; Liu, R. P. ACS Appl. Nano Mater. 2020, 3, 4428. doi:10.1021/acsanm.0c00535  doi: 10.1021/acsanm.0c00535

    95. [95]

      Xu, Q. L.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Zhou, M. H.; Ho, W. Appl. Catal. B 2019, 255, 117770. doi:10.1016/j.apcatb.2019.117770  doi: 10.1016/j.apcatb.2019.117770

    96. [96]

      Xia, P. F.; Liu, M. J.; Cheng, B.; Yu, J. G.; Zhang, L. Y. ACS Sustainable Chem. Eng. 2018, 6, 8945. doi:10.1021/acssuschemeng.8b01300  doi: 10.1021/acssuschemeng.8b01300

    97. [97]

      Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, Y.; Yu, J. G. Chin. J. Catal. 2021, 42, 115. doi:10.1016/S1872-2067(20)63598-7  doi: 10.1016/S1872-2067(20)63598-7

    98. [98]

      Chen, T. J.; Song, C. J.; Fan, M. S.; Hong, Y. Z.; Hu, B.; Yu, L. B.; Shi, W. D. Int. J. Hydrog. Energy 2017, 42, 12210. doi:10.1016/j.ijhydene.2017.03.188  doi: 10.1016/j.ijhydene.2017.03.188

    99. [99]

      Zhou, P.; Meng, X. L.; Sun, T. H. Mater. Lett. 2020, 261, 127159. doi:10.1016/j.matlet.2019.127159  doi: 10.1016/j.matlet.2019.127159

    100. [100]

      Pang, H. J.; Jiang, Y. H.; Xiao, W. S.; Ding, Y. H.; Lu, C.; Liu, Z. P.; Zhang, P.; Luo, H. A.; Qin, W. J. Alloys Compd. 2020, 839, 155684. doi:10.1016/j.jallcom.2020.155684  doi: 10.1016/j.jallcom.2020.155684

    101. [101]

      Qin, Y. Y.; Li, H.; Lu, J.; Feng, Y. H.; Meng, F. Y.; Ma, C. C.; Yan, Y. S.; Meng, M. J. Appl. Catal. B 2020, 277, 119254. doi:10.1016/j.apcatb.2020.119254  doi: 10.1016/j.apcatb.2020.119254

    102. [102]

      Pan, J. Q.; Jiang, Z. Y.; Feng, S. X.; Zhao, C.; Dong, Z. J.; Wang, B. B.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. Int. J. Hydrog. Energy 2018, 43, 19019. doi:10.1016/j.ijhydene.2018.08.102  doi: 10.1016/j.ijhydene.2018.08.102

    103. [103]

      Hafeez, H. Y.; Lakhera, S. K.; Shankar, M. V.; Neppolian, B. Int. J. Hydrog. Energy 2020, 45, 7530. doi:10.1016/j.ijhydene.2019.05.235  doi: 10.1016/j.ijhydene.2019.05.235

    104. [104]

      Guo, F.; Shi, W. L.; Zhu, C.; Li, H.; Kang, Z. H. Appl. Catal. B 2018, 226, 412. doi:10.1016/j.apcatb.2017.12.064  doi: 10.1016/j.apcatb.2017.12.064

    105. [105]

      Hao, X. Q.; Zhou, J.; Cui, Z. W.; Wang, Y. C.; Wang, Y.; Zou, Z. G. Appl. Catal. B 2018, 229, 41. doi:10.1016/j.apcatb.2018.02.006  doi: 10.1016/j.apcatb.2018.02.006

    106. [106]

      Shi, W. L.; Li, M. Y.; Huang, X. L.; Ren, H. J.; Yan, C.; Guo, F. Chem. Eng. J. 2020, 382, 122960. doi:10.1016/j.cej.2019.122960  doi: 10.1016/j.cej.2019.122960

    107. [107]

      Cao, A. H.; Zhang, L. J.; Wang, Y.; Zhao, H. J.; Deng, H.; Liu, X. M.; Lin, Z.; Su, X. T.; Yue, F. ACS Sustainable Chem. Eng. 2019, 7, 2492. doi:10.1021/acssuschemeng.8b05396  doi: 10.1021/acssuschemeng.8b05396

    108. [108]

      Liu, J.; Zhang, J. N.; Wang, D.; Li, D. Y.; Ke, J.; Wang, S. B.; Liu, S. M.; Xiao, H. N.; Wang, R. J. ACS Sustainable Chem. Eng. 2019, 7, 12428. doi:10.1021/acssuschemeng.9b01965  doi: 10.1021/acssuschemeng.9b01965

    109. [109]

      Bai, C. P.; Bi, J. C.; Wu, J. B.; Han, Y. D.; Zhang, X. New J. Chem. 2018, 42, 16005. doi:10.1039/c8nj02991a  doi: 10.1039/c8nj02991a

    110. [110]

      Wang, M.; Ju, P.; Zhao, Y.; Li, J. J.; Han, X. X.; Hao, Z. M. New J. Chem. 2018, 42, 910. doi:10.1039/c7nj03483k  doi: 10.1039/c7nj03483k

    111. [111]

      Yang, C.; Tan, Q. Y.; Li, Q.; Zhou, J.; Fan, J. J.; Li, B.; Sun, J.; Lv, K. L. Appl. Catal. B 2020, 268, 118738. doi:10.1016/j.apcatb.2020.118738  doi: 10.1016/j.apcatb.2020.118738

    112. [112]

      Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. ACS Appl. Mater. Interfaces 2018, 10, 2667. doi:10.1021/acsami.7b18835  doi: 10.1021/acsami.7b18835

    113. [113]

      Xu, Y.; You, Y.; Huang, H. W.; Guo, Y. X.; Zhang, Y. H. J. Hazard. Mater. 2020, 381, 121159. doi:10.1016/j.jhazmat.2019.121159  doi: 10.1016/j.jhazmat.2019.121159

    114. [114]

      Li, M. L.; Zhang, L. X.; Fan, X. Q.; Wu, M. Y.; Wang, M.; Cheng, R. L.; Zhang, L. L.; Yao, H. L.; Shi, J. L. Appl. Catal. B 2017, 201, 629. doi:10.1016/j.apcatb.2016.09.004  doi: 10.1016/j.apcatb.2016.09.004

    115. [115]

      Liang, M. F.; Borjigin, T.; Zhang, Y. H.; Liu, B. H.; Liu, H.; Guo, H. Appl. Catal. B 2019, 243, 566. doi:10.1016/j.apcatb.2018.11.010  doi: 10.1016/j.apcatb.2018.11.010

    116. [116]

      Ou, M.; Tu, W. G.; Yin, S. M.; Xing, W. N.; Wu, S. Y.; Wang, H. J.; Wan, S. P.; Zhong, Q.; Xu, R. Angew. Chem. Int. Ed. 2018, 57, 13570. doi:10.1002/anie.201808930  doi: 10.1002/anie.201808930

    117. [117]

      Li, C. J.; Wang, S. P.; Wang, T.; Wei, Y. J.; Zhang, P.; Gong, J. L. Small 2014, 10, 2783. doi:10.1002/smll.201400506  doi: 10.1002/smll.201400506

    118. [118]

      Jiang, W. S.; Zong, X. P.; An, L.; Hua, S. X.; Miao, X.; Luan, S. L.; Wen, Y. J.; Tao, F. F.; Sun, Z. C. ACS Catal. 2018, 8, 2209. doi:10.1021/acscatal.7b04323  doi: 10.1021/acscatal.7b04323

    119. [119]

      You, Y.; Wang, S. B.; Xiao, K.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. ACS Sustainable Chem. Eng. 2018, 6, 16219. doi:10.1021/acssuschemeng.8b03075  doi: 10.1021/acssuschemeng.8b03075

    120. [120]

      Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141. doi:10.1021/ar00051a007  doi: 10.1021/ar00051a007

    121. [121]

      Li, Y. F.; Zhou, M. H.; Cheng, B.; Shao, Y. J. Mater. Sci. Technol. 2020, 56, 1. doi:10.1016/j.jmst.2020.04.028  doi: 10.1016/j.jmst.2020.04.028

    122. [122]

      Sepahvand, H.; Sharifnia, S. Int. J. Hydrog. Energy 2019, 44, 23658. doi:10.1016/j.ijhydene.2019.07.078  doi: 10.1016/j.ijhydene.2019.07.078

    123. [123]

      Truc, N. T. T.; Pham, T. D.; Nguyen, M. V.; Thuan, D. V.; Trung, D. Q.; Thao, P.; Trang, H. T.; Nguyen, V. N.; Tran, D. T.; Minh, D. N.; et al. J. Alloys Compd. 2020, 842, 155860. doi:10.1016/j.jallcom.2020.155860  doi: 10.1016/j.jallcom.2020.155860

    124. [124]

      Zhao, Y.; Shi, H. X.; Yang, D. Y.; Fan, J.; Hu, X. Y.; Liu, E. Z. J. Phys. Chem. C 2020, 124, 13771. doi:10.1021/acs.jpcc.0c03209  doi: 10.1021/acs.jpcc.0c03209

    125. [125]

      Xu, H.; She, X. J.; Fei, T.; Song, Y. H.; Liu, D. B.; Li, H. P.; Yang, X. F.; Yang, J. M.; Li, H. M.; Song, L.; et al. ACS Nano 2019, 13, 11294. doi:10.1021/acsnano.9b04443  doi: 10.1021/acsnano.9b04443

    126. [126]

      Zhu, L. Y.; Li, H.; Xu, Q. L.; Xiong, D. H.; Xia, P. F. J. Colloid Interface Sci. 2020, 564, 303. doi:10.1016/j.jcis.2019.12.088  doi: 10.1016/j.jcis.2019.12.088

    127. [127]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Appl. Catal. B 2019, 243, 556. doi:10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    128. [128]

      Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Angew. Chem. Int. Ed. 2020, 59, 5218. doi:10.1002/anie.201916012  doi: 10.1002/anie.201916012

    129. [129]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    130. [130]

      Xu, Q. L.; Ma, D. K.; Yang, S. B.; Tian, Z. F.; Cheng, B.; Fan, J. J. Appl. Surf. Sci. 2019, 495, 143555. doi:10.1016/j.apsusc.2019.143555  doi: 10.1016/j.apsusc.2019.143555

    131. [131]

      Li, Q. Q.; Zhao, W. L.; Zhai, Z. C.; Ren, K. X.; Wang, T. Y.; Guan, H.; Shi, H. F. J. Mater. Sci. Technol. 2020, 56, 216. doi:10.1016/j.jmst.2020.03.038  doi: 10.1016/j.jmst.2020.03.038

    132. [132]

      Li, X. B.; Xiong, J.; Gao, X. M.; Ma, J.; Chen, Z.; Kang, B. B.; Liu, J. Y.; Li, H.; Feng, Z. J.; Huang, J. T. J. Hazard. Mater. 2020, 387, 121690. doi:10.1016/j.jhazmat.2019.121690  doi: 10.1016/j.jhazmat.2019.121690

    133. [133]

      Ge, H. N.; Xu, F. Y.; Cheng, B.; Yu, J. G.; Ho, W. ChemCatChem 2019, 11, 6301. doi:10.1002/cctc.201901486  doi: 10.1002/cctc.201901486

    134. [134]

      He, F.; Meng, A. Y.; Cheng, B.; Ho, W.; Yu, J. G. Chin. J. Catal. 2020, 41, 9. doi:10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    135. [135]

      Luo, J. H.; Lin, Z. X.; Zhao, Y.; Jiang, S. J.; Song, S. Q. Chin. J. Catal. 2020, 41, 122. doi:10.1016/S1872-2067(19)63490-X  doi: 10.1016/S1872-2067(19)63490-X

    136. [136]

      Mei, F. F.; Li, Z.; Dai, K.; Zhang, J. F.; Liang, C. H. Chin. J. Catal. 2020, 41, 41. doi:10.1016/S1872-2067(19)63389-9  doi: 10.1016/S1872-2067(19)63389-9

    137. [137]

      Ren, D. D.; Zhang, W. N.; Ding, Y. N.; Shen, R. C.; Jiang, Z. M.; Lu, X. Y.; Li, X. Sol. RRL 2019, 4, 1900423. doi:10.1002/solr.201900423  doi: 10.1002/solr.201900423

    138. [138]

      He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W.; Macyk, W. Appl. Catal. B 2020, 272, 119006. doi:10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    139. [139]

      Pan, T.; Chen, D. D.; Xu, W. C.; Fang, J. Z.; Wu, S. X.; Liu, Z.; Wu, K.; Fang, Z. Q. J. Hazard. Mater. 2020, 393, 122366. doi:10.1016/j.jhazmat.2020.122366  doi: 10.1016/j.jhazmat.2020.122366

    140. [140]

      Jin, Z. L.; Zhang, L. J. J. Mater. Sci. Technol. 2020, 49, 144. doi:10.1016/j.jmst.2020.02.025  doi: 10.1016/j.jmst.2020.02.025

    141. [141]

      Zeng, D. Q.; Zhou, T.; Ong, W. J.; Wu, M. D.; Duan, X. G.; Xu, W. J.; Chen, Y. Z.; Zhu, Y. A.; Peng, D. L. ACS Appl. Mater. Interfaces 2019, 11, 5651. doi:10.1021/acsami.8b20958  doi: 10.1021/acsami.8b20958

    142. [142]

      Dong, H. J.; Hong, S. H.; Zuo, Y.; Zhang, X. X.; Lu, Z. Y.; Han, J.; Wang, L.; Ni, L.; Li, C. M.; Wang, Y. ChemCatChem 2019, 11, 6263. doi:10.1002/cctc.201901618  doi: 10.1002/cctc.201901618

    143. [143]

      Majeed, I.; Manzoor, U.; Kanodarwala, F. K.; Nadeem, M. A.; Hussain, E.; Ali, H.; Badshah, A.; Stride, J. A.; Nadeem, M. A. Catal. Sci. Technol. 2018, 8, 1183. doi:10.1039/c7cy02219k  doi: 10.1039/c7cy02219k

    144. [144]

      Wang, X. J.; Tian, X.; Sun, Y. J.; Zhu, J. Y.; Li, F. T.; Mu, H. Y.; Zhao, J. Nanoscale 2018, 10, 12315. doi:10.1039/c8nr03846e  doi: 10.1039/c8nr03846e

    145. [145]

      Wang, L.; Zhu, C. L.; Yin, L. S.; Huang, W. Acta Phys. -Chim. Sin. 2020, 36, 1907001.  doi: 10.3866/PKU.WHXB201907001

    146. [146]

      Sun, Z. M.; Fang, W.; Zhao, L.; Wang, H. L. Appl. Surf. Sci. 2020, 504, 144347. doi:10.1016/j.apsusc.2019.144347  doi: 10.1016/j.apsusc.2019.144347

    147. [147]

      Li, J. M.; Zhao, L.; Wang, S. M.; Li, J.; Wang, G. H.; Wang, J. Appl. Surf. Sci. 2020, 515, 145922. doi:10.1016/j.apsusc.2020.145922  doi: 10.1016/j.apsusc.2020.145922

    148. [148]

      Zhao, K.; Khan, I.; Qi, K. Z.; Liu, Y.; Khataee, A. Mater. Chem. Phys. 2020, 253, 123322. doi:10.1016/j.matchemphys.2020.123322  doi: 10.1016/j.matchemphys.2020.123322

    149. [149]

      Qi, K. Z.; Lv, W. X.; Khan, I.; Liu, S. Y. Chin. J. Catal. 2020, 41, 114. doi:10.1016/S1872-2067(19)63459-5  doi: 10.1016/S1872-2067(19)63459-5

    150. [150]

      Wu, Z. S.; Xue, Y. T.; He, X. F.; Li, Y. F.; Yang, X.; Wu, Z. L.; Cravotto, G. J. Hazard. Mater. 2020, 387, 122019. doi:10.1016/j.jhazmat.2020.122019  doi: 10.1016/j.jhazmat.2020.122019

    151. [151]

      Qi, K. Z.; Li, Y.; Xie, Y. B.; Liu, S. Y.; Zheng, K.; Chen, Z.; Wang, R. D. Front. Chem. 2019, 7, 91. doi:10.3389/fchem.2019.00091  doi: 10.3389/fchem.2019.00091

    152. [152]

      Qi, K. Z.; Xie, Y. B.; Wang, R. D.; Liu, S. Y.; Zhao, Z. Appl. Surf. Sci. 2019, 466, 847. doi:10.1016/j.apsusc.2018.10.037  doi: 10.1016/j.apsusc.2018.10.037

    153. [153]

      Wu, Z. S.; He, X. F.; Xue, Y. T.; Yang, X.; Li, Y. F.; Li, Q. B.; Yu, B. Chem. Eng. J. 2020, 399, 125747. doi:10.1016/j.cej.2020.125747  doi: 10.1016/j.cej.2020.125747

    154. [154]

      Dong, Z. J.; Pan, J. Q.; Wang, B. B.; Jiang, Z. Y.; Zhao, C.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Cui, C.; Li, C. R. J. Alloys Compd. 2018, 747, 788. doi:10.1016/j.jallcom.2018.03.112  doi: 10.1016/j.jallcom.2018.03.112

    155. [155]

      Liu, H.; Zhu, X. D.; Han, R.; Dai, Y. X.; Sun, Y. L.; Lin, Y. N.; Gao, D. D.; Wang, X. Y.; Luo, C. N. New J. Chem. 2020, 44, 1795. doi:10.1039/C9NJ05737D  doi: 10.1039/C9NJ05737D

    156. [156]

      Tang, J. Y.; Guo, R. T.; Zhou, W. G.; Huang, C. Y.; Pan, W. G. Appl. Catal. B 2018, 237, 802. doi:10.1016/j.apcatb.2018.06.042  doi: 10.1016/j.apcatb.2018.06.042

    157. [157]

      You, Z. Y.; Wu, C. Y.; Shen, Q. H.; Yu, Y.; Chen, H.; Su, Y. X.; Wang, H.; Wu, C. C.; Zhang, F.; Yang, H. Dalton Trans. 2018, 47, 7353. doi:10.1039/C8DT01322E  doi: 10.1039/C8DT01322E

    158. [158]

      Yang, L. Y.; Liu, J.; Yang, L. P.; Zhang, M.; Zhu, H.; Wang, F.; Yin, J. Renew. Energy 2020, 145, 691. doi:10.1016/j.renene.2019.06.072  doi: 10.1016/j.renene.2019.06.072

    159. [159]

      Liang, S. H.; Zhang, D. F.; Pu, X. P.; Yao, X. T.; Han, R. T.; Yin, J.; Ren, X. Z. Sep. Purif. Technol. 2019, 210, 786. doi:10.1016/j.seppur.2018.09.008  doi: 10.1016/j.seppur.2018.09.008

    160. [160]

      Wang, J. C.; Lu, Q. S.; Zhao, S. F. Appl. Surf. Sci. 2019, 470, 150. doi:10.1016/j.apsusc.2018.11.139  doi: 10.1016/j.apsusc.2018.11.139

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    4. [4]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    5. [5]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    6. [6]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    10. [10]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    11. [11]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    12. [12]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    13. [13]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    14. [14]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    17. [17]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(13)
  • Abstract views(383)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return