Electrocatalytic CO2 Reduction to Ethylene over CeO2-Supported Cu Nanoparticles: Effect of Exposed Facets of CeO2
- Corresponding author: Sun Zhenyu, sunzy@mail.buct.edu.cn
Citation: Chu Senlin, Li Xin, Robertson Alex W., Sun Zhenyu. Electrocatalytic CO2 Reduction to Ethylene over CeO2-Supported Cu Nanoparticles: Effect of Exposed Facets of CeO2[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200902. doi: 10.3866/PKU.WHXB202009023
de Arquer, F. P. G.; Dinh, C. -T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D. -H.; Gabardo, C.; Seifitokaldani, A.; Wang, X. Science 2020, 367, 661. doi: 10.1126/science.aay4217
doi: 10.1126/science.aay4217
Gao, Y. N.; Liu, S. Z.; Zhao, Z. Q.; Tao, H. C.; Sun, Z. Y. Acta Phys. -Chim. Sin. 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061
Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Angew. Chem. Int. Ed. 2018, 57, 7610. doi: 10.1002/anie.201710509
doi: 10.1002/anie.201710509
Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Chem 2017, 3, 560. doi: 10.1016/j.chempr.2017.09.009
doi: 10.1016/j.chempr.2017.09.009
Ma, T.; Fan, Q.; Tao, H. C.; Han, Z. S.; Jia, M. W.; Gao, Y. N.; Ma, W. J.; Sun, Z. Y. Nanotechnology 2017, 28, 472001. doi: 10.1088/1361-6528/aa8f6f
doi: 10.1088/1361-6528/aa8f6f
Yang, Y.; Zhang, Y.; Hu, J. S.; Wan, L. J. Acta Phys. -Chim. Sin. 2020, 36, 1906085.
doi: 10.3866/PKU.WHXB201906085
Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. J. Am. Chem. Soc. 2020, 142, 6400. doi: 10.1021/jacs.0c01699
doi: 10.1021/jacs.0c01699
Liu, Z. M. Acta Phys. -Chim. Sin. 2019, 35, 1307.
doi: 10.3866/PKU.WHXB201908014
Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.
doi: 10.3866/PKU.WHXB202006034
Ning, H.; Wang, W. H.; Mao, Q. H.; Zheng, S. R.; Yang, Z. X.; Zhao, Q. S.; Wu, M. B. Acta Phys. -Chim. Sin. 2018, 34, 938.
doi: 10.3866/PKU.WHXB201801263
Jia, M. W.; Fan, Q.; Liu, S. Z.; Qiu, J. S.; Sun, Z. Y. Curr. Opin. Green Sustainable Chem. 2019, 16, 1. doi: 10.1016/j.cogsc.2018.11.002
doi: 10.1016/j.cogsc.2018.11.002
Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Proc. Natl Acd. Sci. 2017, 114, 10560. doi: 10.1073/pnas.1711493114
doi: 10.1073/pnas.1711493114
Ma, T.; Fan, Q.; Li, X.; Qiu, J. S.; Wu, T. B.; Sun, Z. Y. J. CO2 Util. 2019, 30, 168. doi: 10.1016/j.jcou.2019.02.001
doi: 10.1016/j.jcou.2019.02.001
Jia, M. W.; Hong, S.; Wu, T. B.; Li, X.; Soo, Y. L.; Sun, Z. Y. Chem. Commun. 2019, 55, 12024. doi: 10.1039/C9CC06178A
doi: 10.1039/C9CC06178A
Tao, H. C.; Sun, X. F.; Back, S.; Han, Z. S.; Zhu, Q. G.; Robertson, A. W.; Ma, T.; Fan, Q.; Han, B. X.; Jung, Y. S.; et al. Chem. Sci. 2018, 9, 483. doi: 10.1039/c7sc03018e
doi: 10.1039/c7sc03018e
Jia, M. W.; Choi, C.; Wu, T. S.; Ma, C.; Kang, P.; Tao, H. C.; Fan, Q.; Hong, S.; Liu, S. Z.; Soo, Y. L.; et al. Chem. Sci. 2018, 9, 8775. doi: 10.1039/C8SC03732A
doi: 10.1039/C8SC03732A
Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y. S.; Sun, Z. Y. Adv. Energy Mater. 2020, 10, 1903068. doi: 10.1002/aenm.201903068
doi: 10.1002/aenm.201903068
Li, F.; Gu, G. H.; Choi, C.; Kolla, P.; Sun, Z. Y. Appl. Catal. B Environ. 2020, 277, 119241. doi: 10.1016/j.apcatb.2020.119241
doi: 10.1016/j.apcatb.2020.119241
Fan, Q.; Zhang, M. L.; Jia, M. W.; Liu, S. Z.; Qiu, J. S.; Sun, Z. Y. Mater. Today Energy 2018, 10, 280. doi: 10.1016/j.mtener.2018.10.003
doi: 10.1016/j.mtener.2018.10.003
Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. J. Am. Chem. Soc. 2018, 140, 8681. doi: 10.1021/jacs.8b02173
doi: 10.1021/jacs.8b02173
Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490. doi: 10.1021/jacs.8b12381
doi: 10.1021/jacs.8b12381
Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Angew. Chem. Int. Ed. 2016, 55, 5789. doi: 10.1002/anie.201601582
doi: 10.1002/anie.201601582
Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q
doi: 10.1021/cs502128q
Li, Y. M.; Chu, S. L.; Shen, H. D.; Xia, Q. N.; Robertson, A. W.; Masa, J.; Siddiqui, U.; Sun, Z. Y. ACS Sustainable Chem. Eng. 2020, 8, 4948. doi: 10.1021/acssuschemeng.0c00800
doi: 10.1021/acssuschemeng.0c00800
Han, Z. S.; Choi, C.; Tao, H. C.; Fan, Q.; Gao, Y. N.; Liu, S. Z.; Robertson, A. W.; Hong, S.; Jung, Y. S.; Sun, Z. Y. Catal. Sci. Technol. 2018, 8, 3894. doi: 10.1039/C8CY01037D
doi: 10.1039/C8CY01037D
Chu, S. L.; Hong, S.; Masa, J.; Li, X.; Sun, Z. Y. Chem. Commun. 2019, 55, 12380. doi: 10.1039/C9CC05435A
doi: 10.1039/C9CC05435A
Kašpar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50, 285. doi: 10.1016/S0920-5861(98)00510-0
doi: 10.1016/S0920-5861(98)00510-0
Carrettin, S.; Concepción, P.; Corma, A.; Nieto, J. M. L.; Puntes, V. F. Angew. Chem. Int. Ed. 2004, 43, 2538. doi: 10.1002/anie.200353570
doi: 10.1002/anie.200353570
Campbell, C. T.; Peden, C. H. Science 2005, 309, 713. doi: 10.1126/science.1113955
doi: 10.1126/science.1113955
Trovarelli, A. Comments Inorg. Chem. 1999, 20, 263. doi: 10.1080/02603599908021446
doi: 10.1080/02603599908021446
Trovarelli, A.; Llorca, J. ACS Catal. 2017, 7, 4716. doi: 10.1021/acscatal.7b01246
doi: 10.1021/acscatal.7b01246
Xu, J. H.; Harmer, J.; Li, G. Q.; Chapman, T.; Collier, P.; Longworth, S.; Tsang, S. C. Chem. Commun. 2010, 46, 1887. doi: 10.1039/b923780a
doi: 10.1039/b923780a
Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. J. Phys. Chem. B 2005, 109, 24380. doi: 10.1021/jp055584b
doi: 10.1021/jp055584b
Ye, L.; Mahadi, A. H.; Saengruengrit, C.; Qu, J.; Xu, F.; Fairclough, S. M.; Young, N.; Ho, P. L.; Shan, J. J.; Nguyen, L. ACS Catal. 2019, 9, 5171. doi: 10.1021/acscatal.9b00421
doi: 10.1021/acscatal.9b00421
Chu, S. L.; Yan, X. P.; Choi, C.; Hong, S.; Robertson, A. W.; Masa, J.; Han, B. X.; Jung, Y. S.; Sun, Z. Y. Green Chem. 2020, 22, 6540. doi: 10.1039/D0GC02279A
doi: 10.1039/D0GC02279A
Ha, H.; Yoon, S.; An, K.; Kim, H. Y. ACS Catal. 2018, 8, 11491. doi: 10.1021/acscatal.8b03539
doi: 10.1021/acscatal.8b03539
Li, C. W.; Sun, Y.; Djerdj, I.; VPel, P.; Sack, C. C.; Weller, T.; Sann, J.; Ellinghaus, R.; Guo, Y. L.; Smarsly, B. M. ACS Catal. 2017, 7, 6453. doi: 10.1021/acscatal.7b01618
doi: 10.1021/acscatal.7b01618
Désaunay, T.; Bonura, G.; Chiodo, V.; Freni, S.; Couzinié, J. -P.; Bourgon, J.; Ringuedé, A.; Labat, F.; Adamo, C.; Cassir, M. J. Catal. 2013, 297, 193. doi: 10.1016/j.jcat.2012.10.011
doi: 10.1016/j.jcat.2012.10.011
Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. J. Phys. Chem. C 2008, 112, 1101. doi: 10.1021/jp076981k
doi: 10.1021/jp076981k
Sun, Z. Y.; Wang, X.; Liu, Z. M.; Zhang, H. Y.; Yu, P.; Mao, L. Q. Langmuir 2010, 26, 12383. doi: 10.1021/la101060s
doi: 10.1021/la101060s
Haul, R. Acad. Press 1982, 86, 957. doi: 10.1002/bbpc.19820861019
doi: 10.1002/bbpc.19820861019
Garvie, L. A. J.; Buseck, P. R. J. Phys. Chem. Solids 1999, 60, 1943. doi: 10.1016/S0022-3697(99)00218-8
doi: 10.1016/S0022-3697(99)00218-8
Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x
doi: 10.1038/s41929-017-0009-x
Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490. doi: 10.1021/jacs.8b12381
doi: 10.1021/jacs.8b12381
Wu, J.; Ma, S.; Sun, J.; Gold, J. I..; Tiwary, C.; Kim, B.; Zhu, L.; Chopra, N.; Odeh, I. N.; Vajtai, R.; et al. Nat. Commun. 2016, 7, 13869. doi: 10.1038/ncomms13869
doi: 10.1038/ncomms13869
Kumari, N.; Haider, M. A.; Agarwal, M.; Sinha, N.; Basu, S. J. Phys. Chem. C 2016, 120, 16626. doi: 10.1021/acs.jpcc.6b02860
doi: 10.1021/acs.jpcc.6b02860
Ye, L.; Mahadi, A. H.; Saengruengrit, C.; Qu, J.; Xu, F.; Fairclough, S. M.; Young, N.; Ho, P. -L.; Shan, J.; Nguyen, L. ACS Catal. 2019, 9, 5171. doi: 10.1021/acscatal.9b00421
doi: 10.1021/acscatal.9b00421
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113