Citation: Guan Jun, Li Nianwu, Yu Le. Artificial Interphase Layers for Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200901. doi: 10.3866/PKU.WHXB202009011 shu

Artificial Interphase Layers for Lithium Metal Anode

  • Corresponding author: Li Nianwu, linianwu@mail.buct.edu.cn Yu Le, yule@mail.buct.edu.cn
  • Received Date: 2 September 2020
    Revised Date: 27 September 2020
    Accepted Date: 28 September 2020
    Available Online: 19 October 2020

    Fund Project: the National Natural Science Foundation of China 21975015the Key R&D Program of Shandong Province 2019TSLH0120the Fundamental Research Funds for the Central Universities buctrc201904The project was supported by the National Natural Science Foundation of China (21975015, 51902016, 21703010), the Fundamental Research Funds for the Central Universities (buctrc201829, buctrc201904), and the Key R&D Program of Shandong Province (2019TSLH0120)the National Natural Science Foundation of China 51902016the National Natural Science Foundation of China 21703010the Fundamental Research Funds for the Central Universities buctrc201829

  • Lithium (Li) metal is considered as the most promising anode material for high-energy-density batteries owing to its ultra-high theoretical capacity (3860 mAh·g-1) and the lowest negative electrochemical potential (-3.040 V versus standard hydrogen electrode). However, the unstable solid electrolyte interphase (SEI) layers, uncontrollable dendrite growth, and huge volume changes during the plating/stripping processes significantly limit the practical applications of Li metal anodes. Since the unstable SEI layers can promote the nucleation and growth of Li dendrites, they play a crucial role in the decay process of Li metal anodes. The fracture and regeneration of SEI layers continuously consume electrolytes and Li metal anodes during plating/ stripping processes, and the accumulation of SEI layers can increase the interface impedance. Therefore, building artificial interphase layers is one of the most effective strategies to construct a stable SEI, reduce dendrite growth, accommodate large volume changes, and thus obtain excellent cycling performance. In this review, artificial interphase layers have been summarized into three parts based on the conductive properties of interphase, including artificial SEI layers (electronically insulating while ionically conducting), mixed ionic and electronic conductor interphase layers, and nanostructured interphase passivation layers (both ionically and electronically insulating). Artificial SEI layers with high ionic conductivity and low electronic conductivity can be classified into inorganic, organic, and organic/inorganic complex SEI according to the composition of artificial SEI layers. The artificial inorganic SEI layers with a high Young's modulus can suppress the dendrite growth. The artificial organic SEI layers with flexible features can accommodate large interface fluctuations and improve the interphase wettability. The artificial organic/inorganic complex SEI layers with a rigid-flexible structure can restrain dendrite growth and buffer volume change. The mixed ionic and electronic conductor layers possess high ionic conductivity and high Young's modulus, which are beneficial for enhancing the interphase stability and reducing dendrite growth. The artificial alloy mixed conductor layers can improve the Li diffusion coefficient and reduce Li nucleation overpotential, guiding uniform Li plating/stripping. Furthermore, the artificial mixed conductor layers comprising inorganic and organic matter have commendable flexibility and excellent interface compatibility, thereby enhancing the interphase stability and reducing dendrite growth. The nanostructured interphase passivation layers with high chemical stability can deliver Li ion through a confined electrolyte in a uniform porous structure, thereby achieving homogeneous Li plating/stripping. In addition, the structure-effective relationship of artificial interphase layers has been analyzed, and methods for improving the performance of artificial interphase layers, such as physical and chemical stability, ion transportation, interface strength and flexibility, and interfacial compatibility, have been discussed in this review. Finally, we present the main challenge and perspectives of artificial interphase layers.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Grande, L.; Paillard, E.; Hassoun, J.; Park, J. B.; Lee, Y. J.; Sun, Y. K.; Passerini, S.; Scrosati, B. Adv. Mater. 2015, 27, 784. doi: 10.1002/adma.201403064  doi: 10.1002/adma.201403064

    3. [3]

      Lu, Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Adv. Energy Mater. 2015, 5, 1402073. doi: 10.1002/aenm.201402073  doi: 10.1002/aenm.201402073

    4. [4]

      Yang, P.; Tarascon, J. M. Nat. Mater. 2012, 11, 560. doi: 10.1038/nmat3367  doi: 10.1038/nmat3367

    5. [5]

      Li, S.; Jiang, M.; Xie, Y.; Xu, H.; Jia, J.; Li, J. Adv. Mater. 2018, 30, 1706375. doi: 10.1002/adma.201706375  doi: 10.1002/adma.201706375

    6. [6]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    7. [7]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    8. [8]

      Li, H. P.; Ji, X. Y.; Liang, J. J. Rare Met. 2020, 39, 861. doi: 10.1007/s12598-020-01456-8  doi: 10.1007/s12598-020-01456-8

    9. [9]

      Zhang, F.; Shen, F.; Fan, Z. Y.; Ji, X.; Zhao, B.; Sun, Z. T.; Xuan, Y. Y.; Han, X. G. Rare Met. 2018, 37, 510. doi: 10.1007/s12598-018-1054-6  doi: 10.1007/s12598-018-1054-6

    10. [10]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    11. [11]

      Cheng, X. B.; Zhang, Q. J. Mater. Chem. A 2015, 3, 7207. doi: 10.1039/c5ta00689a  doi: 10.1039/c5ta00689a

    12. [12]

      Wang, M. Q.; Peng, Z.; Lin, H.; Li, Z. D.; Liu, J.; Ren, Z. M.; He, H. Y.; Wang, D. Y. Acta Phys. -Chim. Sin. 2021, 37, 2007016.  doi: 10.3866/PKU.WHXB202007016

    13. [13]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    14. [14]

      Yu, X. R.; Ma, J.; Mou, C. B.; Cui, G. L. Acta Phys. -Chim. Sin. 2021, 37, 1912061.  doi: 10.3866/PKU.WHXB201912061

    15. [15]

      Zhang, Q. Acta Phys. -Chim. Sin. 2017, 33, 1275.  doi: 10.3866/PKU.WHXB201705021

    16. [16]

      Guo, Y.; Li, H.; Zhai, T. Adv. Mater. 2017, 29, 1700007. doi: 10.1002/adma.201700007  doi: 10.1002/adma.201700007

    17. [17]

      Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. doi: 10.1002/anie.201304762  doi: 10.1002/anie.201304762

    18. [18]

      Li, P.; Dong, X.; Li, C.; Liu, J.; Liu, Y.; Feng, W.; Wang, C.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2019, 58, 2093. doi: 10.1002/anie.201813905  doi: 10.1002/anie.201813905

    19. [19]

      Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. J. Electrochem. Soc. 2000, 147, 1245. doi: 10.1149/1.1393344  doi: 10.1149/1.1393344

    20. [20]

      Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2016, 28, 2888. doi: 10.1002/adma.201506124  doi: 10.1002/adma.201506124

    21. [21]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotechnol. 2016, 11, 626. doi: 10.1038/nnano.2016.32  doi: 10.1038/nnano.2016.32

    22. [22]

      Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992  doi: 10.1038/ncomms10992

    23. [23]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 7764. doi: 10.1002/anie.201702099  doi: 10.1002/anie.201702099

    24. [24]

      Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373. doi: 10.1021/acsnano.5b01990  doi: 10.1021/acsnano.5b01990

    25. [25]

      Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi: 10.1002/adma.201504117  doi: 10.1002/adma.201504117

    26. [26]

      Zhang, D.; Zhou, Y.; Liu, C.; Fan, S. Nanoscale 2016, 8, 11161. doi: 10.1039/c6nr00465b  doi: 10.1039/c6nr00465b

    27. [27]

      Zhang, Y.; Liu, B.; Hitz, E.; Luo, W.; Yao, Y.; Li, Y.; Dai, J.; Chen, C.; Wang, Y.; Yang, C.; et al. Nano Res. 2017, 10, 1356. doi: 10.1007/s12274-017-1461-2  doi: 10.1007/s12274-017-1461-2

    28. [28]

      Li, Q.; Zhu, S.; Lu, Y. Adv. Funct. Mater. 2017, 27, 1606422. doi: 10.1002/adfm.201606422  doi: 10.1002/adfm.201606422

    29. [29]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058  doi: 10.1038/ncomms9058

    30. [30]

      Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. Nano Lett. 2016, 16, 459. doi: 10.1021/acs.nanolett.5b04117  doi: 10.1021/acs.nanolett.5b04117

    31. [31]

      Murugan, R.; Thangadurai, V.; Weppner, W. Angew. Chem. Int. Ed. 2007, 46, 7778. doi: 10.1002/anie.200701144  doi: 10.1002/anie.200701144

    32. [32]

      Zeng, X. X.; Yin, Y. X.; Li, N. W.; Du, W. C.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 15825. doi: 10.1021/jacs.6b10088  doi: 10.1021/jacs.6b10088

    33. [33]

      Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    34. [34]

      Chen, H.; Pei, A.; Lin, D.; Xie, J.; Yang, A.; Xu, J.; Lin, K.; Wang, J.; Wang, H.; Shi, F.; et al. Adv. Energy Mater. 2019, 9, 1900858. doi: 10.1002/aenm.201900858  doi: 10.1002/aenm.201900858

    35. [35]

      Zhai, P.; Wei, Y.; Xiao, J.; Liu, W.; Zuo, J.; Gu, X.; Yang, W.; Cui, S.; Li, B.; Yang, S.; et al. Adv. Energy Mater. 2020, 10, 1903339. doi: 10.1002/aenm.201903339  doi: 10.1002/aenm.201903339

    36. [36]

      Lu, Y.; Gu, S.; Hong, X.; Rui, K.; Huang, X.; Jin, J.; Chen, C.; Yang, J.; Wen, Z. Energy Storage Mater. 2018, 11, 16. doi: 10.1016/j.ensm.2017.09.007  doi: 10.1016/j.ensm.2017.09.007

    37. [37]

      Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E. A.; Bahrami, B.; He, Q.; Qiao, H.; Smirnova, A. L.; Wu, J. J.; Qiao, Q.; et al. Energy Storage Mater. 2019, 18, 389. doi: 10.1016/j.ensm.2019.02.006  doi: 10.1016/j.ensm.2019.02.006

    38. [38]

      Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y. ACS Cent. Sci. 2018, 4, 97. doi: 10.1021/acscentsci.7b00480  doi: 10.1021/acscentsci.7b00480

    39. [39]

      Ma, G.; Wen, Z.; Wu, M.; Shen, C.; Wang, Q.; Jin, J.; Wu, X. Chem. Commun. 2014, 50, 14209. doi: 10.1039/c4cc05535g  doi: 10.1039/c4cc05535g

    40. [40]

      Wu, M.; Wen, Z.; Liu, Y.; Wang, X.; Huang, L. J. Power Sources 2011, 196, 8091. doi: 10.1016/j.jpowsour.2011.05.035  doi: 10.1016/j.jpowsour.2011.05.035

    41. [41]

      Lin, D.; Liu, Y.; Chen, W.; Zhou, G.; Liu, K.; Dunn, B.; Cui, Y. Nano Lett. 2017, 17, 3731. doi: 10.1021/acs.nanolett.7b01020  doi: 10.1021/acs.nanolett.7b01020

    42. [42]

      Shen, X.; Li, Y.; Qian, T.; Liu, J.; Zhou, J.; Yan, C.; Goodenough, J. B. Nat. Commun. 2019, 10, 900. doi: 10.1038/s41467-019-08767-0  doi: 10.1038/s41467-019-08767-0

    43. [43]

      Lang, J.; Long, Y.; Qu, J.; Luo, X.; Wei, H.; Huang, K.; Zhang, H.; Qi, L.; Zhang, Q.; Li, Z.; et al. Energy Storage Mater. 2019, 16, 85. doi: 10.1016/j.ensm.2018.04.024  doi: 10.1016/j.ensm.2018.04.024

    44. [44]

      Fan, L.; Zhuang, H. L.; Gao, L.; Lu, Y.; Archer, L. A. J. Mater. Chem. A 2017, 5, 3483. doi: 10.1039/c6ta10204b  doi: 10.1039/c6ta10204b

    45. [45]

      Han, X.; Gong, Y.; Fu, K. K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G. et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/nmat4821  doi: 10.1038/nmat4821

    46. [46]

      Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. B.; Rubloff, G. W.; Noked, M. ACS Nano 2015, 9, 5884. doi: 10.1021/acsnano.5b02166  doi: 10.1021/acsnano.5b02166

    47. [47]

      Lee, J. I.; Shin, M.; Hong, D.; Park, S. Adv. Energy Mater. 2019, 9, 1803722. doi: 10.1002/aenm.201803722  doi: 10.1002/aenm.201803722

    48. [48]

      Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chem 2019, 5, 74. doi: 10.1016/j.chempr.2018.12.002  doi: 10.1016/j.chempr.2018.12.002

    49. [49]

      Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. Angew. Chem. Int. Ed. 2018, 57, 1505. doi: 10.1002/anie.201710806  doi: 10.1002/anie.201710806

    50. [50]

      Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D.; Liu, Y.; Liu, C.; Hsu, P. C.; Bao, Z.; et al. J. Am. Chem. Soc. 2017, 139, 4815. doi: 10.1021/jacs.6b13314  doi: 10.1021/jacs.6b13314

    51. [51]

      Hu, Z.; Zhang, S.; Dong, S.; Li, W.; Li, H.; Cui, G.; Chen, L. Chem. Mater. 2017, 29, 4682. doi: 10.1021/acs.chemmater.7b00091  doi: 10.1021/acs.chemmater.7b00091

    52. [52]

      Tu, Z.; Choudhury, S.; Zachman, M. J.; Wei, S.; Zhang, K.; Kourkoutis, L. F.; Archer, L. A. Joule 2017, 1, 394. doi: 10.1016/j.joule.2017.06.002  doi: 10.1016/j.joule.2017.06.002

    53. [53]

      Ma, G.; Wen, Z.; Wang, Q.; Shen, C.; Jin, J.; Wu, X. J. Mater. Chem. A 2014, 2, 19355. doi: 10.1039/c4ta04172k  doi: 10.1039/c4ta04172k

    54. [54]

      Gao, Y.; Zhao, Y.; Li, Y. C.; Huang, Q.; Mallouk, T. E.; Wang, D. J. Am. Chem. Soc. 2017, 139, 15288. doi: 10.1021/jacs.7b06437  doi: 10.1021/jacs.7b06437

    55. [55]

      Luo, J.; Fang, C. C.; Wu, N. L. Adv. Energy Mater. 2018, 8, 1701482. doi: 10.1002/aenm.201701482  doi: 10.1002/aenm.201701482

    56. [56]

      Sun, Y.; Zhao, Y.; Wang, J.; Liang, J.; Wang, C.; Sun, Q.; Lin, X.; Adair, K. R.; Luo, J.; Wang, D.; et al. Adv. Mater. 2019, 31, e1806541. doi: 10.1002/adma.201806541  doi: 10.1002/adma.201806541

    57. [57]

      Liu, J.; Qian, T.; Wang, M.; Zhou, J.; Xu, N.; Yan, C. Nano Lett. 2018, 18, 4598. doi: 10.1021/acs.nanolett.8b01882  doi: 10.1021/acs.nanolett.8b01882

    58. [58]

      Kang, D.; Sardar, S.; Zhang, R.; Noam, H.; Chen, J.; Ma, L.; Liang, W.; Shi, C.; Lemmon, J. P. Energy Storage Mater. 2020, 27, 69. doi: 10.1016/j.ensm.2020.01.020  doi: 10.1016/j.ensm.2020.01.020

    59. [59]

      Xu, R.; Xiao, Y.; Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Zhang, X. Q.; Yan, C.; Zhang, Q.; Huang, J. Q. Adv. Mater. 2019, 31, e1808392. doi: 10.1002/adma.201808392  doi: 10.1002/adma.201808392

    60. [60]

      Yang, C.; Liu, B.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. Nano Res. 2017, 10, 4256. doi: 10.1007/s12274-017-1498-2  doi: 10.1007/s12274-017-1498-2

    61. [61]

      Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. Adv. Mater. 2017, 29, 1605531. doi: 10.1002/adma.201605531  doi: 10.1002/adma.201605531

    62. [62]

      Kozen, A. C.; Lin, C. F.; Zhao, O.; Lee, S. B.; Rubloff, G. W.; Noked, M. Chem. Mater. 2017, 29, 6298. doi: 10.1021/acs.chemmater.7b01496  doi: 10.1021/acs.chemmater.7b01496

    63. [63]

      Liu, F.; Xiao, Q.; Wu, H. B.; Shen, L.; Xu, D.; Cai, M.; Lu, Y. Adv. Energy Mater. 2018, 8, 1701744. doi: 10.1002/aenm.201701744  doi: 10.1002/aenm.201701744

    64. [64]

      Adair, K. R.; Zhao, C. T.; Banis, M. N.; Zhao, Y.; Li, R. Y.; Cai, M.; Sun, X. L. Angew. Chem. Int. Ed. 2019, 58, 15797. doi: 10.1002/anie.201907759  doi: 10.1002/anie.201907759

    65. [65]

      Sun, C.; Huang, X.; Jin, J.; Lu, Y.; Wang, Q.; Yang, J.; Wen, Z. J. Power Sources 2018, 377, 36. doi: 10.1016/j.jpowsour.2017.11.063  doi: 10.1016/j.jpowsour.2017.11.063

    66. [66]

      Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Adv. Funct. Mater. 2018, 28, 1705838. doi: 10.1002/adfm.201705838  doi: 10.1002/adfm.201705838

    67. [67]

      Li, S.; Fan, L.; Lu, Y. Energy Storage Mater. 2019, 18, 205. doi: 10.1016/j.ensm.2018.09.015  doi: 10.1016/j.ensm.2018.09.015

    68. [68]

      Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Chem 2017, 2, 258. doi: 10.1016/j.chempr.2017.01.003  doi: 10.1016/j.chempr.2017.01.003

    69. [69]

      Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M.; et al. Adv. Mater. 2015, 27, 5241. doi: 10.1002/adma.201501490  doi: 10.1002/adma.201501490

    70. [70]

      Liu, S.; Xia, X.; Deng, S.; Xie, D.; Yao, Z.; Zhang, L.; Zhang, S.; Wang, X.; Tu, J. Adv. Mater. 2019, 31, e1806470. doi: 10.1002/adma.201806470  doi: 10.1002/adma.201806470

    71. [71]

      Yan, K.; Lu, Z.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi: 10.1038/nenergy.2016.10  doi: 10.1038/nenergy.2016.10

    72. [72]

      Liu, S.; Ma, Y.; Zhou, Z.; Lou, S.; Huo, H.; Zuo, P.; Wang, J.; Du, C.; Yin, G.; Gao, Y. Energy Storage Mater. 2020, 33, 423. doi: 10.1016/j.ensm.2020.08.007  doi: 10.1016/j.ensm.2020.08.007

    73. [73]

      Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. Nat. Energy 2017, 2, 17119. doi: 10.1038/nenergy.2017.119  doi: 10.1038/nenergy.2017.119

    74. [74]

      Jiang, Z.; Jin, L.; Han, Z.; Hu, W.; Zeng, Z.; Sun, Y.; Xie, J. Angew. Chem. Int. Ed. 2019, 58, 11374. doi: 10.1002/anie.201905712  doi: 10.1002/anie.201905712

    75. [75]

      Ma, L.; Kim, M. S.; Archer, L. A. Chem. Mater. 2017, 29, 4181. doi: 10.1021/acs.chemmater.6b03687  doi: 10.1021/acs.chemmater.6b03687

    76. [76]

      Tang, W.; Yin, X.; Kang, S.; Chen, Z.; Tian, B.; Teo, S. L.; Wang, X.; Chi, X.; Loh, K. P.; Lee, H. W.; et al. Adv. Mater. 2018, e1801745. doi: 10.1002/adma.201801745  doi: 10.1002/adma.201801745

    77. [77]

      Hu, Z.; Liu, F.; Gao, J.; Zhou, W.; Huo, H.; Zhou, J.; Li, L. Adv. Funct. Mater. 2020, 30, 1907020. doi: 10.1002/adfm.201907020  doi: 10.1002/adfm.201907020

    78. [78]

      Liu, S.; Zhang, X.; Li, R.; Gao, L.; Luo, J. Energy Storage Mater. 2018, 14, 143. doi: 10.1016/j.ensm.2018.03.004  doi: 10.1016/j.ensm.2018.03.004

    79. [79]

      Fu, K. K.; Gong, Y. H.; Liu, B. Y.; Zhu, Y. Z.; Xu, S. M.; Yao, Y. G.; Luo, W.; Wang, C. W.; Lacey, S. D.; Dai, J. Q.; et al. Sci. Adv. 2017, 3, e1601659. doi: 10.1126/sciadv.1601659  doi: 10.1126/sciadv.1601659

    80. [80]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, 1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    81. [81]

      Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Nano Res. 2019, 12, 2224. doi: 10.1007/s12274-019-2368-x  doi: 10.1007/s12274-019-2368-x

    82. [82]

      Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    83. [83]

      Yan, J.; Yu, J.; Ding, B. Adv. Mater. 2018, 30, 1705105. doi: 10.1002/adma.201705105  doi: 10.1002/adma.201705105

    84. [84]

      Yan, M.; Liang, J. Y.; Zuo, T. T.; Yin, Y. X.; Xin, S.; Tan, S. J.; Guo, Y. G.; Wan, L. J. Adv. Funct. Mater. 2020, 30, 1908047. doi: 10.1002/adfm.201908047  doi: 10.1002/adfm.201908047

    85. [85]

      Huo, H.; Chen, Y.; Li, R.; Zhao, N.; Luo, J.; da Silva, J. G. P.; Muecke, R.; Kaghazchi, P.; Guo, X.; Sun, X. Energy Environ. Sci. 2020, 13, 127. doi: 10.1039/c9ee01903k  doi: 10.1039/c9ee01903k

    86. [86]

      Yang, Q.; Li, W.; Dong, C.; Ma, Y.; Yin, Y.; Wu, Q.; Xu, Z.; Ma, W.; Fan, C.; Sun, K. J. Energy Chem. 2020, 42, 83. doi: 10.1016/j.jechem.2019.06.012  doi: 10.1016/j.jechem.2019.06.012

    87. [87]

      Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Adv. Mater. 2017, 29, 1603755. doi: 10.1002/adma.201603755  doi: 10.1002/adma.201603755

    88. [88]

      Li, Q.; Zeng, F. L.; Guan, Y. P.; Jin, Z. Q.; Huang, Y. Q.; Yao, M.; Wang, W. K.; Wang, A. B. Energy Storage Mater. 2018, 13, 151. doi: 10.1016/j.ensm.2018.01.002  doi: 10.1016/j.ensm.2018.01.002

    89. [89]

      Luo, J.; Lee, R. C.; Jin, J. T.; Weng, Y. T.; Fang, C. C.; Wu, N. L. Chem. Commun. 2017, 53, 963. doi: 10.1039/c6cc09248a  doi: 10.1039/c6cc09248a

    90. [90]

      Yao, Y.; Zhao, X.; Razzaq, A. A.; Gu, Y.; Yuan, X.; Shah, R.; Lian, Y.; Lei, J.; Mu, Q.; Ma, Y.; et al. J. Mater. Chem. A 2019, 7, 12214. doi: 10.1039/c9ta03679b  doi: 10.1039/c9ta03679b

    91. [91]

      Jing, H. K.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. J. Mater. Chem. A 2015, 3, 12213. doi: 10.1039/c5ta01490e  doi: 10.1039/c5ta01490e

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    7. [7]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    11. [11]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(10)
  • Abstract views(935)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return