Blue Perovskite Light-Emitting Diodes: Opportunities and Challenges
- Corresponding author: Chen Ziming, chenziming@scut.edu.cn Yip Hin-Lap, msangusyip@scut.edu.cn
Citation: Zou Guangruixing, Chen Ziming, Li Zhenchao, Yip Hin-Lap. Blue Perovskite Light-Emitting Diodes: Opportunities and Challenges[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200900. doi: 10.3866/PKU.WHXB202009002
Li, Z. C.; Chen, Z. M.; Zou, G. R. X.; Yip, H. L.; Cao, Y. Acta Phys. Sin. 2019, 68, 158505.
doi: 10.7498/aps.68.20190307
Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1994, 65, 676. doi: 10.1063/1.112265
doi: 10.1063/1.112265
Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; et al. Nat. Nanotechnol. 2014, 9, 687. doi: 10.1038/nnano.2014.149
doi: 10.1038/nnano.2014.149
Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Nature 2018, 562, 245. doi: 10.1038/s41586-018-0575-3
doi: 10.1038/s41586-018-0575-3
Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Nat. Photonics 2018, 12, 681. doi: 10.1038/s41566-018-0260-y
doi: 10.1038/s41566-018-0260-y
Dong, Y.; Wang, Y. K.; Yuan, F.; Johnston, A.; Liu, Y.; Ma, D.; Choi, M. J.; Chen, B.; Chekini, M.; Baek, S. W.; et al. Nat. Nanotechnol. 2020, 15, 668. doi: 10.1038/s41565-020-0714-5
doi: 10.1038/s41565-020-0714-5
Ma, D.; Todorovic, P.; Meshkat, S.; Saidaminov, M. I.; Wang, Y. K.; Chen, B.; Li, P.; Scheffel, B.; Quintero-Bermudez, R.; Fan, J. Z.; et al. J. Am. Chem. Soc. 2020, 142, 5126. doi: 10.1021/jacs.9b12323
doi: 10.1021/jacs.9b12323
Quan, L. N.; Garcia de Arquer, F. P.; Sabatini, R. P.; Sargent, E. H. Adv. Mater. 2018, 30, e1801996. doi: 10.1002/adma.201801996
doi: 10.1002/adma.201801996
Umari, P.; Mosconi, E.; De Angelis, F. Sci. Rep. 2014, 4, 4467. doi: 10.1038/srep04467
doi: 10.1038/srep04467
Liu, G.; Gong, J.; Kong, L.; Schaller, R. D.; Hu, Q.; Liu, Z.; Yan, S.; Yang, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 8076. doi: 10.1073/pnas.1809167115
doi: 10.1073/pnas.1809167115
Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281
doi: 10.1002/adma.201306281
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692. doi: 10.1021/nl5048779
doi: 10.1021/nl5048779
Yuan, F.; Ran, C.; Zhang, L.; Dong, H.; Jiao, B.; Hou, X.; Li, J.; Wu, Z. ACS Energy Lett. 2020, 5, 1062. doi: 10.1021/acsenergylett.9b02562
doi: 10.1021/acsenergylett.9b02562
Leng, M.; Yang, Y.; Chen, Z.; Gao, W.; Zhang, J.; Niu, G.; Li, D.; Song, H.; Zhang, J.; Jin, S.; Tang, J. Nano Lett. 2018, 18, 6076. doi: 10.1021/acs.nanolett.8b03090
doi: 10.1021/acs.nanolett.8b03090
Tan, Z.; Li, J.; Zhang, C.; Li, Z.; Hu, Q.; Xiao, Z.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; et al. Adv. Funct. Mater. 2018, 28, 1801131. doi: 10.1002/adfm.201801131
doi: 10.1002/adfm.201801131
Wang, L.; Shi, Z.; Ma, Z.; Yang, D.; Zhang, F.; Ji, X.; Wang, M.; Chen, X.; Na, G.; Chen, S.; et al. Nano Lett. 2020, 20, 3568. doi: 10.1021/acs.nanolett.0c00513
doi: 10.1021/acs.nanolett.0c00513
Mitzi, D. B. J. Chem. Soc. Dalton Trans. 2001, (1), 1. doi: 10.1039/b007070j
doi: 10.1039/b007070j
Mao, L.; Ke, W.; Pedesseau, L.; Wu, Y.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. J. Am. Chem. Soc. 2018, 140, 3775. doi: 10.1021/jacs.8b00542
doi: 10.1021/jacs.8b00542
Chen, Z.; Zhang, C.; Jiang, X. F.; Liu, M.; Xia, R.; Shi, T.; Chen, D.; Xue, Q.; Zhao, Y. J.; Su, S.; et al. Adv. Mater. 2017, 29, 1603157. doi: 10.1002/adma.201603157
doi: 10.1002/adma.201603157
Herz, L. M. Annu. Rev. Phys. Chem. 2016, 67, 65. doi: 10.1146/annurev-physchem-040215-112222
doi: 10.1146/annurev-physchem-040215-112222
Sutherland, B. R.; Sargent, E. H. Nat. Photonics 2016, 10, 295. doi: 10.1038/nphoton.2016.62
doi: 10.1038/nphoton.2016.62
Liang, D.; Peng, Y.; Fu, Y.; Shearer, M. J.; Zhang, J.; Zhai, J.; Zhang, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. ACS Nano 2016, 10, 6897. doi: 10.1021/acsnano.6b02683
doi: 10.1021/acsnano.6b02683
Hong, X.; Ishihara, T.; Nurmikko, A. V. Phys. Rev. B 1992, 45, 6961. doi: 10.1103/PhysRevB.45.6961
doi: 10.1103/PhysRevB.45.6961
Ishihara, T.; Takahashi, J.; Goto, T. Solid State Commun. 1989, 69, 933. doi: 10.1016/0038-1098(89)90935-6
doi: 10.1016/0038-1098(89)90935-6
Tanaka, K.; Takahashi, T.; Kondo, T.; Umeda, K.; Ema, K.; Umebayashi, T.; Asai, K.; Uchida, K.; Miura, N. Jpn. J. Appl. Phys 2005, 44, 5923. doi: 10.1143/jjap.44.5923
doi: 10.1143/jjap.44.5923
Kataoka, T.; Kondo, T.; Ito, R.; Sasaki, S.; Uchida, K.; Miura, N. Phys. B 1993, 184, 132. doi: 10.1016/0921-4526(93)90336-5
doi: 10.1016/0921-4526(93)90336-5
Straus, D. B.; Kagan, C. R. J. Phys. Chem. Lett. 2018, 9, 1434. doi: 10.1021/acs.jpclett.8b00201
doi: 10.1021/acs.jpclett.8b00201
Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; et al. Nat. Photonics 2016, 10, 699. doi: 10.1038/nphoton.2016.185
doi: 10.1038/nphoton.2016.185
Chen, P.; Meng, Y.; Ahmadi, M.; Peng, Q.; Gao, C.; Xu, L.; Shao, M.; Xiong, Z.; Hu, B. Nano Energy 2018, 50, 615. doi: 10.1016/j.nanoen.2018.06.008
doi: 10.1016/j.nanoen.2018.06.008
Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; et al. Nat. Nanotechnol. 2016, 11, 872. doi: 10.1038/nnano.2016.110
doi: 10.1038/nnano.2016.110
Yang, D.; Zou, Y.; Li, P.; Liu, Q.; Wu, L.; Hu, H.; Xu, Y.; Sun, B.; Zhang, Q.; Lee, S. T. Nano Energy 2018, 47, 235. doi: 10.1016/j.nanoen.2018.03.019
doi: 10.1016/j.nanoen.2018.03.019
Liang, Z.; Zhao, S.; Xu, Z.; Qiao, B.; Song, P.; Gao, D.; Xu, X. ACS Appl. Mater. Interfaces 2016, 8, 28824.doi: 10.1021/acsami.6b08528
doi: 10.1021/acsami.6b08528
Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Nano Lett. 2015, 15, 5635. doi: 10.1021/acs.nanolett.5b02404
doi: 10.1021/acs.nanolett.5b02404
Kumawat, N. K.; Liu, X. K.; Kabra, D.; Gao, F. Nanoscale 2019, 11, 2109. doi: 10.1039/c8nr09885a
doi: 10.1039/c8nr09885a
Chen, X.; Peng, L.; Huang, K.; Shi, Z.; Xie, R.; Yang, W. Nano Res. 2016, 9, 1994. doi: 10.1007/s12274-016-1090-1
doi: 10.1007/s12274-016-1090-1
Hou, S.; Gangishetty, M. K.; Quan, Q.; Congreve, D. N. Joule 2018, 2, 2421. doi: 10.1016/j.joule.2018.08.005
doi: 10.1016/j.joule.2018.08.005
Kumawat, N. K.; Dey, A.; Kumar, A.; Gopinathan, S. P.; Narasimhan, K. L.; Kabra, D. ACS Appl. Mater. Interfaces 2015, 7, 13119. doi: 10.1021/acsami.5b02159
doi: 10.1021/acsami.5b02159
Kim, H. P.; Kim, J.; Kim, B. S.; Kim, H. M.; Kim, J.; Yusoff, A. R. B. M.; Jang, J.; Nazeeruddin, M. K. Adv. Opt. Mater. 2017, 5, 1600920. doi: 10.1002/adom.201600920
doi: 10.1002/adom.201600920
Cheng, L.; Cao, Y.; Ge, R.; Wei, Y. Q.; Wang, N. N.; Wang, J. P.; Huang, W. Chin. Chem. Lett. 2017, 28, 29. doi: 10.1016/j.cclet.2016.07.001
doi: 10.1016/j.cclet.2016.07.001
Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; Wang, P.; Zhang, L.; Yin, Z.; You, J. Nat. Commun. 2018, 9, 570. doi: 10.1038/s41467-018-02978-7
doi: 10.1038/s41467-018-02978-7
Xing, J.; Zhao, Y.; Askerka, M.; Quan, L. N.; Gong, X.; Zhao, W.; Zhao, J.; Tan, H.; Long, G.; Gao, L.; et al. Nat. Commun. 2018, 9, 3541. doi: 10.1038/s41467-018-05909-8
doi: 10.1038/s41467-018-05909-8
Li, Z.; Chen, Z.; Yang, Y.; Xue, Q.; Yip, H. L.; Cao, Y. Nat. Commun. 2019, 10, 1027. doi: 10.1038/s41467-019-09011-5
doi: 10.1038/s41467-019-09011-5
Wang, Q.; Wang, X.; Yang, Z.; Zhou, N.; Deng, Y.; Zhao, J.; Xiao, X.; Rudd, P.; Moran, A.; Yan, Y.; Huang, J. Nat. Commun. 2019, 10, 5633. doi: 10.1038/s41467-019-13580-w
doi: 10.1038/s41467-019-13580-w
Chu, Z.; Zhao, Y.; Ma, F.; Zhang, C. X.; Deng, H.; Gao, F.; Ye, Q.; Meng, J.; Yin, Z.; Zhang, X.; You, J. Nat. Commun. 2020, 11, 4165. doi: 10.1038/s41467-020-17943-6
doi: 10.1038/s41467-020-17943-6
Liu, Y.; Cui, J.; Du, K.; Tian, H.; He, Z.; Zhou, Q.; Yang, Z.; Deng, Y.; Chen, D.; Zuo, X.; et al. Nat. Photonics 2019, 13, 760. doi: 10.1038/s41566-019-0505-4
doi: 10.1038/s41566-019-0505-4
Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; et al. Adv. Mater. 2016, 28, 8718. doi: 10.1002/adma.201600784
doi: 10.1002/adma.201600784
Comin, R.; Walters, G.; Thibau, E. S.; Voznyy, O.; Lu, Z. H.; Sargent, E. H. J. Mater. Chem. C 2015, 3, 8839. doi: 10.1039/c5tc01718a
doi: 10.1039/c5tc01718a
Wang, H.; Zhao, X.; Zhang, B.; Xie, Z. J. Mater. Chem. C 2019, 7, 5596. doi: 10.1039/c9tc01205b
doi: 10.1039/c9tc01205b
Yantara, N.; Jamaludin, N. F.; Febriansyah, B.; Giovanni, D.; Bruno, A.; Soci, C.; Sum, T. C.; Mhaisalkar, S.; Mathews, N. ACS Energy Lett. 2020, 5, 1593. doi: 10.1021/acsenergylett.0c00559
doi: 10.1021/acsenergylett.0c00559
Yuan, S.; Wang, Z. K.; Xiao, L. X.; Zhang, C. F.; Yang, S. Y.; Chen, B. B.; Ge, H. T.; Tian, Q. S.; Jin, Y.; Liao, L. S. Adv. Mater. 2019, 31, 1904319. doi: 10.1002/adma.201904319
doi: 10.1002/adma.201904319
Pang, P.; Jin, G.; Liang, C.; Wang, B.; Xiang, W.; Zhang, D.; Xu, J.; Hong, W.; Xiao, Z.; Wang, L.; X et al. ACS Nano 2020, 14, 11420. doi: 10.1021/acsnano.0c03765
doi: 10.1021/acsnano.0c03765
Meng, F.; Liu, X.; Cai, X.; Gong, Z.; Li, B.; Xie, W.; Li, M.; Chen, D.; Yip, H. L.; Su, S. J. Nanoscale 2019, 11, 1295. doi: 10.1039/c8nr07907b
doi: 10.1039/c8nr07907b
Pan, G.; Bai, X.; Xu, W.; Chen, X.; Zhai, Y.; Zhu, J.; Shao, H.; Ding, N.; Xu, L.; Dong, B.; et al. ACS Appl. Mater. Interfaces 2020, 12, 14195. doi: 10.1021/acsami.0c01074
doi: 10.1021/acsami.0c01074
Zheng, X.; Yuan, S.; Liu, J.; Yin, J.; Yuan, F.; Shen, W. S.; Yao, K.; Wei, M.; Zhou, C.; et al. ACS Energy Lett. 2020, 5, 793. doi: 10.1021/acsenergylett.0c00057
doi: 10.1021/acsenergylett.0c00057
Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L. Z.; Gödel, K. C.; Bein, T.; Docampo, P.; et al. Nano Lett. 2015, 15, 6095. doi: 10.1021/acs.nanolett.5b02369
doi: 10.1021/acs.nanolett.5b02369
Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W.; Alivisatos, A. P. J. Am. Chem. Soc. 2018, 140, 17760. doi: 10.1021/jacs.8b11035
doi: 10.1021/jacs.8b11035
Congreve, D. N.; Weidman, M. C.; Seitz, M.; Paritmongkol, W.; Dahod, N. S.; Tisdale, W. A. ACS Photonics 2017, 4, 476. doi: 10.1021/acsphotonics.6b00963
doi: 10.1021/acsphotonics.6b00963
Ishihara, T.; Hong, X.; Ding, J.; Nurmikko, A. V. Surf. Sci. 1992, 267, 323. doi: 10.1016/0039-6028(92)91147-4
doi: 10.1016/0039-6028(92)91147-4
Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Adv. Mater. 2015, 27, 7162. doi: 10.1002/adma.201502567
doi: 10.1002/adma.201502567
Wang, S.; Bi, C.; Yuan, J.; Zhang, L.; Tian, J. ACS Energy Lett. 2017, 3, 245. doi: 10.1021/acsenergylett.7b01243
doi: 10.1021/acsenergylett.7b01243
Wu, Y.; Wei, C.; Li, X.; Li, Y.; Qiu, S.; Shen, W.; Cai, B.; Sun, Z.; Yang, D.; Deng, Z.; Zeng, H. ACS Energy Lett. 2018, 3, 2030. doi: 10.1021/acsenergylett.8b01025
doi: 10.1021/acsenergylett.8b01025
Zhang, B. B.; Yuan, S.; Ma, J. P.; Zhou, Y.; Hou, J.; Chen, X.; Zheng, W.; Shen, H.; Wang, X. C.; Sun, B.; et al. J. Am. Chem. Soc. 2019, 141, 15423.doi: 10.1021/jacs.9b08140
doi: 10.1021/jacs.9b08140
Yao, J.; Wang, L.; Wang, K.; Yin, Y.; Yang, J.; Zhang, Q.; Yao, H. Sci. Bull. 2020, 65, 1150. doi: :10.1016/j.scib.2020.03.036
Gangishetty, M. K.; Hou, S.; Quan, Q.; Congreve, D. N. Adv. Mater. 2018, 30, 1706226. doi: 10.1002/adma.201706226
doi: 10.1002/adma.201706226
Wang, Y. N.; Ma, P.; Peng, L. M.; Zhang, D.; Fang, Y. Y.; Zhou, X. W.; Lin, Y. Acta Phys. -Chim. Sin. 2017, 33, 2099.
doi: 10.3866/PKU.WHXB201705115
Luo, C.; Li, W.; Xiong, D.; Fu, J.; Yang, W. Nanoscale 2019, 11, 15206. doi: 10.1039/c9nr05217h
doi: 10.1039/c9nr05217h
Shao, H.; Zhai, Y.; Wu, X.; Xu, W.; Xu, L.; Dong, B.; Bai, X.; Cui, H.; Song, H. Nanoscale 2020, 12, 11728. doi: 10.1039/d0nr02597f
doi: 10.1039/d0nr02597f
Zirak, M.; Moyen, E.; Alehdaghi, H.; Kanwat, A.; Choi, W. C.; Jang, J. ACS Appl. Nano Mater. 2019, 2, 5655. doi: 10.1021/acsanm.9b01187
doi: 10.1021/acsanm.9b01187
Zhang, X.; Han, D. B.; Chen, X. M.; Chen, Y.; Chang, S.; Zhong, H. Z. Acta Phys. -Chim. Sin. 2021, 37, 2008055.
doi: 10.3866/PKU.WHXB202008055
Ten Brinck, S.; Infante, I. ACS Energy Lett. 2016, 1, 1266. doi: 10.1021/acsenergylett.6b00595
doi: 10.1021/acsenergylett.6b00595
Ohmann, R.; Ono, L. K.; Kim, H. S.; Lin, H.; Lee, M. V.; Li, Y.; Park, N. G.; Qi, Y. J. Am. Chem. Soc. 2015, 137, 16049. doi: 10.1021/jacs.5b08227
doi: 10.1021/jacs.5b08227
Huang, X.; Paudel, T. R.; Dowben, P. A.; Dong, S.; Tsymbal, E. Y. Phys. Rev. B 2016, 94, 195309. doi: 10.1103/PhysRevB.94.195309
doi: 10.1103/PhysRevB.94.195309
Han, G.; Koh, T. M.; Lim, S. S.; Goh, T. W.; Guo, X.; Leow, S. W.; Begum, R.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. ACS Appl. Mater. Interfaces 2017, 9, 21292. doi: 10.1021/acsami.7b05133
doi: 10.1021/acsami.7b05133
Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J.; Sinatra, L.; Alyami, N.; Zhao, C.; et al. 2021, 37, J. Phys. Chem. Lett. 2015, 6, 5027. doi: 10.1021/acs.jpclett.5b02460
Tan, Y.; Zou, Y.; Wu, L.; Huang, Q.; Yang, D.; Chen, M.; Ban, M.; Wu, C.; Wu, T.; Bai, S.; et al. ACS Appl. Mater. Interfaces 2018, 10, 3784. doi: 10.1021/acsami.7b17166
doi: 10.1021/acsami.7b17166
Ahmed, G. H.; El-Demellawi, J. K.; Yin, J.; Pan, J.; Velusamy, D. B.; Hedhili, M. N.; Alarousu, E.; Bakr, O. M.; Alshareef, H. N.; Mohammed, O. F. ACS Energy Lett. 2018, 3, 2301. doi: 10.1021/acsenergylett.8b01441
doi: 10.1021/acsenergylett.8b01441
Yong, Z. J.; Guo, S. Q.; Ma, J. P.; Zhang, J. Y.; Li, Z. Y.; Chen, Y. M.; Zhang, B. B.; Zhou, Y.; Shu, J.; Gu, J. L.; et al. J. Am. Chem. Soc. 2018, 140, 9942. doi: 10.1021/jacs.8b04763
doi: 10.1021/jacs.8b04763
Luo, C.; Yan, C.; Li, W.; Chun, F.; Xie, M.; Zhu, Z.; Gao, Y.; Guo, B.; Yang, W. Adv. Funct. Mater. 2020, 30, 2000026. doi: 10.1002/adfm.202000026
doi: 10.1002/adfm.202000026
Cho, H.; Kim, Y. H.; Wolf, C.; Lee, H. D.; Lee, T. W. Adv. Mater. 2018, 30, e1704587. doi: 10.1002/adma.201704587
doi: 10.1002/adma.201704587
Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. J. Phys. Chem. Lett. 2016, 7, 1368. doi: 10.1021/acs.jpclett.6b00433
doi: 10.1021/acs.jpclett.6b00433
Yoon, S. J.; Kuno, M.; Kamat, P. V. ACS Energy Lett. 2017, 2, 1507. doi: 10.1021/acsenergylett.7b00357
doi: 10.1021/acsenergylett.7b00357
Chiba, T.; Ishikawa, S.; Sato, J.; Takahashi, Y.; Ebe, H.; Ohisa, S.; Kido, J. Adv. Opt. Mater. 2020, 8, 2000289. doi: 10.1002/adom.202000289
doi: 10.1002/adom.202000289
Yao, E. P.; Yang, Z.; Meng, L.; Sun, P.; Dong, S.; Yang, Y.; Yang, Y. Adv. Mater. 2017, 29, 1606859. doi: 10.1002/adma.201606859
doi: 10.1002/adma.201606859
Zhang, X.; Liu, H.; Wang, W.; Zhang, J.; Xu, B.; Karen, K. L.; Zheng, Y.; Liu, S.; Chen, S.; Wang, K.; Sun, X. W. Adv. Mater. 2017, 29, 1606405. doi: 10.1002/adma.201606405
doi: 10.1002/adma.201606405
Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; Chen, X. J. Am. Chem. Soc. 2017, 139, 11443. doi: 10.1021/jacs.7b04000
doi: 10.1021/jacs.7b04000
Shi, Z.; Li, Y.; Zhang, Y.; Chen, Y.; Li, X.; Wu, D.; Xu, T.; Shan, C.; Du, G. Nano Lett. 2017, 17, 313. doi: 10.1021/acs.nanolett.6b04116
doi: 10.1021/acs.nanolett.6b04116
Shan, Q.; Li, J.; Song, J.; Zou, Y.; Xu, L.; Xue, J.; Dong, Y.; Huo, C.; Chen, J.; Han, B.; Zeng, H. J. Mater. Chem. C. 2017, 5, 4565. doi: 10.1039/c6tc05578h
doi: 10.1039/c6tc05578h
Cheng, T.; Tumen-Ulzii, G.; Klotz, D.; Watanabe, S.; Matsushima, T.; Adachi, C. ACS Appl. Mater. Interfaces 2020, 12, 33004. doi: 10.1021/acsami.0c06737
doi: 10.1021/acsami.0c06737
Yusoff, A. R. B. M.; Gavim, A. E. X.; Macedo, A. G.; da Silva, W. J.; Schneider, F. K.; Teridi, M. A. M. Mater. Today Chem. 2018, 10, 104. doi: 10.1016/j.mtchem.2018.08.005
doi: 10.1016/j.mtchem.2018.08.005
Vashishtha, P.; Ng, M.; Shivarudraiah, S. B.; Halpert, J. E. Chem. Mater. 2019, 31, 83. doi: 10.1021/acs.chemmater.8b02999
doi: 10.1021/acs.chemmater.8b02999
Wang, F.; Wang, Z.; Sun, W.; Wang, Z.; Bai, Y.; Hayat, T.; Alsaedi, A.; Tan, Z. Small 2020, 16, e2002940. doi: 10.1002/smll.202002940
doi: 10.1002/smll.202002940
Zhang, F.; Cai, B.; Song, J.; Han, B.; Zhang, B.; Zeng, H. Adv. Funct. Mater. 2020, 30, 2001732. doi: 10.1002/adfm.202001732
doi: 10.1002/adfm.202001732
Jiang, Y.; Qin, C.; Cui, M.; He, T.; Liu, K.; Huang, Y.; Luo, M.; Zhang, L.; Xu, H.; Li, S.; et al. Nat Commun 2019, 10, 1868. doi: 10.1038/s41467-019-09794-7
doi: 10.1038/s41467-019-09794-7
Ren, Z.; Xiao, X.; Ma, R.; Lin, H.; Wang, K.; Sun, X. W.; Choy, W. C. H. Adv. Funct. Mater. 2019, 29, 1905339. doi: 10.1002/adfm.201905339
doi: 10.1002/adfm.201905339
Wang, Q.; Ren, J.; Peng, X. F.; Ji, X. X.; Yang, X. H. ACS Appl. Mater. Interfaces 2017, 9, 29901. doi: 10.1021/acsami.7b07458
doi: 10.1021/acsami.7b07458
Yang, F.; Chen, H.; Zhang, R.; Liu, X.; Zhang, W.; Zhang, J.; Gao, F.; Wang, L. Adv. Funct. Mater. 2020, 30, 1908760. doi: 10.1002/adfm.201908760
doi: 10.1002/adfm.201908760
Yassitepe, E.; Yang, Z.; Voznyy, O.; Kim, Y.; Walters, G.; Castañeda, J. A.; Kanjanaboos, P.; Yuan, M.; Gong, X.; Fan, F.; et al. Adv. Funct. Mater. 2016, 26, 8757. doi: 10.1002/adfm.201604580
doi: 10.1002/adfm.201604580
Deng, W.; Xu, X.; Zhang, X.; Zhang, Y.; Jin, X.; Wang, L.; Lee, S. T.; Jie, J. Adv. Funct. Mater. 2016, 26, 4797. doi: 10.1002/adfm.201601054
doi: 10.1002/adfm.201601054
Tan, Z.; Luo, J.; Yang, L.; Li, X.; Deng, Z.; Gao, L.; Chen, H.; Li, J.; Du, P.; Niu, G.; Tang, J. Adv. Opt. Mater. 2019, 8, 1901094. doi: 10.1002/adom.201901094
doi: 10.1002/adom.201901094
Hu, H.; Salim, T.; Chen, B.; Lam, Y. M. Sci. Rep. 2016, 6, 33546. doi: 10.1038/srep33546
doi: 10.1038/srep33546
Kumar, S.; Jagielski, J.; Yakunin, S.; Rice, P.; Chiu, Y. C.; Wang, M.; Nedelcu, G.; Kim, Y.; Lin, S.; Santos, E. J. G.; et al. ACS Nano 2016, 10, 9720. doi: 10.1021/acsnano.6b05775
doi: 10.1021/acsnano.6b05775
Ochsenbein, S. T.; Krieg, F.; Shynkarenko, Y.; Raino, G.; Kovalenko, M. V. ACS Appl. Mater. Interfaces 2019, 11, 21655. doi: 10.1021/acsami.9b02472
doi: 10.1021/acsami.9b02472
Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Doblinger, M.; Wang, K.; Hoye, R. L. Z.; Muller-Buschbaum, P.; Stranks, S. D.; Urban, A. S.; et al. Nano Lett. 2018, 18, 5231. doi: 10.1021/acs.nanolett.8b02190
doi: 10.1021/acs.nanolett.8b02190
Ren, Z.; Li, L.; Yu, J.; Ma, R.; Xiao, X.; Chen, R.; Wang, K.; Sun, X. W.; Yin, W. J.; Choy, W. C. H. ACS Energy Lett. 2020, 5, 2569. doi: 10.1021/acsenergylett.0c01015
doi: 10.1021/acsenergylett.0c01015
Todorović, P.; Ma, D.; Chen, B.; Quintero-Bermudez, R.; Saidaminov, M. I.; Dong, Y.; Lu, Z. H.; Sargent, E. H. Adv. Opt. Mater. 2019, 7, 1901440. doi: 10.1002/adom.201901440
doi: 10.1002/adom.201901440
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Xiaofei Zhou , Yu-Qing Cao , Feng Zhu , Li Qi , Linhai Liu , Ni Yan , Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
Peiqi Gao , Jiao Zheng , LiMiao Chen , Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
Sunting Xuan , Hang Shen , Xin Wang . Discussion on the Current Situation and Strategies for Academic Master’s Education in Chemistry. University Chemistry, 2024, 39(6): 37-41. doi: 10.3866/PKU.DXHX202401013
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385