Citation: Chu Senlin, Li Xin, Robertson Alex W., Sun Zhenyu. Electrocatalytic CO2 Reduction to Ethylene over CeO2-Supported Cu Nanoparticles: Effect of Exposed Facets of CeO2[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200902. doi: 10.3866/PKU.WHXB202009023 shu

Electrocatalytic CO2 Reduction to Ethylene over CeO2-Supported Cu Nanoparticles: Effect of Exposed Facets of CeO2

  • Corresponding author: Sun Zhenyu, sunzy@mail.buct.edu.cn
  • Received Date: 7 September 2020
    Revised Date: 28 September 2020
    Accepted Date: 28 September 2020
    Available Online: 15 October 2020

    Fund Project: National Natural Science Foundation of China 21972010This work was supported by National Natural Science Foundation of China (21972010) and Beijing Natural Science Foundation, China (2192039)Beijing Natural Science Foundation, China 2192039

  • Fossil fuels are expected to be the major source of energy for the next few decades. However, combustion of nonrenewable resources leads to the release of large quantities of CO2, the primary greenhouse gas. Notably, the concentration of CO2 in the atmosphere is increasing annually at an astounding rate. Electrochemical CO2 reduction (ECR) to value-added fuels and chemicals using electricity from intermittent renewable energy sources is a carbon-neutral method to alleviate anthropogenic CO2 emissions. Despite the steady progress in the selective generation of C1 products (CO and formic acid), the production of multi-carbon species still suffers from low selectivity and efficiency. As an ECR product, ethylene (C2H4) has a higher energy density than do C1 species and is an important industrial feedstock in high demand. However, the conversion of CO2 to C2H4 is plagued by low productivity and large overpotential, in addition to the severe competing hydrogen evolution reaction (HER) during the ECR. To address these issues, the design and development of advanced electrocatalysts are critical. Here, we demonstrate fine-tuning of ECR to C2H4 by taking advantage of the prominent interaction of Cu with shape-controlled CeO2 nanocrystals, that is, cubes, rods, and octahedra predominantly covered with (100), (110), and (111) surfaces, respectively. We found that the selectivity and activity of the ECR depended strongly on the exposed crystal facets of CeO2. The overall ECR Faradaic efficiency (FE) over Cu/CeO2(110) (FE ≈ 56.7%) surpassed that of both Cu/CeO2(100) (FE ≈ 51.5%) and Cu/CeO2(111) (FE ≈ 48.4%) in 0.1 mol·L-1 KHCO3 solutions with an H-type cell. This was in stark contrast to the exclusive occurrence of the HER over pure carbon paper, CeO2(100), CeO2(110), and CeO2(111). In particular, the FE toward C2H4 formation and the partial current density increased in the sequence Cu/CeO2(111) < Cu/CeO2(100) < Cu/CeO2(110) within applied bias potentials from -1.00 to -1.15 V (vs. the reversible hydrogen electrode), reaching 39.1% over Cu/CeO2(110) at a mild overpotential (1.13 V). The corresponding values for Cu/CeO2(100) and Cu/CeO2(111) were FEC2H4 ≈ 31.8% and FEC2H4 ≈ 29.6%, respectively. The C2H4 selectivity was comparable to that of many reported Cu-based electrocatalysts at similar overpotentials. Furthermore, the FE for C2H4 remained stable even after 6 h of continuous electrolysis. The superior ECR activity of Cu/CeO2(110) to yield C2H4 was attributed to the metastable (110) surface, which not only promoted the effective adsorption of CO2 but also remarkably stabilized Cu+, thereby boosting the ECR to produce C2H4. This work offers an alternative strategy to enhance the ECR efficiency by crystal facet engineering.
  • 加载中
    1. [1]

      de Arquer, F. P. G.; Dinh, C. -T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D. -H.; Gabardo, C.; Seifitokaldani, A.; Wang, X. Science 2020, 367, 661. doi: 10.1126/science.aay4217  doi: 10.1126/science.aay4217

    2. [2]

      Gao, Y. N.; Liu, S. Z.; Zhao, Z. Q.; Tao, H. C.; Sun, Z. Y. Acta Phys. -Chim. Sin. 2018, 34, 858.  doi: 10.3866/PKU.WHXB201802061

    3. [3]

      Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Angew. Chem. Int. Ed. 2018, 57, 7610. doi: 10.1002/anie.201710509  doi: 10.1002/anie.201710509

    4. [4]

      Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Chem 2017, 3, 560. doi: 10.1016/j.chempr.2017.09.009  doi: 10.1016/j.chempr.2017.09.009

    5. [5]

      Ma, T.; Fan, Q.; Tao, H. C.; Han, Z. S.; Jia, M. W.; Gao, Y. N.; Ma, W. J.; Sun, Z. Y. Nanotechnology 2017, 28, 472001. doi: 10.1088/1361-6528/aa8f6f  doi: 10.1088/1361-6528/aa8f6f

    6. [6]

      Yang, Y.; Zhang, Y.; Hu, J. S.; Wan, L. J. Acta Phys. -Chim. Sin. 2020, 36, 1906085.  doi: 10.3866/PKU.WHXB201906085

    7. [7]

      Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. J. Am. Chem. Soc. 2020, 142, 6400. doi: 10.1021/jacs.0c01699  doi: 10.1021/jacs.0c01699

    8. [8]

      Liu, Z. M. Acta Phys. -Chim. Sin. 2019, 35, 1307.  doi: 10.3866/PKU.WHXB201908014

    9. [9]

      Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.  doi: 10.3866/PKU.WHXB202006034

    10. [10]

      Ning, H.; Wang, W. H.; Mao, Q. H.; Zheng, S. R.; Yang, Z. X.; Zhao, Q. S.; Wu, M. B. Acta Phys. -Chim. Sin. 2018, 34, 938.  doi: 10.3866/PKU.WHXB201801263
       

    11. [11]

      Jia, M. W.; Fan, Q.; Liu, S. Z.; Qiu, J. S.; Sun, Z. Y. Curr. Opin. Green Sustainable Chem. 2019, 16, 1. doi: 10.1016/j.cogsc.2018.11.002  doi: 10.1016/j.cogsc.2018.11.002

    12. [12]

      Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Proc. Natl Acd. Sci. 2017, 114, 10560. doi: 10.1073/pnas.1711493114  doi: 10.1073/pnas.1711493114

    13. [13]

      Ma, T.; Fan, Q.; Li, X.; Qiu, J. S.; Wu, T. B.; Sun, Z. Y. J. CO2 Util. 2019, 30, 168. doi: 10.1016/j.jcou.2019.02.001  doi: 10.1016/j.jcou.2019.02.001

    14. [14]

      Jia, M. W.; Hong, S.; Wu, T. B.; Li, X.; Soo, Y. L.; Sun, Z. Y. Chem. Commun. 2019, 55, 12024. doi: 10.1039/C9CC06178A  doi: 10.1039/C9CC06178A

    15. [15]

      Tao, H. C.; Sun, X. F.; Back, S.; Han, Z. S.; Zhu, Q. G.; Robertson, A. W.; Ma, T.; Fan, Q.; Han, B. X.; Jung, Y. S.; et al. Chem. Sci. 2018, 9, 483. doi: 10.1039/c7sc03018e  doi: 10.1039/c7sc03018e

    16. [16]

      Jia, M. W.; Choi, C.; Wu, T. S.; Ma, C.; Kang, P.; Tao, H. C.; Fan, Q.; Hong, S.; Liu, S. Z.; Soo, Y. L.; et al. Chem. Sci. 2018, 9, 8775. doi: 10.1039/C8SC03732A  doi: 10.1039/C8SC03732A

    17. [17]

      Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y. S.; Sun, Z. Y. Adv. Energy Mater. 2020, 10, 1903068. doi: 10.1002/aenm.201903068  doi: 10.1002/aenm.201903068

    18. [18]

      Li, F.; Gu, G. H.; Choi, C.; Kolla, P.; Sun, Z. Y. Appl. Catal. B Environ. 2020, 277, 119241. doi: 10.1016/j.apcatb.2020.119241  doi: 10.1016/j.apcatb.2020.119241

    19. [19]

      Fan, Q.; Zhang, M. L.; Jia, M. W.; Liu, S. Z.; Qiu, J. S.; Sun, Z. Y. Mater. Today Energy 2018, 10, 280. doi: 10.1016/j.mtener.2018.10.003  doi: 10.1016/j.mtener.2018.10.003

    20. [20]

      Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. J. Am. Chem. Soc. 2018, 140, 8681. doi: 10.1021/jacs.8b02173  doi: 10.1021/jacs.8b02173

    21. [21]

      Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490. doi: 10.1021/jacs.8b12381  doi: 10.1021/jacs.8b12381

    22. [22]

      Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Angew. Chem. Int. Ed. 2016, 55, 5789. doi: 10.1002/anie.201601582  doi: 10.1002/anie.201601582

    23. [23]

      Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q  doi: 10.1021/cs502128q

    24. [24]

      Li, Y. M.; Chu, S. L.; Shen, H. D.; Xia, Q. N.; Robertson, A. W.; Masa, J.; Siddiqui, U.; Sun, Z. Y. ACS Sustainable Chem. Eng. 2020, 8, 4948. doi: 10.1021/acssuschemeng.0c00800  doi: 10.1021/acssuschemeng.0c00800

    25. [25]

      Han, Z. S.; Choi, C.; Tao, H. C.; Fan, Q.; Gao, Y. N.; Liu, S. Z.; Robertson, A. W.; Hong, S.; Jung, Y. S.; Sun, Z. Y. Catal. Sci. Technol. 2018, 8, 3894. doi: 10.1039/C8CY01037D  doi: 10.1039/C8CY01037D

    26. [26]

      Chu, S. L.; Hong, S.; Masa, J.; Li, X.; Sun, Z. Y. Chem. Commun. 2019, 55, 12380. doi: 10.1039/C9CC05435A  doi: 10.1039/C9CC05435A

    27. [27]

      Kašpar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50, 285. doi: 10.1016/S0920-5861(98)00510-0  doi: 10.1016/S0920-5861(98)00510-0

    28. [28]

      Carrettin, S.; Concepción, P.; Corma, A.; Nieto, J. M. L.; Puntes, V. F. Angew. Chem. Int. Ed. 2004, 43, 2538. doi: 10.1002/anie.200353570  doi: 10.1002/anie.200353570

    29. [29]

      Campbell, C. T.; Peden, C. H. Science 2005, 309, 713. doi: 10.1126/science.1113955  doi: 10.1126/science.1113955

    30. [30]

      Trovarelli, A. Comments Inorg. Chem. 1999, 20, 263. doi: 10.1080/02603599908021446  doi: 10.1080/02603599908021446

    31. [31]

      Trovarelli, A.; Llorca, J. ACS Catal. 2017, 7, 4716. doi: 10.1021/acscatal.7b01246  doi: 10.1021/acscatal.7b01246

    32. [32]

      Xu, J. H.; Harmer, J.; Li, G. Q.; Chapman, T.; Collier, P.; Longworth, S.; Tsang, S. C. Chem. Commun. 2010, 46, 1887. doi: 10.1039/b923780a  doi: 10.1039/b923780a

    33. [33]

      Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. J. Phys. Chem. B 2005, 109, 24380. doi: 10.1021/jp055584b  doi: 10.1021/jp055584b

    34. [34]

      Ye, L.; Mahadi, A. H.; Saengruengrit, C.; Qu, J.; Xu, F.; Fairclough, S. M.; Young, N.; Ho, P. L.; Shan, J. J.; Nguyen, L. ACS Catal. 2019, 9, 5171. doi: 10.1021/acscatal.9b00421  doi: 10.1021/acscatal.9b00421

    35. [35]

      Chu, S. L.; Yan, X. P.; Choi, C.; Hong, S.; Robertson, A. W.; Masa, J.; Han, B. X.; Jung, Y. S.; Sun, Z. Y. Green Chem. 2020, 22, 6540. doi: 10.1039/D0GC02279A  doi: 10.1039/D0GC02279A

    36. [36]

      Ha, H.; Yoon, S.; An, K.; Kim, H. Y. ACS Catal. 2018, 8, 11491. doi: 10.1021/acscatal.8b03539  doi: 10.1021/acscatal.8b03539

    37. [37]

      Li, C. W.; Sun, Y.; Djerdj, I.; VPel, P.; Sack, C. C.; Weller, T.; Sann, J.; Ellinghaus, R.; Guo, Y. L.; Smarsly, B. M. ACS Catal. 2017, 7, 6453. doi: 10.1021/acscatal.7b01618  doi: 10.1021/acscatal.7b01618

    38. [38]

      Désaunay, T.; Bonura, G.; Chiodo, V.; Freni, S.; Couzinié, J. -P.; Bourgon, J.; Ringuedé, A.; Labat, F.; Adamo, C.; Cassir, M. J. Catal. 2013, 297, 193. doi: 10.1016/j.jcat.2012.10.011  doi: 10.1016/j.jcat.2012.10.011

    39. [39]

      Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. J. Phys. Chem. C 2008, 112, 1101. doi: 10.1021/jp076981k  doi: 10.1021/jp076981k

    40. [40]

      Sun, Z. Y.; Wang, X.; Liu, Z. M.; Zhang, H. Y.; Yu, P.; Mao, L. Q. Langmuir 2010, 26, 12383. doi: 10.1021/la101060s  doi: 10.1021/la101060s

    41. [41]

      Haul, R. Acad. Press 1982, 86, 957. doi: 10.1002/bbpc.19820861019  doi: 10.1002/bbpc.19820861019

    42. [42]

      Garvie, L. A. J.; Buseck, P. R. J. Phys. Chem. Solids 1999, 60, 1943. doi: 10.1016/S0022-3697(99)00218-8  doi: 10.1016/S0022-3697(99)00218-8

    43. [43]

      Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x  doi: 10.1038/s41929-017-0009-x

    44. [44]

      Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490. doi: 10.1021/jacs.8b12381  doi: 10.1021/jacs.8b12381

    45. [45]

      Wu, J.; Ma, S.; Sun, J.; Gold, J. I..; Tiwary, C.; Kim, B.; Zhu, L.; Chopra, N.; Odeh, I. N.; Vajtai, R.; et al. Nat. Commun. 2016, 7, 13869. doi: 10.1038/ncomms13869  doi: 10.1038/ncomms13869

    46. [46]

      Kumari, N.; Haider, M. A.; Agarwal, M.; Sinha, N.; Basu, S. J. Phys. Chem. C 2016, 120, 16626. doi: 10.1021/acs.jpcc.6b02860  doi: 10.1021/acs.jpcc.6b02860

    47. [47]

      Ye, L.; Mahadi, A. H.; Saengruengrit, C.; Qu, J.; Xu, F.; Fairclough, S. M.; Young, N.; Ho, P. -L.; Shan, J.; Nguyen, L. ACS Catal. 2019, 9, 5171. doi: 10.1021/acscatal.9b00421  doi: 10.1021/acscatal.9b00421

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    4. [4]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    8. [8]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    11. [11]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    12. [12]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    15. [15]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    16. [16]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    17. [17]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    18. [18]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

Metrics
  • PDF Downloads(24)
  • Abstract views(673)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return