Citation: Cai Mingli, Yao Liu, Jin Jun, Wen Zhaoyin. In situ Lithiophilic ZnO Layer Constructed using Aqueous Strategy for a Stable Li-Garnet Interface[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200900. doi: 10.3866/PKU.WHXB202009006 shu

In situ Lithiophilic ZnO Layer Constructed using Aqueous Strategy for a Stable Li-Garnet Interface

  • Corresponding author: Wen Zhaoyin, zywen@mail.sic.ac.cn
  • Received Date: 1 September 2020
    Revised Date: 24 September 2020
    Accepted Date: 24 September 2020
    Available Online: 9 October 2020

    Fund Project: the Science and Technology Commission of Shanghai Municipality 18DZ2280800the National Key R & D Program of China 2018YFB0905400The project was supported by the National Key R & D Program of China (2018YFB0905400), the National Natural Science Foundation of China (51772315), and the Science and Technology Commission of Shanghai Municipality (18DZ2280800)the National Natural Science Foundation of China 51772315

  • Solid-state batteries have garnered significant attention, owing to their high safety and improved energy density. Among various solid-state electrolytes (SSEs), garnet-type SSEs are promising for application in solid-state batteries, owing to their high ionic conductivities (10-4–10-3 S·cm-1) at room temperature and excellent stability against Li metal. However, the poor contact between the rigid ceramic and Li metal will result in high interfacial impedance and uneven lithium ion flux during cycling. Consequently, this will lead to rapid dendrite penetration along the grain boundary and eventual short circuit. Herein, inspired by the unique H+/Li+ exchange reaction of the garnet electrolyte, we propose a facile and efficient metal salt aqueous-solution-based strategy to construct an in situ lithiophilic ZnO layer on the garnet surface without employing any specific apparatus. A Zn(NO3)2 aqueous solution was selected to modify the garnet surface. Within one minute, LiOH spontaneously formed as a result of the H+/Li+ exchange reaction reacted with Zn(NO3)2 to produce homogeneous precipitates. After heat treatment, a lithiophilic ZnO layer was obtained. This was verified by the results of X-ray diffraction and attenuated total reflection Fourier transform infrared spectroscopy analyses. Furthermore, combined with scanning electron microscopy (SEM) images and corresponding elemental mapping, it was proved that a thin in situ interlayer can be successfully deposited on the garnet surface using our strategy. Moreover, the deposited ZnO nanoparticles were uniformly and densely distributed on the garnet surface. In the presence of the introduced layer, the wettability of the garnet-type SSE with molten Li was greatly improved. The introduced ZnO nanoparticles reacted with molten Li to form a LiZn alloy, achieving a tight and continuous contact at the Li–garnet interface, thereby greatly reducing the interfacial impedance to ~10 Ω·cm2. In the case of the untreated SSE in contact with the molten Li, the cross-sectional SEM image shows obvious gaps at the interface, indicating poor contact with Li. This resulted in a large interfacial resistance of up to 1350 Ω·cm2. Moreover, the slow ion transport at the interface reduces the capacity of the battery, and the uneven Li ion flux shortens the life of the cell. With a modified layer, the formed LiZn alloy interphase acting as a mixed ionic and electronic conductive interlayer ensures a uniform Li ion flux at the interface and an appreciable electrochemical performance. Symmetric Li cells with modified garnet-type electrolytes can achieve long cycling stability for approximately 1000 h at a current density of 0.1 mA·cm-2 at room temperature (RT). The quasi solid-state batteries with LiNi0.5Co0.2Mn0.3O2 (NCM523) or LiFePO4 cathodes can cycle stably for over 100 cycles at RT.
  • 加载中
    1. [1]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybutin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    2. [2]

      Xin, S.; You, Y.; Wang, S.; Gao, H. C.; Yin, Y. X.; Guo, Y. G. ACS Energy Lett. 2017, 2, 1385. doi: 10.1021/acsenergylett.7b00175  doi: 10.1021/acsenergylett.7b00175

    3. [3]

      Wang, H.; An, H. W.; Shan, H. M.; Zhao, L.; Wang, J. J. Acta Phys. -Chim. Sin. 2021, 37, 2007070.  doi: 10.3866/PKU.WHXB202007070

    4. [4]

      Sun, C.; Ruan, Y.; Zha, W.; Li, W.; Cai, M.; Wen, Z. Mater. Horiz. 2020, 7, 1667. doi: 10.1039/d0mh00050g  doi: 10.1039/d0mh00050g

    5. [5]

      Murugan, R.; Thangadurai, V.; Weppner, W. Angew. Chem. Int. Ed. 2007, 46, 7778. doi: 10.1002/anie.200701144  doi: 10.1002/anie.200701144

    6. [6]

      Chen, R.; Nolan, A. M.; Lu, J.; Wang, J.; Yu, X.; Mo, Y.; Chen, L.; Huang, X.; Li, H. Joule 2020, 4, 812. doi: 10.1016/j.joule.2020.03.012  doi: 10.1016/j.joule.2020.03.012

    7. [7]

      Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y. B.; Kang, F.; Li, B. J. Power Sources 2018, 389, 120. doi: 10.1016/j.jpowsour.2018.04.019  doi: 10.1016/j.jpowsour.2018.04.019

    8. [8]

      Thangadurai, V.; Narayanan, S.; Pinzaru, D. Chem. Soc. Rev. 2014, 43, 4714. doi: 10.1039/c4cs00020j  doi: 10.1039/c4cs00020j

    9. [9]

      Li, Y.; Han, J. T.; Wang, C. A.; Xie, H.; Goodenough, J. B. J. Mater. Chem. 2012, 22, 15357. doi: 10.1039/c2jm31413d  doi: 10.1039/c2jm31413d

    10. [10]

      Liu, C.; Rui, K.; Shen, C.; Badding, M. E.; Zhang, G.; Wen, Z. J. Power Sources 2015, 282, 286. doi: 10.1016/j.jpowsour.2015.02.050  doi: 10.1016/j.jpowsour.2015.02.050

    11. [11]

      Xia, W.; Xu, B.; Duan, H.; Tang, X.; Guo, Y.; Kang, H.; Li, H.; Liu, H. J. Am. Ceram. Soc. 2017, 100, 2832. doi: 10.1111/jace.14865  doi: 10.1111/jace.14865

    12. [12]

      Cai, M.; Lu, Y.; Su, J.; Ruan, Y.; Chen, C.; Chowdari, B. V. R.; Wen, Z. ACS Appl. Mater. Interfaces 2019, 11, 35030. doi: 10.1021/acsami.9b13190  doi: 10.1021/acsami.9b13190

    13. [13]

      Brugge, R. H.; Hekselman, A. K. O.; Cavallaro, A.; Pesci, F. M.; Chater, R. J.; Kilner, J. A.; Aguadero, A. Chem. Mater. 2018, 30, 3704. doi: 10.1021/acs.chemmater.8b00486  doi: 10.1021/acs.chemmater.8b00486

    14. [14]

      Wu, J.; Pu, B. W.; Wang, D.; Shi, S.; Zhao, N.; Guo, X.; Guo, X. ACS Appl. Mater. Interfaces 2018, 11, 898. doi: 10.1021/acsami.8b18356  doi: 10.1021/acsami.8b18356

    15. [15]

      Sharafi, A.; Kazyak, E.; Davis, A. L.; Yu, S.; Thompson, T.; Siegel, D. J.; Dasgupta, N. P.; Sakamoto, J. Chem. Mater. 2017, 29, 7961. doi: 10.1021/acs.chemmater.7b03002  doi: 10.1021/acs.chemmater.7b03002

    16. [16]

      Huo, H.; Chen, Y.; Zhao, N.; Lin, X.; Luo, J.; Yang, X.; Liu, Y.; Guo, X.; Sun, X. Nano Energy 2019, 61, 119. doi: 10.1016/j.nanoen.2019.04.058  doi: 10.1016/j.nanoen.2019.04.058

    17. [17]

      Ruan, Y.; Lu, Y.; Huang, X.; Su, J.; Sun, C.; Jin, J.; Wen, Z. J. Mater. Chem. A 2019, 7, 14565. doi: 10.1039/c9ta01911a  doi: 10.1039/c9ta01911a

    18. [18]

      Li, Y.; Chen, X.; Dolocan, A.; Cui, Z.; Xin, S.; Xue, L.; Xu, H.; Park, K.; Goodenough, J. B. J. Am. Chem. Soc. 2018, 140, 6448. doi: 10.1021/jacs.8b03106  doi: 10.1021/jacs.8b03106

    19. [19]

      Han, X.; Gong, Y.; Fu, K. K.; He, X.; Hitz, G.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; et al. Nat. Mater. 2016, 16, 572. doi: 10.1038/nmat4821  doi: 10.1038/nmat4821

    20. [20]

      Luo, W.; Gong, Y.; Zhu, Y.; Fu, K. K.; Dai, J.; Lacey, S. D.; Wang, C.; Liu, B.; Han, X.; Mo, Y.; et al. J. Am. Chem. Soc. 2016, 138, 12258. doi: 10.1021/jacs.6b06777  doi: 10.1021/jacs.6b06777

    21. [21]

      Fu, K. K.; Gong, Y.; Fu, Z.; Xie, H.; Yao, Y.; Liu, B.; Carter, M.; Wachsman, E.; Hu, L. Angew.Chem. Int.Ed. 2017, 56, 14942. doi: 10.1002/anie.201708637  doi: 10.1002/anie.201708637

    22. [22]

      Huang, X.; Shen, C.; Rui, K.; Jin, J.; Wu, M.; Wu, X.; Wen, Z. Jom 2016, 68, 2593. doi: 10.1007/s11837-016-2065-0  doi: 10.1007/s11837-016-2065-0

    23. [23]

      Lu, Y.; Huang, X.; Ruan, Y.; Wang, Q.; Kun, R.; Yang, J.; Wen, Z. J. Mater. Chem. A 2018, 6, 18853. doi: 10.1039/c8ta07241h  doi: 10.1039/c8ta07241h

    24. [24]

      Tavares, S. R.; Vaiss, V. S.; Wypych, F.; Leitao, A. A. Appl. Clay Sci. 2015, 114, 103. doi: 10.1016/j.clay.2015.05.011  doi: 10.1016/j.clay.2015.05.011

    25. [25]

      Nityashree, N.; Rajamathi, M. J. Phys. Chem. Solids 2013, 74, 1164. doi: 10.1016/j.jpcs.2013.03.015  doi: 10.1016/j.jpcs.2013.03.015

    26. [26]

      Zieba, A.; Pacuła, A.; Serwicka, E. M.; Drelinkiewicz, A. Fuel 2010, 89, 1961. doi: 10.1016/j.fuel.2009.11.013  doi: 10.1016/j.fuel.2009.11.013

    27. [27]

      Choi, Y. K.; Chung, K.; Kim, W. S.; Sung, Y. E.; Park, S. M. J. Power Sources 2002, 104, 132. doi: 10.1016/S0378-7753(01)00911-9  doi: 10.1016/S0378-7753(01)00911-9

    28. [28]

      Ghotbi, M. Y. J. Alloys Compd. 2010, 491, 420. doi: 10.1016/j.jallcom.2009.10.214  doi: 10.1016/j.jallcom.2009.10.214

    29. [29]

      Wang, J.; Wang, H.; Xie, J.; Yang, A.; Pei, A.; Wu, C.; Shi, F.; Liu, Y.; Lin, D.; Gong, Y.; et al. Energy Storage Mater. 2018, 14, 345. doi: 10.1016/j.ensm.2018.05.021  doi: 10.1016/j.ensm.2018.05.021

    30. [30]

      Wang, C.; Gong, Y, ; Liu, B.; Fu, K.; Yao, Y.; Hitz, E.; Li, Y.; Dai, J.; Xu, S.; Luo, W. et al. Nano Lett. 2016, 17, 565. doi: 10.1021/acs.nanolett.6b04695  doi: 10.1021/acs.nanolett.6b04695

    31. [31]

      Huo, H.; Chen, Y.; Li, R.; Zhao, N.; Luo, J.; Pereira da Silva, J. G.; Mucke, R.; Kaghazchi, P.; Guo, X.; Sun, X. Energy Environ. Sci. 2020, 13, 127. doi: 10.1039/c9ee01903k  doi: 10.1039/c9ee01903k

    32. [32]

      Chen, Y.; He, M.; Zhao, N.; Fu, J.; Huo, H.; Zhang, T.; Li, Y.; Xu, F.; Guo, X. J. Power Sources 2019, 420, 15. doi: 10.1016/j.jpowsour.2019.02.085  doi: 10.1016/j.jpowsour.2019.02.085

  • 加载中
    1. [1]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    9. [9]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    10. [10]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

Metrics
  • PDF Downloads(8)
  • Abstract views(1618)
  • HTML views(387)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return