Citation: Gao Dunfeng, Wei Pengfei, Li Hefei, Lin Long, Wang Guoxiong, Bao Xinhe. Designing Electrolyzers for Electrocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200902. doi: 10.3866/PKU.WHXB202009021 shu

Designing Electrolyzers for Electrocatalytic CO2 Reduction



  • Author Bio: Dunfeng Gao is currently an associate professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP, CAS). He obtained B.Sc. degree from China University of Petroleum in 2009 and Ph.D. degree from the DICP in 2015. Then he worked as a postdoctoral researcher at the Ruhr University Bochum and the Fritz Haber Institute of the Max Planck Society in Germany (2015-2019). In 2019, he moved back to the DICP as an associate professor. His research focuses on electrocatalysis including CO2 electroreduction, CH4 electrooxidation and water electrolysis



    Guoxiong Wang is currently a full professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP, CAS). He obtained B.Sc. degree from Wuhan University in 2000 and Ph.D. degree from the DICP in 2006. After a one-year stay at the DICP as an assistant professor (2006-2007), he worked as a postdoctoral researcher at the Hokkaido University in Japan (2007-2010). In December 2010, he moved back to the DICP as an associate professor and promoted to a full professor in 2015. His research focuses on energy storage and conversion, electrocatalytic CO2 reduction and fuel cell

  • Corresponding author: Gao Dunfeng, dfgao@dicp.ac.cn Wang Guoxiong, wanggx@dicp.ac.cn
  • Received Date: 4 September 2020
    Revised Date: 24 September 2020
    Accepted Date: 24 September 2020
    Available Online: 9 October 2020

    Fund Project: the CAS Youth Innovation Promotion Y201938Dalian Institute of Chemical Physics, China DICP DMTO201702Dalian National Laboratory for Clean Energy, China DNL180404the National Key R & D Program of China 2016YFB0600901Dalian National Laboratory for Clean Energy, China DNL201924Dalian Outstanding Young Scientist Foundation, China 2017RJ03the Strategic Priority Research Program of the Chinese Academy of Sciences XDB17020200the National Natural Science Foundation of China 21573222This project was supported by the National Key R & D Program of China (2016YFB0600901), the National Natural Science Foundation of China (21573222, 91545202, 22002155), Dalian National Laboratory for Clean Energy, China (DNL180404 and DNL201924), Dalian Institute of Chemical Physics, China (DICP DMTO201702), Dalian Outstanding Young Scientist Foundation, China (2017RJ03) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020200) and the CAS Youth Innovation Promotion (Y201938)the National Natural Science Foundation of China 22002155the National Natural Science Foundation of China 91545202

  • The electrocatalytic CO2 reduction reaction (CO2RR) driven by renewable energy is an efficient approach to achieve the conversion and utilization of CO2. In this context, CO2RR has become an emerging research focus in the field of electrocatalysis over the past decade. While a large number of nanostructured catalysts have been developed to accelerate CO2RR, the tradeoff between activity and selectivity usually renders the overall electrocatalytic performance very poor. Beyond catalyst design, rationally designing electrolyzers is also of substantial importance for improving the CO2RR performance and achieving its scale-up for practical applications. To a large extent, the electrolyzer configuration determines the local reaction environment near an electrode by affecting the process conditions, thereby resulting in remarkably different electrocatalytic performances. To be techno-economically viable, the performance of CO2 electrolyzers is expected to be at least comparable to that of the current state-of-the-art proton exchange membrane (PEM) water electrolyzers, with regard to their activity, selectivity, and stability. Researchers have made great progress in the development of CO2 electrolyzers over the past few years, but they are also facing many issues and challenges. This review aims to provide an in-depth analysis of the research progress and status of current CO2 electrolyzers including H-cell, flow-cell, and membrane electrode assembly cell (MEA-cell) electrolyzers. Herein, operation at industrial current densities (> 200 mA∙cm−2) is set as a basis when these electrolyzers are discussed and compared in terms of the four main figures of merit (current density, Faradic efficiency, energy efficiency and stability) that describe the CO2RR performance of an electrolyzer. The advantages and drawbacks of each electrolyzer are discussed and highlighted with emphasis on the key achievements reported to date. Compared to conventional H-cell electrolyzers that work well in mechanistic studies, the newly developed electrolyzers using gas diffusion electrodes, both flow-cell and MEA-cell electrolyzers, are able to break the limitation of CO2 solubility in water and acquire industrial current densities. Although flow-cell electrolyzers have achieved current densities exceeding 1 A∙cm−2, they suffer from low energy efficiencies because of the significant iR drop and poor stability owing to the use of alkaline electrolytes. These issues can be overcome in the case of zero-gap MEA-cell electrolyzers with ion exchange membranes being as solid electrolytes. The anion exchange membrane (AEM)-based CO2 electrolyzers are at the center of the current research, as they demonstrate promising activity and selectivity toward specific CO2RR products and exhibit excellent stability for over thousands of hours in few cases. Meanwhile, the crossover of CO2 and liquid products from the cathode to the anode through the membrane tends to lower the utilization efficiency of the CO2 supplied to the AEM electrolyzers. MEA-cell electrolyzers using cation exchange membranes and bipolar membranes have also been explored; however, neither of them have shown satisfactory CO2RR performance. The development of new polymer electrolyte membranes and ionomers would help address these problems. While issues and challenges still exist, MEA-cell electrolyzers hold the greatest promise for practical applications. As concluding remarks, research strategies and opportunities for the future have been proposed to accelerate the development of CO2RR technology for practical applications and to deepen the mechanistic understanding behind improved performance. This review provides new insights into rational electrolyzer design and guidelines for researchers in this field.
  • 加载中
    1. [1]

      Artz, J.; Muller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434. doi: 10.1021/acs.chemrev.7b00435  doi: 10.1021/acs.chemrev.7b00435

    2. [2]

      Tackett, B. M.; Gomez, E.; Chen, J. G. G. Nat. Catal. 2019, 2, 381. doi: 10.1038/s41929-019-0284-9  doi: 10.1038/s41929-019-0284-9

    3. [3]

      Yang, D. R.; Wang, G. X.; Wang, X. Sci. China Mater. 2019, 62, 1369. doi: 10.1007/s40843-019-9455-3  doi: 10.1007/s40843-019-9455-3

    4. [4]

      He, J.; Janaky, C. ACS Energy Lett. 2020, 5, 1996. doi: 10.1021/acsenergylett.0c00645  doi: 10.1021/acsenergylett.0c00645

    5. [5]

      Zhang, F. T.; Zhang, H. Y.; Liu, Z. M. Curr. Opin. Green Sust. Chem. 2019, 16, 77. doi: 10.1016/j.cogsc.2019.02.006  doi: 10.1016/j.cogsc.2019.02.006

    6. [6]

      Gu, Y. X.; Yang, J.; Wang, D. H.Acta. Phys. -Chim. Sin. 2019, 35, 208.  doi: 10.3866/PKU.WHXB201802121

    7. [7]

      Liu, Y. F.; Hu, B.; Yin, Y. Z.; Liu, G. L.; Hong, X. L. Acta. Phys. -Chim. Sin. 2019, 35, 223.  doi: 10.3866/PKU.WHXB201802263

    8. [8]

      Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. Joule 2018, 2, 825. doi: 10.1016/j.joule.2017.09.003  doi: 10.1016/j.joule.2017.09.003

    9. [9]

      Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514  doi: 10.1021/acs.iecr.7b03514

    10. [10]

      Spurgeon, J. M.; Kumar, B. Energy Environ. Sci. 2018, 11, 1536. doi: 10.1039/c8ee00097b  doi: 10.1039/c8ee00097b

    11. [11]

      Verma, S.; Kim, B.; Jhong, H.; Ma, S. C.; Kenis, P. J. A. ChemSusChem 2016, 9, 1972. doi: 10.1002/cssc.201600394  doi: 10.1002/cssc.201600394

    12. [12]

      Gao, D. F.; Cai, F.; Wang, G. X.; Bao, X. H. Curr. Opin. Green Sust. Chem. 2017, 3, 39. doi: 10.1016/j.cogsc.2016.10.004  doi: 10.1016/j.cogsc.2016.10.004

    13. [13]

      Yang, Y.; Zhang, Y.; Hu, J. S.; Wan, L. J. Acta. Phys. -Chim. Sin. 2020, 36, 1906085.  doi: 10.3866/PKU.WHXB201906085

    14. [14]

      Yan, C. C.; Lin, L.; Wang, G. X.; Bao, X. H. Chin. J. Catal. 2019, 40, 23. doi: 10.1016/S1872-2067(18)63161-4  doi: 10.1016/S1872-2067(18)63161-4

    15. [15]

      Jia, M. W.; Fan, Q.; Liu, S. Z.; Qiu, J. S.; Sun, Z. Y. Curr. Opin. Green. Sust. Chem. 2019, 16, 1. doi: 10.1016/j.cogsc.2018.11.002  doi: 10.1016/j.cogsc.2018.11.002

    16. [16]

      Sun, X. T.; Wang, P.; Shao, Z. J.; Cao, X. M.; Hu, P. Sci. China Chem. 2019, 62, 1686. doi: 10.1007/s11426-019-9639-0  doi: 10.1007/s11426-019-9639-0

    17. [17]

      Gao, D. F.; Yan, C. C.; Wang, G. X.; Bao, X. H. J. Electrochem. 2018, 24, 757.  doi: 10.13208/j.electrochem.180845

    18. [18]

      Ning, H.; Wang, W. H.; Mao, Q. H.; Zheng, S. R.; Yang, Z. X.; Zhao, Q. S.; Wu, M. B. Acta. Phys. -Chim. Sin. 2018, 34, 938.  doi: 10.3866/PKU.WHXB201801263

    19. [19]

      Hu, C. L.; Zhang, L.; Li, L. L.; Zhu, W. J.; Deng, W. Y.; Dong, H.; Zhao, Z. J.; Gong, J. L. Sci. China Chem. 2019, 62, 1030. doi: 10.1007/s11426-019-9474-0  doi: 10.1007/s11426-019-9474-0

    20. [20]

      Gao, D. F.; Aran-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Nat. Catal. 2019, 2, 198. doi: 10.1038/s41929-019-0235-5  doi: 10.1038/s41929-019-0235-5

    21. [21]

      Aran-Ais, R. M.; Gao, D. F.; Roldan Cuenya, B. Acc. Chem. Res. 2018, 51, 2906. doi: 10.1021/acs.accounts.8b00360  doi: 10.1021/acs.accounts.8b00360

    22. [22]

      Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Acc. Chem. Res. 2018, 51, 910. doi: 10.1021/acs.accounts.8b00010  doi: 10.1021/acs.accounts.8b00010

    23. [23]

      Herranz, J.; Pătru, A.; Fabbri, E.; Schmidt, T. J. Curr. Opin. Electrochem. 2020, 23, 89. doi: 10.1016/j.coelec.2020.05.004  doi: 10.1016/j.coelec.2020.05.004

    24. [24]

      Lu, X.; Jiang, Z.; Yuan, X. L.; Wu, Y. S.; Malpass-Evans, R.; Zhong, Y. R.; Liang, Y. Y.; McKeown, N. B.; Wang, H. L. Sci. Bull. 2019, 64, 1890. doi: 10.1016/j.scib.2019.04.008  doi: 10.1016/j.scib.2019.04.008

    25. [25]

      Jiang, X. L.; Li, H. F.; Yang, Y. Y.; Gao, D. F. J. Mater. Sci. 2020, 55, 13916. doi: 10.1007/s10853-020-04983-y  doi: 10.1007/s10853-020-04983-y

    26. [26]

      Gao, D. F.; Wang, J.; Wu, H. H.; Jiang, X. L.; Miao, S.; Wang, G. X.; Bao, X. H. Electrochem. Commun. 2015, 55, 1. doi: 10.1016/j.elecom.2015.03.008  doi: 10.1016/j.elecom.2015.03.008

    27. [27]

      Gao, D. F.; McCrum, I. T.; Deo, S.; Choi, Y. W.; Scholten, F.; Wan, W. M.; Chen, J. G. G.; Janik, M. J.; Roldan Cuenya, B. ACS Catal. 2018, 8, 10012. doi: 10.1021/acscatal.8b02587  doi: 10.1021/acscatal.8b02587

    28. [28]

      Nwabara, U. O.; Cofell, E. R.; Verma, D. S.; Negro, E.; Kenis, P. J. A. ChemSusChem 2020, 13, 855. doi: 10.1002/cssc.201902933  doi: 10.1002/cssc.201902933

    29. [29]

      Fan, J.; Han, N.; Li, Y. J. Electrochem. 2020, 26, 510.  doi: 10.13208/j.electrochem.200443

    30. [30]

      Lin, R.; Guo, J. X.; Li, X. J.; Patel, P.; Seifitokaldani, A. Catalysts 2020, 10, 473. doi:10.3390/catal10050473  doi: 10.3390/catal10050473

    31. [31]

      Liang, S. Y.; Altaf, N.; Huang, L.; Gao, Y. S.; Wang, Q. J CO2 Util. 2020, 35, 90. doi: 10.1016/j.jcou.2019.09.007  doi: 10.1016/j.jcou.2019.09.007

    32. [32]

      Li, J. C.; Kuang, Y.; Meng, Y. T.; Tian, X.; Hung, W. H.; Zhang, X.; Li, A. W.; Xu, M. Q.; Zhou, W.; Ku, C. S.; et al. J. Am. Chem. Soc. 2020, 142, 7276. doi: 10.1021/jacs.0c00122  doi: 10.1021/jacs.0c00122

    33. [33]

      Delacourt, C.; Ridgway, P. L.; Kerr, J. B.; Newman, J. J. Electrochem. Soc. 2008, 155, B42. doi: 10.1149/1.2801871  doi: 10.1149/1.2801871

    34. [34]

      Ma, S.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. J. Am. Chem. Soc. 2017, 139, 47. doi: 10.1021/jacs.6b10740  doi: 10.1021/jacs.6b10740

    35. [35]

      Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; de Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science2018, 360, 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    36. [36]

      Lin, L.; Li, H. B.; Yan, C. C.; Li, H. F.; Si, R.; Li, M. R.; Xiao, J. P.; Wang, G. X.; Bao, X. H. Adv. Mater. 2019, 31, 1903470. doi: 10.1002/adma.201903470  doi: 10.1002/adma.201903470

    37. [37]

      Kutz, R. B.; Chen, Q. M.; Yang, H. Z.; Sajjad, S. D.; Liu, Z. C.; Masel, I. R. Energy Technol. 2017, 5, 929. doi: 10.1002/ente.201600636  doi: 10.1002/ente.201600636

    38. [38]

      Yin, Z. L.; Peng, H. Q.; Wei, X.; Zhou, H.; Gong, J.; Huai, M. M.; Xiao, L.; Wang, G. W.; Lu, J. T.; Zhuang, L. Energy Environ.Sci. 2019, 12, 2455. doi: 10.1039/c9ee01204d  doi: 10.1039/c9ee01204d

    39. [39]

      Wei, P. F.; Li, H. F.; Lin, L.; Gao, D. F.; Zhang, X. M.; Gong, H. M.; Qing, G. Y.; Cai, R.; Wang, G. X.; Bao, X. H. Sci. China Chem. 2020, doi: 10.1007/s11426-020-9825-9  doi: 10.1007/s11426-020-9825-9

    40. [40]

      Gutierrez-Guerra, N.; Gonzalez, J. A.; Serrano-Ruiz, J. C.; Lopez-Fernandez, E.; Valverde, J. L.; de Lucas-Consuegra, A. J. Energy Chem. 2019, 31, 46. doi: 10.1016/j.jechem.2018.05.005  doi: 10.1016/j.jechem.2018.05.005

    41. [41]

      Patru, A.; Binninger, T.; Pribyl, B.; Schmidt, T. J. J. Electrochem. Soc. 2019, 166, F34. doi: 10.1149/2.1221816jes  doi: 10.1149/2.1221816jes

    42. [42]

      Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitsk, E.; Alshareef, H. N.; Wang, H. T. Nat. Energy 2019, 4, 776. doi: 10.1038/s41560-019-0451-x  doi: 10.1038/s41560-019-0451-x

    43. [43]

      Jhong, H. R.; Ma, S. C.; Kenis, P. J. A. Curr. Opin. Chem. Eng. 2013, 2, 191. doi: 10.1016/j.coche.2013.03.005  doi: 10.1016/j.coche.2013.03.005

    44. [44]

      Sanchez, O. G.; Birdja, Y. Y.; Bulut, M.; Vaes, J.; Breugelmans, T.; Pant, D. Curr. Opin. Green Sust. Chem. 2019, 16, 47. doi: 10.1016/j.cogsc.2019.01.005  doi: 10.1016/j.cogsc.2019.01.005

    45. [45]

      Smith, W. A.; Burdyny, T.; Vermaas, D. A.; Geerlings, H. Joule 2019, 3, 1822. doi: 10.1016/j.joule.2019.07.009  doi: 10.1016/j.joule.2019.07.009

    46. [46]

      Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627  doi: 10.1021/jz1012627

    47. [47]

      Carmo, M.; Fritz, D. L.; Merge, J.; Stolten, D. Int. J. Hydrogen Energy 2013, 38, 4901. doi: 10.1016/j.ijhydene.2013.01.151  doi: 10.1016/j.ijhydene.2013.01.151

    48. [48]

      Chen, J. G.; Jones, C. W.; Linic, S.; Stamenkovic, V. R. ACS Catal. 2017, 7, 6392. doi: 10.1021/acscatal.7b02839  doi: 10.1021/acscatal.7b02839

    49. [49]

      Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Nat. Catal. 2020, 3, 478. doi: 10.1038/s41929-020-0450-0  doi: 10.1038/s41929-020-0450-0

    50. [50]

      De Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D. H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; et al. Science 2020, 367, 661. doi: 10.1126/science.aay4217  doi: 10.1126/science.aay4217

    51. [51]

      Ebbesen, S. D.; Jensen, S. H.; Hauch, A.; Mogensen, M. B. Chem. Rev. 2014, 114, 10697. doi: 10.1021/cr5000865  doi: 10.1021/cr5000865

    52. [52]

      Martin, A. J.; Larrazabal, G. O.; Perez-Ramirez, J. Green Chem. 2015, 17, 5114. doi: 10.1039/c5gc01893e  doi: 10.1039/c5gc01893e

    53. [53]

      Scott, S. L.ACS Catal. 2018, 8, 8597. doi: 10.1021/acscatal.8b03199  doi: 10.1021/acscatal.8b03199

    54. [54]

      Popovic, S.; Smiljanic, M.; Jovanovic, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Angew. Chem. Int. Ed. 2020, 59, 14736. doi: 10.1002/anie.202000617  doi: 10.1002/anie.202000617

    55. [55]

      Gao, D. F.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X. Q.; Si, R.; Yang, F.; et al. Nano Res. 2017, 10, 2181. doi: 10.1007/s12274-017-1514-6  doi: 10.1007/s12274-017-1514-6

    56. [56]

      Singh, M. R.; Clark, E. L.; Bell, A. T. Phys. Chem. Chem. Phys. 2015, 17, 18924. doi: 10.1039/c5cp03283k  doi: 10.1039/c5cp03283k

    57. [57]

      Weng, L. C.; Bell, A. T.; Weber, A. Z. Phys. Chem. Chem. Phys. 2018, 20, 16973. doi: 10.1039/c8cp01319e  doi: 10.1039/c8cp01319e

    58. [58]

      Burdyny, T.; Smith, W. A. Energy Environ Sci. 2019, 12, 1442. doi: 10.1039/c8ee03134g  doi: 10.1039/c8ee03134g

    59. [59]

      Xiao, L.; Zhang, S.; Pan, J.; Yang, C. X.; He, M. L.; Zhuang, L.; Lu, J. T. Energy Environ Sci. 2012, 5, 7869. doi: 10.1039/c2ee22146b  doi: 10.1039/c2ee22146b

    60. [60]

      Zhang, H. W.; Shen, P. K. Chem. Rev. 2012, 112, 2780. doi: 10.1021/cr200035s  doi: 10.1021/cr200035s

    61. [61]

      Noh, S.; Jeon, J. Y.; Adhikari, S.; Kim, Y. S.; Bae, C. Acc. Chem. Res. 2019, 52, 2745. doi: 10.1021/acs.accounts.9b00355  doi: 10.1021/acs.accounts.9b00355

    62. [62]

      Kungas, R. J. Electrochem. Soc. 2020, 167, 044508. doi: 10.1149/1945-7111/ab7099  doi: 10.1149/1945-7111/ab7099

    63. [63]

      Song, Y. F.; Zhang, X. M.; Xie, K.; Wang, G. X.; Bao, X. H. Adv. Mater. 2019, 31, 1902033. doi: 10.1002/adma.201902033  doi: 10.1002/adma.201902033

    64. [64]

      Zhang, L. X.; Hu, S. Q.; Zhu, X. F.; Yang, W. S. J. Energy Chem. 2017, 26, 593. doi: 10.1016/j.jechem.2017.04.004  doi: 10.1016/j.jechem.2017.04.004

    65. [65]

      Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14, 1695. doi: 10.1246/cl.1985.1695  doi: 10.1246/cl.1985.1695

    66. [66]

      Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 15, 897. doi: 10.1246/cl.1986.897  doi: 10.1246/cl.1986.897

    67. [67]

      Gao, D. F.; Sinev, I.; Scholten, F.; Aran-Ais, R. M.; Divins, N. J.; Kvashnina, K.; Timoshenko, J.; Roldan Cuenya, B. Angew. Chem. Int. Ed. 2019, 58, 17047. doi: 10.1002/anie.201910155  doi: 10.1002/anie.201910155

    68. [68]

      Zhang, B.; Zhang, J.; Hua, M.; Wan, Q.; Su, Z.; Tan, X.; Liu, L.; Zhang, F.; Chen, G.; Tan, D.; et al. J. Am. Chem. Soc. 2020, 142, 13606. doi: 10.1021/jacs.0c06420  doi: 10.1021/jacs.0c06420

    69. [69]

      Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.-J.; Li, T.; Muntean, J. V.; Winans, R. E.; et al. Nat. Energy 2020, 5, 623. doi: 10.1038/s41560-020-0666-x  doi: 10.1038/s41560-020-0666-x

    70. [70]

      Pupo, M. M. D.; Kortlever, R. ChemPhysChem 2019, 20, 2926. doi: 10.1002/cphc.201900680  doi: 10.1002/cphc.201900680

    71. [71]

      Zhu, S. Q.; Jiang, B.; Cai, W. B.; Shao, M. H. J. Am. Chem. Soc. 2017, 139, 15664. doi: 10.1021/jacs.7b10462  doi: 10.1021/jacs.7b10462

    72. [72]

      Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G. G.; Yan, Y. S.; Jiao, F.; Xu, B. J. J. Am. Chem. Soc. 2017, 139, 3774. doi: 10.1021/jacs.6b13287  doi: 10.1021/jacs.6b13287

    73. [73]

      Melchaeva, O.; Voyame, P.; Bassetto, V. C.; Prokein, M.; Renner, M.; Weidner, E.; Petermann, M.; Battistel, A. ChemSusChem 2017, 10, 3660. doi: 10.1002/cssc.201701205  doi: 10.1002/cssc.201701205

    74. [74]

      Schouten, K. J. P.; Gallent, E. P.; Koper, M. T. M. J. Electroanal. Chem. 2014, 716, 53. doi: 10.1016/j.jelechem.2013.08.033  doi: 10.1016/j.jelechem.2013.08.033

    75. [75]

      Jouny, M.; Luc, W.; Jiao, F. Nat. Catal. 2018, 1, 748. doi: 10.1038/s41929-018-0133-2  doi: 10.1038/s41929-018-0133-2

    76. [76]

      Bhargava, S. S.; Proietto, F.; Azmoodeh, D.; Cofell, E. R.; Henckel, D. A.; Verma, S.; Brooks, C. J.; Gewirth, A. A.; Kenis, P. J. A. ChemElectroChem 2020, 7, 2001. doi: 10.1002/celc.202000089  doi: 10.1002/celc.202000089

    77. [77]

      Whipple, D. T.; Finke, E. C.; Kenis, P. J. A. Electrochem. Solid State 2010, 13, D109. doi: 10.1149/1.3456590  doi: 10.1149/1.3456590

    78. [78]

      Ma, S.; Luo, R.; Moniri, S.; Lan, Y. C.; Kenis, P. J. A. J. Electrochem. Soc. 2014, 161, F1124. doi: 10.1149/2.1201410jes  doi: 10.1149/2.1201410jes

    79. [79]

      Verma, S.; Hamasaki, Y.; Kim, C.; Huang, W. X.; Lu, S.; Jhong, H. R. M.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. ACS Energy Lett. 2018, 3, 193. doi: 10.1021/acsenergylett.7b01096  doi: 10.1021/acsenergylett.7b01096

    80. [80]

      Leonard, M. E.; Clarke, L. E.; Forner-Cuenca, A.; Brown, S. M.; Brushett, F. R. ChemSusChem2020, 13, 400. doi: 10.1002/cssc.201902547  doi: 10.1002/cssc.201902547

    81. [81]

      Möller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X.; Jovanov, Z.; Gliech, M.; Roldan Cuenya, B.; Sofia Varela, A.; et al. Angew. Chem. Int. Ed. 2020, 59, 17974. doi: 10.1002/anie.202007136  doi: 10.1002/anie.202007136

    82. [82]

      Moller, T.; Ju, W.; Bagger, A.; Wang, X. L.; Luo, F.; Thanh, T. N.; Varela, A. S.; Rossmeisl, J.; Strasser, P. Energy Environ. Sci. 2019, 12, 640. doi: 10.1039/c8ee02662a  doi: 10.1039/c8ee02662a

    83. [83]

      Tan, Y. C.; Lee, K. B.; Song, H.; Oh, J. Joule 2020, 4, 1104. doi: 10.1016/j.joule.2020.03.013  doi: 10.1016/j.joule.2020.03.013

    84. [84]

      Martić, N.; Reller, C.; Macauley, C.; Löffler, M.; Reichert, A. M.; Reichbauer, T.; Vetter, K. -M.; Schmid, B.; McLaughlin, D.; Leidinger, P.; et al. Energy Environ. Sci. 2020, 13, 2993. doi: 10.1039/d0ee01100b  doi: 10.1039/d0ee01100b

    85. [85]

      Zhang, X.; Wang, Y.; Gu, M.; Wang, M.; Zhang, Z.; Pan, W.; Jiang, Z.; Zheng, H.; Lucero, M.; Wang, H.; et al. Nat. Energy 2020, 5, 684. doi: 10.1038/s41560-020-0667-9  doi: 10.1038/s41560-020-0667-9

    86. [86]

      Ye, K.; Zhou, Z. W.; Shao, J. Q.; Lin, L.; Gao, D. F.; Ta, N.; Si, R.; Wang, G. X.; Bao, X. H. Angew. Chem. Int. Ed. 2020, 59, 4814. doi: 10.1002/anie.201916538  doi: 10.1002/anie.201916538

    87. [87]

      Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Nat. Catal. 2018, 1, 32. doi: 10.1038/s41929-017-0005-1  doi: 10.1038/s41929-017-0005-1

    88. [88]

      Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. J. Energy Chem. 2013, 22, 202. doi: 10.1016/S2095-4956(13)60026-1  doi: 10.1016/S2095-4956(13)60026-1

    89. [89]

      Gao, D. F.; Cai, F.; Xu, Q. Q.; Wang, G. X.; Pan, X. L.; Bao, X. H. J. Energy Chem. 2014, 23, 694. doi: 10.1016/S2095-4956(14)60201-1  doi: 10.1016/S2095-4956(14)60201-1

    90. [90]

      Guterrez-Guerra, N.; Valverde, J. L.; Romero, A.; Serrano-Ruiz, J. C.; de Lucas-Consuegra, A. Electrochem. Commun. 2017, 81, 128. doi: 10.1016/j.elecom.2017.06.018  doi: 10.1016/j.elecom.2017.06.018

    91. [91]

      Lee, W.; Kim, Y. E.; Youn, M. H.; Jeong, S. K.; Park, K. T. Angew. Chem. Int. Ed. 2018, 57, 6883. doi: 10.1002/anie.201803501  doi: 10.1002/anie.201803501

    92. [92]

      Lee, S.; Ju, H.; Machunda, R.; Uhm, S.; Lee, J. K.; Lee, H. J.; Lee, J. J. Mater. Chem. A2015, 3, 3029. doi: 10.1039/c4ta03893b  doi: 10.1039/c4ta03893b

    93. [93]

      Fujinuma, N.; Ikoma, A.; Lofland, S. E. Adv. Energy Mater. 2020, doi: 10.1002/aenm.202001645  doi: 10.1002/aenm.202001645

    94. [94]

      Mao, Q.; Li, B.; Jing, W.; Zhao, J.; Liu, S.; Huang, Y. Z.; Du, Z. L. J. Electrochem. 2020, 26, 359.  doi: 10.13208/j.electrochem.190305

    95. [95]

      Gabardo, C. M.; O'Brien, C. P.; Edwards, J. P.; McCallum, C.; Xu, Y.; Dinh, C. T.; Li, J.; Sargent, E. H.; Sinton, D. Joule 2019, 3, 2777. doi: 10.1016/j.joule.2019.07.021  doi: 10.1016/j.joule.2019.07.021

    96. [96]

      Ren, S. X.; Joulie, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Science 2019, 365, 367. doi: 10.1126/science.aax4608  doi: 10.1126/science.aax4608

    97. [97]

      Li, F. W.; Thevenon, A.; Rosas-Hernandez, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H.; et al. Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2  doi: 10.1038/s41586-019-1782-2

    98. [98]

      Lee, J.; Lim, J.; Roh, C. W.; Whang, H. S.; Lee, H. J. CO2 Util. 2019, 31, 244. doi: 10.1016/j.jcou.2019.03.022  doi: 10.1016/j.jcou.2019.03.022

    99. [99]

      Liu, Z. C.; Yang, H. Z.; Kutz, R.; Masel, R. I. J. Electrochem. Soc. 2018, 165, J3371. doi: 10.1149/2.0501815jes  doi: 10.1149/2.0501815jes

    100. [100]

      Reyes, A.; Jansonius, R. P.; Mowbray, B. A. W.; Cao, Y.; Wheeler, D. G.; Chau, J.; Dvorak, D. J.; Berlinguette, C. P. ACS Energy Lett. 2020, 5, 1612. doi: 10.1021/acsenergylett.0c00637  doi: 10.1021/acsenergylett.0c00637

    101. [101]

      Lee, W. H.; Ko, Y. -J.; Choi, Y.; Lee, S. Y.; Choi, C. H.; Hwang, Y. J.; Min, B. K.; Strasser, P.; Oh, H. -S. Nano Energy 2020, 76, 105030. doi: 10.1016/j.nanoen.2020.105030  doi: 10.1016/j.nanoen.2020.105030

    102. [102]

      Ma, C.; Hou, P. F.; Wang, X. P.; Wang, Z.; Li, W. T.; Kang, P. Appl. Catal. B-Environ. 2019, 250, 347. doi: 10.1016/j.apcatb.2019.03.041  doi: 10.1016/j.apcatb.2019.03.041

    103. [103]

      Hou, P. F.; Wang, X. P.; Wang, Z.; Kang, P. ACS Appl. Mater. Interfaces 2018, 10, 38024. doi: 10.1021/acsami.8b11942  doi: 10.1021/acsami.8b11942

    104. [104]

      Wang, G. L.; Pan, J.; Jiang, S. P.; Yang, H. J. CO2 Util. 2018, 23, 152. doi: 10.1016/j.jcou.2017.11.010  doi: 10.1016/j.jcou.2017.11.010

    105. [105]

      Ozden, A.; Li, F.; de Arquer, P. G.; Rosas-Hernández, A.; Thevenon, A.; Wang, Y.; Hung, S. -F.; Wang, X.; Chen, B.; Li, J.; et al. ACS Energy Lett. 2020, 5, 2811. doi: 10.1021/acsenergylett.0c01266  doi: 10.1021/acsenergylett.0c01266

    106. [106]

      Pavel, C. C.; Cecconi, F.; Emiliani, C.; Santiccioli, S.; Scaffidi, A.; Catanorchi, S.; Comotti, M. Angew. Chem. Int. Ed. 2014, 53, 1378. doi: 10.1002/anie.201308099  doi: 10.1002/anie.201308099

    107. [107]

      Endrodi, B.; Kecsenovity, E.; Samu, A.; Darvas, F.; Jones, R. V.; Torok, V.; Danyi, A.; Janaky, C. ACS Energy Lett. 2019, 4, 1770. doi: 10.1021/acsenergylett.9b01142  doi: 10.1021/acsenergylett.9b01142

    108. [108]

      Ziv, N.; Mustain, W. E.; Dekel, D. R. ChemSusChem 2018, 11, 1136. doi: 10.1002/cssc.201702330  doi: 10.1002/cssc.201702330

    109. [109]

      Larrazabal, G. O.; Strom-Hansen, P.; Heli, J. P.; Zeiter, K.; Therldldsen, K. T.; Chorkendorff, I.; Seger, B. ACS Appl. Mater. Interfaces 2019, 11, 41281. doi: 10.1021/acsami.9b13081  doi: 10.1021/acsami.9b13081

    110. [110]

      Ma, M.; Clark, E. L.; Therkildsen, K. T.; Dalsgaard, S.; Chorkendorff, I.; Seger, B. Energy Environ. Sci. 2020, 13, 977. doi: 10.1039/d0ee00047g  doi: 10.1039/d0ee00047g

    111. [111]

      Oener, S. Z.; Foster, M. J.; Boettcher, S. W. Science 2020, 369, 1099. doi: 10.1126/science.aaz1487  doi: 10.1126/science.aaz1487

    112. [112]

      Salvatore, D. A.; Weekes, D. M.; He, J. F.; Dettelbach, K. E.; Li, Y. G. C.; Mallouk, T. E.; Berlinguette, C. P. ACS Energy Lett. 2018, 3, 149. doi: 10.1021/acsenergylett.7b01017  doi: 10.1021/acsenergylett.7b01017

    113. [113]

      Li, Y. G. C.; Zhou, D. K.; Yan, Z. F.; Goncalves, R. H.; Salvatore, D. A.; Berlinguette, C. P.; Mallouk, T. E. ACS Energy Lett. 2016, 1, 1149. doi: 10.1021/acsenergylett.6b00475  doi: 10.1021/acsenergylett.6b00475

    114. [114]

      Vermaas, D. A.; Smith, W. A. ACS Energy Lett. 2016, 1, 1143. doi: 10.1021/acsenergylett.6b00557  doi: 10.1021/acsenergylett.6b00557

    115. [115]

      Lin, M.; Han, L. H.; Singh, M. R.; Xiang, C. X. ACS Appl. Energy Mater. 2019, 2, 5843. doi: 10.1021/acsaem.9b00986  doi: 10.1021/acsaem.9b00986

    116. [116]

      Ramdin, M.; Morrison, A. R. T.; de Groen, M.; van Haperen, R.; de Kler, R.; van den Broeke, L. J. P.; Trusler, J. P. M.; de Jong, W.; Vlugt, T. J. H. Ind. Eng. Chem. Res. 2019, 58, 1834. doi: 10.1021/acs.iecr.8b04944  doi: 10.1021/acs.iecr.8b04944

    117. [117]

      Chen, Y. Y.; Vise, A.; Klein, W. E.; Cetinbas, F. C.; Myers, D. J.; Smith, W. A.; Deutsch, T. G.; Neyerlin, K. C. ACS Energy Lett. 2020, 5, 1825. doi: 10.1021/acsenergylett.0c00860  doi: 10.1021/acsenergylett.0c00860

    118. [118]

      Zhang, J.; Luo, W.; Zuttel, A. J. Catal. 2020, 385, 140. doi: 10.1016/j.jcat.2020.03.013  doi: 10.1016/j.jcat.2020.03.013

    119. [119]

      Li, Y. G. C.; Yan, Z. F.; Hitt, J.; Wycisk, R.; Pintauro, P. N.; Mallouk, T. E. Adv. Sustain. Syst. 2018, 2, 1700187. doi: 10.1002/adsu.201700187  doi: 10.1002/adsu.201700187

    120. [120]

      Endrodi, B.; Kecsenovity, E.; Samu, A.; HalmAgyi, T.; Rojas-Carbonell, S.; Wang, L.; Yan, Y.; Janaky, C. Energy Environ. Sci. 2020, doi: 10.1039/d0ee02589e  doi: 10.1039/d0ee02589e

    121. [121]

      Gabardo, C. M.; Seifitokaldani, A.; Edwards, J. P.; Dinh, C. T.; Burdyny, T.; Kibria, M. G.; O'Brien, C. P.; Sargent, E. H.; Sinton, D. Energy Environ. Sci. 2018, 11, 2531. doi: 10.1039/c8ee01684d  doi: 10.1039/c8ee01684d

    122. [122]

      Ripatti, D. S.; Veltman, T. R.; Kanan, M. W. Joule 2019, 3, 240. doi: 10.1016/j.joule.2018.10.007  doi: 10.1016/j.joule.2018.10.007

    123. [123]

      Zhang, B. A.; Costentin, C.; Nocera, D. G. Joule 2019, 3, 1565. doi: 10.1016/j.joule.2019.05.017  doi: 10.1016/j.joule.2019.05.017

    124. [124]

      Dinh, C. T.; Li, Y. G. C.; Sargent, E. H. Joule 2019, 3, 13. doi: 10.1016/j.joule.2018.10.021  doi: 10.1016/j.joule.2018.10.021

    125. [125]

      Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Nat. Catal. 2018, 1, 922. doi: 10.1038/s41929-018-0182-6  doi: 10.1038/s41929-018-0182-6

    126. [126]

      Li, X. D.; Wang, S. M.; Li, L.; Sun, Y. F.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi: 10.1021/jacs.0c02973  doi: 10.1021/jacs.0c02973

    127. [127]

      Zhang, Z. S.; Melo, L.; Jansonius, R. P.; Habibzadeh, F.; Grant, E. R.; Berlinguette, C. P. ACS Energy Lett. 2020, 5, 3101. doi: 10.1021/acsenergylett.0c01606  doi: 10.1021/acsenergylett.0c01606

    128. [128]

      Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Nat. Commun. 2020, 11, 3028. doi: 10.1038/s41467-020-16847-9  doi: 10.1038/s41467-020-16847-9

    129. [129]

      Arán-Ais, R. M.; Rizo, R.; Grosse, P.; Algara-Siller, G.; Dembele, K.; Plodinec, M.; Lunkenbein, T.; Chee, S. W.; Roldan Cuenya, B. Nat. Commun. 2020, 11, 3489. doi: 10.1038/s41467-020-17220-6  doi: 10.1038/s41467-020-17220-6

    130. [130]

      Salvatore, D.; Berlinguette, C. P. ACS Energy Lett. 2020, 5, 2150. doi: 10.1021/acsenergylett.9b02356  doi: 10.1021/acsenergylett.9b02356

    131. [131]

      Verma, S.; Lu, S.; Kenis, P. J. A. Nat. Energy 2019, 4, 466. doi: 10.1038/s41560-019-0374-6  doi: 10.1038/s41560-019-0374-6

    132. [132]

      Song, Y. F.; Zhao, Y. H.; Nan, G. Z.; Chen, W.; Guo, Z. K.; Li, S. G.; Tang, Z. Y.; Wei, W.; Sun, Y. H. Appl. Catal. B-Environ. 2020, 270, 118888. doi: 10.1016/j.apcatb.2020.118888  doi: 10.1016/j.apcatb.2020.118888

    133. [133]

      Dresp, S.; Thanh, T. N.; Klingenhof, M.; Bruckner, S.; Hauke, P.; Strasser, P. Energy Environ. Sci. 2020, 13, 1725. doi: 10.1039/d0ee01125h  doi: 10.1039/d0ee01125h

    134. [134]

      Vass, A.; Endrodi, B.; Janaky, C. Curr. Opin. Electrochem. 2020, doi: 10.1016/j.coelec.2020.08.003  doi: 10.1016/j.coelec.2020.08.003

    135. [135]

      Medvedeva, X. V.; Medvedev, J. J.; Tatarchuk, S. W.; Choueiri, R. M.; Klinkova, A. Green Chem. 2020, 22, 4456. doi: 10.1039/d0gc01754j  doi: 10.1039/d0gc01754j

  • 加载中
    1. [1]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    2. [2]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    5. [5]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    10. [10]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    11. [11]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    12. [12]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    13. [13]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    14. [14]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    15. [15]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    18. [18]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    19. [19]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    20. [20]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

Metrics
  • PDF Downloads(189)
  • Abstract views(2244)
  • HTML views(988)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return