Artificial Interphase Layers for Lithium Metal Anode
- Corresponding author: Li Nianwu, linianwu@mail.buct.edu.cn Yu Le, yule@mail.buct.edu.cn
Citation: Guan Jun, Li Nianwu, Yu Le. Artificial Interphase Layers for Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200901. doi: 10.3866/PKU.WHXB202009011
Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
doi: 10.1126/science.1212741
Grande, L.; Paillard, E.; Hassoun, J.; Park, J. B.; Lee, Y. J.; Sun, Y. K.; Passerini, S.; Scrosati, B. Adv. Mater. 2015, 27, 784. doi: 10.1002/adma.201403064
doi: 10.1002/adma.201403064
Lu, Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Adv. Energy Mater. 2015, 5, 1402073. doi: 10.1002/aenm.201402073
doi: 10.1002/aenm.201402073
Yang, P.; Tarascon, J. M. Nat. Mater. 2012, 11, 560. doi: 10.1038/nmat3367
doi: 10.1038/nmat3367
Li, S.; Jiang, M.; Xie, Y.; Xu, H.; Jia, J.; Li, J. Adv. Mater. 2018, 30, 1706375. doi: 10.1002/adma.201706375
doi: 10.1002/adma.201706375
Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13
doi: 10.1038/natrevmats.2016.13
Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z
doi: 10.1021/cm901452z
Li, H. P.; Ji, X. Y.; Liang, J. J. Rare Met. 2020, 39, 861. doi: 10.1007/s12598-020-01456-8
doi: 10.1007/s12598-020-01456-8
Zhang, F.; Shen, F.; Fan, Z. Y.; Ji, X.; Zhao, B.; Sun, Z. T.; Xuan, Y. Y.; Han, X. G. Rare Met. 2018, 37, 510. doi: 10.1007/s12598-018-1054-6
doi: 10.1007/s12598-018-1054-6
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115
doi: 10.1021/acs.chemrev.7b00115
Cheng, X. B.; Zhang, Q. J. Mater. Chem. A 2015, 3, 7207. doi: 10.1039/c5ta00689a
doi: 10.1039/c5ta00689a
Wang, M. Q.; Peng, Z.; Lin, H.; Li, Z. D.; Liu, J.; Ren, Z. M.; He, H. Y.; Wang, D. Y. Acta Phys. -Chim. Sin. 2021, 37, 2007016.
doi: 10.3866/PKU.WHXB202007016
Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k
doi: 10.1039/c3ee40795k
Yu, X. R.; Ma, J.; Mou, C. B.; Cui, G. L. Acta Phys. -Chim. Sin. 2021, 37, 1912061.
doi: 10.3866/PKU.WHXB201912061
Zhang, Q. Acta Phys. -Chim. Sin. 2017, 33, 1275.
doi: 10.3866/PKU.WHXB201705021
Guo, Y.; Li, H.; Zhai, T. Adv. Mater. 2017, 29, 1700007. doi: 10.1002/adma.201700007
doi: 10.1002/adma.201700007
Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. doi: 10.1002/anie.201304762
doi: 10.1002/anie.201304762
Li, P.; Dong, X.; Li, C.; Liu, J.; Liu, Y.; Feng, W.; Wang, C.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2019, 58, 2093. doi: 10.1002/anie.201813905
doi: 10.1002/anie.201813905
Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. J. Electrochem. Soc. 2000, 147, 1245. doi: 10.1149/1.1393344
doi: 10.1149/1.1393344
Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2016, 28, 2888. doi: 10.1002/adma.201506124
doi: 10.1002/adma.201506124
Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotechnol. 2016, 11, 626. doi: 10.1038/nnano.2016.32
doi: 10.1038/nnano.2016.32
Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992
doi: 10.1038/ncomms10992
Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 7764. doi: 10.1002/anie.201702099
doi: 10.1002/anie.201702099
Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373. doi: 10.1021/acsnano.5b01990
doi: 10.1021/acsnano.5b01990
Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi: 10.1002/adma.201504117
doi: 10.1002/adma.201504117
Zhang, D.; Zhou, Y.; Liu, C.; Fan, S. Nanoscale 2016, 8, 11161. doi: 10.1039/c6nr00465b
doi: 10.1039/c6nr00465b
Zhang, Y.; Liu, B.; Hitz, E.; Luo, W.; Yao, Y.; Li, Y.; Dai, J.; Chen, C.; Wang, Y.; Yang, C.; et al. Nano Res. 2017, 10, 1356. doi: 10.1007/s12274-017-1461-2
doi: 10.1007/s12274-017-1461-2
Li, Q.; Zhu, S.; Lu, Y. Adv. Funct. Mater. 2017, 27, 1606422. doi: 10.1002/adfm.201606422
doi: 10.1002/adfm.201606422
Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058
doi: 10.1038/ncomms9058
Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. Nano Lett. 2016, 16, 459. doi: 10.1021/acs.nanolett.5b04117
doi: 10.1021/acs.nanolett.5b04117
Murugan, R.; Thangadurai, V.; Weppner, W. Angew. Chem. Int. Ed. 2007, 46, 7778. doi: 10.1002/anie.200701144
doi: 10.1002/anie.200701144
Zeng, X. X.; Yin, Y. X.; Li, N. W.; Du, W. C.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 15825. doi: 10.1021/jacs.6b10088
doi: 10.1021/jacs.6b10088
Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526
doi: 10.1002/adma.201504526
Chen, H.; Pei, A.; Lin, D.; Xie, J.; Yang, A.; Xu, J.; Lin, K.; Wang, J.; Wang, H.; Shi, F.; et al. Adv. Energy Mater. 2019, 9, 1900858. doi: 10.1002/aenm.201900858
doi: 10.1002/aenm.201900858
Zhai, P.; Wei, Y.; Xiao, J.; Liu, W.; Zuo, J.; Gu, X.; Yang, W.; Cui, S.; Li, B.; Yang, S.; et al. Adv. Energy Mater. 2020, 10, 1903339. doi: 10.1002/aenm.201903339
doi: 10.1002/aenm.201903339
Lu, Y.; Gu, S.; Hong, X.; Rui, K.; Huang, X.; Jin, J.; Chen, C.; Yang, J.; Wen, Z. Energy Storage Mater. 2018, 11, 16. doi: 10.1016/j.ensm.2017.09.007
doi: 10.1016/j.ensm.2017.09.007
Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E. A.; Bahrami, B.; He, Q.; Qiao, H.; Smirnova, A. L.; Wu, J. J.; Qiao, Q.; et al. Energy Storage Mater. 2019, 18, 389. doi: 10.1016/j.ensm.2019.02.006
doi: 10.1016/j.ensm.2019.02.006
Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y. ACS Cent. Sci. 2018, 4, 97. doi: 10.1021/acscentsci.7b00480
doi: 10.1021/acscentsci.7b00480
Ma, G.; Wen, Z.; Wu, M.; Shen, C.; Wang, Q.; Jin, J.; Wu, X. Chem. Commun. 2014, 50, 14209. doi: 10.1039/c4cc05535g
doi: 10.1039/c4cc05535g
Wu, M.; Wen, Z.; Liu, Y.; Wang, X.; Huang, L. J. Power Sources 2011, 196, 8091. doi: 10.1016/j.jpowsour.2011.05.035
doi: 10.1016/j.jpowsour.2011.05.035
Lin, D.; Liu, Y.; Chen, W.; Zhou, G.; Liu, K.; Dunn, B.; Cui, Y. Nano Lett. 2017, 17, 3731. doi: 10.1021/acs.nanolett.7b01020
doi: 10.1021/acs.nanolett.7b01020
Shen, X.; Li, Y.; Qian, T.; Liu, J.; Zhou, J.; Yan, C.; Goodenough, J. B. Nat. Commun. 2019, 10, 900. doi: 10.1038/s41467-019-08767-0
doi: 10.1038/s41467-019-08767-0
Lang, J.; Long, Y.; Qu, J.; Luo, X.; Wei, H.; Huang, K.; Zhang, H.; Qi, L.; Zhang, Q.; Li, Z.; et al. Energy Storage Mater. 2019, 16, 85. doi: 10.1016/j.ensm.2018.04.024
doi: 10.1016/j.ensm.2018.04.024
Fan, L.; Zhuang, H. L.; Gao, L.; Lu, Y.; Archer, L. A. J. Mater. Chem. A 2017, 5, 3483. doi: 10.1039/c6ta10204b
doi: 10.1039/c6ta10204b
Han, X.; Gong, Y.; Fu, K. K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G. et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/nmat4821
doi: 10.1038/nmat4821
Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. B.; Rubloff, G. W.; Noked, M. ACS Nano 2015, 9, 5884. doi: 10.1021/acsnano.5b02166
doi: 10.1021/acsnano.5b02166
Lee, J. I.; Shin, M.; Hong, D.; Park, S. Adv. Energy Mater. 2019, 9, 1803722. doi: 10.1002/aenm.201803722
doi: 10.1002/aenm.201803722
Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chem 2019, 5, 74. doi: 10.1016/j.chempr.2018.12.002
doi: 10.1016/j.chempr.2018.12.002
Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. Angew. Chem. Int. Ed. 2018, 57, 1505. doi: 10.1002/anie.201710806
doi: 10.1002/anie.201710806
Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D.; Liu, Y.; Liu, C.; Hsu, P. C.; Bao, Z.; et al. J. Am. Chem. Soc. 2017, 139, 4815. doi: 10.1021/jacs.6b13314
doi: 10.1021/jacs.6b13314
Hu, Z.; Zhang, S.; Dong, S.; Li, W.; Li, H.; Cui, G.; Chen, L. Chem. Mater. 2017, 29, 4682. doi: 10.1021/acs.chemmater.7b00091
doi: 10.1021/acs.chemmater.7b00091
Tu, Z.; Choudhury, S.; Zachman, M. J.; Wei, S.; Zhang, K.; Kourkoutis, L. F.; Archer, L. A. Joule 2017, 1, 394. doi: 10.1016/j.joule.2017.06.002
doi: 10.1016/j.joule.2017.06.002
Ma, G.; Wen, Z.; Wang, Q.; Shen, C.; Jin, J.; Wu, X. J. Mater. Chem. A 2014, 2, 19355. doi: 10.1039/c4ta04172k
doi: 10.1039/c4ta04172k
Gao, Y.; Zhao, Y.; Li, Y. C.; Huang, Q.; Mallouk, T. E.; Wang, D. J. Am. Chem. Soc. 2017, 139, 15288. doi: 10.1021/jacs.7b06437
doi: 10.1021/jacs.7b06437
Luo, J.; Fang, C. C.; Wu, N. L. Adv. Energy Mater. 2018, 8, 1701482. doi: 10.1002/aenm.201701482
doi: 10.1002/aenm.201701482
Sun, Y.; Zhao, Y.; Wang, J.; Liang, J.; Wang, C.; Sun, Q.; Lin, X.; Adair, K. R.; Luo, J.; Wang, D.; et al. Adv. Mater. 2019, 31, e1806541. doi: 10.1002/adma.201806541
doi: 10.1002/adma.201806541
Liu, J.; Qian, T.; Wang, M.; Zhou, J.; Xu, N.; Yan, C. Nano Lett. 2018, 18, 4598. doi: 10.1021/acs.nanolett.8b01882
doi: 10.1021/acs.nanolett.8b01882
Kang, D.; Sardar, S.; Zhang, R.; Noam, H.; Chen, J.; Ma, L.; Liang, W.; Shi, C.; Lemmon, J. P. Energy Storage Mater. 2020, 27, 69. doi: 10.1016/j.ensm.2020.01.020
doi: 10.1016/j.ensm.2020.01.020
Xu, R.; Xiao, Y.; Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Zhang, X. Q.; Yan, C.; Zhang, Q.; Huang, J. Q. Adv. Mater. 2019, 31, e1808392. doi: 10.1002/adma.201808392
doi: 10.1002/adma.201808392
Yang, C.; Liu, B.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. Nano Res. 2017, 10, 4256. doi: 10.1007/s12274-017-1498-2
doi: 10.1007/s12274-017-1498-2
Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. Adv. Mater. 2017, 29, 1605531. doi: 10.1002/adma.201605531
doi: 10.1002/adma.201605531
Kozen, A. C.; Lin, C. F.; Zhao, O.; Lee, S. B.; Rubloff, G. W.; Noked, M. Chem. Mater. 2017, 29, 6298. doi: 10.1021/acs.chemmater.7b01496
doi: 10.1021/acs.chemmater.7b01496
Liu, F.; Xiao, Q.; Wu, H. B.; Shen, L.; Xu, D.; Cai, M.; Lu, Y. Adv. Energy Mater. 2018, 8, 1701744. doi: 10.1002/aenm.201701744
doi: 10.1002/aenm.201701744
Adair, K. R.; Zhao, C. T.; Banis, M. N.; Zhao, Y.; Li, R. Y.; Cai, M.; Sun, X. L. Angew. Chem. Int. Ed. 2019, 58, 15797. doi: 10.1002/anie.201907759
doi: 10.1002/anie.201907759
Sun, C.; Huang, X.; Jin, J.; Lu, Y.; Wang, Q.; Yang, J.; Wen, Z. J. Power Sources 2018, 377, 36. doi: 10.1016/j.jpowsour.2017.11.063
doi: 10.1016/j.jpowsour.2017.11.063
Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Adv. Funct. Mater. 2018, 28, 1705838. doi: 10.1002/adfm.201705838
doi: 10.1002/adfm.201705838
Li, S.; Fan, L.; Lu, Y. Energy Storage Mater. 2019, 18, 205. doi: 10.1016/j.ensm.2018.09.015
doi: 10.1016/j.ensm.2018.09.015
Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Chem 2017, 2, 258. doi: 10.1016/j.chempr.2017.01.003
doi: 10.1016/j.chempr.2017.01.003
Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M.; et al. Adv. Mater. 2015, 27, 5241. doi: 10.1002/adma.201501490
doi: 10.1002/adma.201501490
Liu, S.; Xia, X.; Deng, S.; Xie, D.; Yao, Z.; Zhang, L.; Zhang, S.; Wang, X.; Tu, J. Adv. Mater. 2019, 31, e1806470. doi: 10.1002/adma.201806470
doi: 10.1002/adma.201806470
Yan, K.; Lu, Z.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi: 10.1038/nenergy.2016.10
doi: 10.1038/nenergy.2016.10
Liu, S.; Ma, Y.; Zhou, Z.; Lou, S.; Huo, H.; Zuo, P.; Wang, J.; Du, C.; Yin, G.; Gao, Y. Energy Storage Mater. 2020, 33, 423. doi: 10.1016/j.ensm.2020.08.007
doi: 10.1016/j.ensm.2020.08.007
Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. Nat. Energy 2017, 2, 17119. doi: 10.1038/nenergy.2017.119
doi: 10.1038/nenergy.2017.119
Jiang, Z.; Jin, L.; Han, Z.; Hu, W.; Zeng, Z.; Sun, Y.; Xie, J. Angew. Chem. Int. Ed. 2019, 58, 11374. doi: 10.1002/anie.201905712
doi: 10.1002/anie.201905712
Ma, L.; Kim, M. S.; Archer, L. A. Chem. Mater. 2017, 29, 4181. doi: 10.1021/acs.chemmater.6b03687
doi: 10.1021/acs.chemmater.6b03687
Tang, W.; Yin, X.; Kang, S.; Chen, Z.; Tian, B.; Teo, S. L.; Wang, X.; Chi, X.; Loh, K. P.; Lee, H. W.; et al. Adv. Mater. 2018, e1801745. doi: 10.1002/adma.201801745
doi: 10.1002/adma.201801745
Hu, Z.; Liu, F.; Gao, J.; Zhou, W.; Huo, H.; Zhou, J.; Li, L. Adv. Funct. Mater. 2020, 30, 1907020. doi: 10.1002/adfm.201907020
doi: 10.1002/adfm.201907020
Liu, S.; Zhang, X.; Li, R.; Gao, L.; Luo, J. Energy Storage Mater. 2018, 14, 143. doi: 10.1016/j.ensm.2018.03.004
doi: 10.1016/j.ensm.2018.03.004
Fu, K. K.; Gong, Y. H.; Liu, B. Y.; Zhu, Y. Z.; Xu, S. M.; Yao, Y. G.; Luo, W.; Wang, C. W.; Lacey, S. D.; Dai, J. Q.; et al. Sci. Adv. 2017, 3, e1601659. doi: 10.1126/sciadv.1601659
doi: 10.1126/sciadv.1601659
Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, 1804461. doi: 10.1002/adma.201804461
doi: 10.1002/adma.201804461
Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Nano Res. 2019, 12, 2224. doi: 10.1007/s12274-019-2368-x
doi: 10.1007/s12274-019-2368-x
Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152
doi: 10.1038/nnano.2014.152
Yan, J.; Yu, J.; Ding, B. Adv. Mater. 2018, 30, 1705105. doi: 10.1002/adma.201705105
doi: 10.1002/adma.201705105
Yan, M.; Liang, J. Y.; Zuo, T. T.; Yin, Y. X.; Xin, S.; Tan, S. J.; Guo, Y. G.; Wan, L. J. Adv. Funct. Mater. 2020, 30, 1908047. doi: 10.1002/adfm.201908047
doi: 10.1002/adfm.201908047
Huo, H.; Chen, Y.; Li, R.; Zhao, N.; Luo, J.; da Silva, J. G. P.; Muecke, R.; Kaghazchi, P.; Guo, X.; Sun, X. Energy Environ. Sci. 2020, 13, 127. doi: 10.1039/c9ee01903k
doi: 10.1039/c9ee01903k
Yang, Q.; Li, W.; Dong, C.; Ma, Y.; Yin, Y.; Wu, Q.; Xu, Z.; Ma, W.; Fan, C.; Sun, K. J. Energy Chem. 2020, 42, 83. doi: 10.1016/j.jechem.2019.06.012
doi: 10.1016/j.jechem.2019.06.012
Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Adv. Mater. 2017, 29, 1603755. doi: 10.1002/adma.201603755
doi: 10.1002/adma.201603755
Li, Q.; Zeng, F. L.; Guan, Y. P.; Jin, Z. Q.; Huang, Y. Q.; Yao, M.; Wang, W. K.; Wang, A. B. Energy Storage Mater. 2018, 13, 151. doi: 10.1016/j.ensm.2018.01.002
doi: 10.1016/j.ensm.2018.01.002
Luo, J.; Lee, R. C.; Jin, J. T.; Weng, Y. T.; Fang, C. C.; Wu, N. L. Chem. Commun. 2017, 53, 963. doi: 10.1039/c6cc09248a
doi: 10.1039/c6cc09248a
Yao, Y.; Zhao, X.; Razzaq, A. A.; Gu, Y.; Yuan, X.; Shah, R.; Lian, Y.; Lei, J.; Mu, Q.; Ma, Y.; et al. J. Mater. Chem. A 2019, 7, 12214. doi: 10.1039/c9ta03679b
doi: 10.1039/c9ta03679b
Jing, H. K.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. J. Mater. Chem. A 2015, 3, 12213. doi: 10.1039/c5ta01490e
doi: 10.1039/c5ta01490e
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Jing Du , Xi Yu , Xiaofei Ma , Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014