Citation: Zou Guangruixing, Chen Ziming, Li Zhenchao, Yip Hin-Lap. Blue Perovskite Light-Emitting Diodes: Opportunities and Challenges[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200900. doi: 10.3866/PKU.WHXB202009002 shu

Blue Perovskite Light-Emitting Diodes: Opportunities and Challenges

  • Corresponding author: Chen Ziming, chenziming@scut.edu.cn Yip Hin-Lap, msangusyip@scut.edu.cn
  • Received Date: 1 September 2020
    Revised Date: 2 October 2020
    Accepted Date: 4 October 2020
    Available Online: 22 October 2020

    Fund Project: the China Postdoctoral Science Foundation 2020T130204the China Postdoctoral Science Foundation 2019M650197the National Natural Science Foundation of China 51573057the National Natural Science Foundation of China 21761132001The project was supported by the National Natural Science Foundation of China (21761132001, 51573057, 91733302) and the China Postdoctoral Science Foundation (2019M650197, 2020T130204)the National Natural Science Foundation of China 91733302

  • Metal halide perovskites are considered as promising candidates for lighting applications owing to their excellent optoelectronic properties, such as high electron/hole mobility, high photoluminescence quantum yield, high color purity, and facile color tunability. In recent years, perovskite light-emitting diodes (LEDs) have developed rapidly, and their external quantum efficiencies (EQEs) have exceeded 20% for green and red emissions. However, the EQEs and stabilities of blue (particularly deep-blue) perovskite LEDs are still inferior to the green and red counterparts, which severely restricts the application of perovskite LEDs in high-performance and wide color gamut displays as well as white light illumination. Therefore, summarizing the development of blue perovskite LEDs and discussing the opportunities and challenges associated with their future applications will help to guide the further development of the entire perovskite LED field. In this review, according to the emission color, we divide the blue perovskite LEDs into three parts for a better discussion, i.e., the emissions in the sky-blue, pure-blue, and deep-blue regions. We introduce their developed history and discuss the basic strategies to achieve blue emission. There are three typical methods to obtain perovskite emitters with blue emission, i.e., (1) composition engineering, (2) dimensional engineering, and (3) synthesis of perovskite nanocrystals and quantum dots. For composition engineering, changing ions in perovskite ABX3 structure can easily tune the perovskite emission color, particularly while changing the anions in "X" position. Therefore, modulating the ratio between the X-site anions of Br- and Cl- can cause perovskites to emit blue photons ranging from 420 to 490 nm, which almost covers the entire blue spectrum. For dimensional engineering, perovskite materials can form a series of low-dimensional structures (layered structures) with the insertion of organic ligands between the perovskite frameworks. This type of low-dimensional perovskite material typically exhibits better lighting properties than those exhibited by its three-dimensional counterpart owing to its unique charge or energy transfer process of charge carriers. Blue perovskite nanocrystals and quantum dots with high photoluminescence quantum yields are excellent candidates for realizing high-performance pure-blue and deep-blue devices because they can easily incorporate Cl- in their crystals, which is considerably limited in perovskite thin films owing to the poor solubility of inorganic chloride sources in polar solvents. Furthermore, we discuss several challenges associated with blue perovskite LEDs, such as the inferior device performance in the pure-blue and deep-blue regions, difficulty in hole injection, electroluminescence (EL) instability of mixed halide perovskite systems, and lagged operation lifetime, and introduce potential solutions accordingly. Note that the challenges faced by blue perovskite LEDs are also the opportunities for research in this area. Therefore, this review is of a great reference value for the next evolution of blue perovskite LEDs.
  • 加载中
    1. [1]

      Li, Z. C.; Chen, Z. M.; Zou, G. R. X.; Yip, H. L.; Cao, Y. Acta Phys. Sin. 2019, 68, 158505.  doi: 10.7498/aps.68.20190307

    2. [2]

      Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1994, 65, 676. doi: 10.1063/1.112265  doi: 10.1063/1.112265

    3. [3]

      Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; et al. Nat. Nanotechnol. 2014, 9, 687. doi: 10.1038/nnano.2014.149  doi: 10.1038/nnano.2014.149

    4. [4]

      Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Nature 2018, 562, 245. doi: 10.1038/s41586-018-0575-3  doi: 10.1038/s41586-018-0575-3

    5. [5]

      Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Nat. Photonics 2018, 12, 681. doi: 10.1038/s41566-018-0260-y  doi: 10.1038/s41566-018-0260-y

    6. [6]

      Dong, Y.; Wang, Y. K.; Yuan, F.; Johnston, A.; Liu, Y.; Ma, D.; Choi, M. J.; Chen, B.; Chekini, M.; Baek, S. W.; et al. Nat. Nanotechnol. 2020, 15, 668. doi: 10.1038/s41565-020-0714-5  doi: 10.1038/s41565-020-0714-5

    7. [7]

      Ma, D.; Todorovic, P.; Meshkat, S.; Saidaminov, M. I.; Wang, Y. K.; Chen, B.; Li, P.; Scheffel, B.; Quintero-Bermudez, R.; Fan, J. Z.; et al. J. Am. Chem. Soc. 2020, 142, 5126. doi: 10.1021/jacs.9b12323  doi: 10.1021/jacs.9b12323

    8. [8]

      Quan, L. N.; Garcia de Arquer, F. P.; Sabatini, R. P.; Sargent, E. H. Adv. Mater. 2018, 30, e1801996. doi: 10.1002/adma.201801996  doi: 10.1002/adma.201801996

    9. [9]

      Umari, P.; Mosconi, E.; De Angelis, F. Sci. Rep. 2014, 4, 4467. doi: 10.1038/srep04467  doi: 10.1038/srep04467

    10. [10]

      Liu, G.; Gong, J.; Kong, L.; Schaller, R. D.; Hu, Q.; Liu, Z.; Yan, S.; Yang, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 8076. doi: 10.1073/pnas.1809167115  doi: 10.1073/pnas.1809167115

    11. [11]

      Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281  doi: 10.1002/adma.201306281

    12. [12]

      Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692. doi: 10.1021/nl5048779  doi: 10.1021/nl5048779

    13. [13]

      Yuan, F.; Ran, C.; Zhang, L.; Dong, H.; Jiao, B.; Hou, X.; Li, J.; Wu, Z. ACS Energy Lett. 2020, 5, 1062. doi: 10.1021/acsenergylett.9b02562  doi: 10.1021/acsenergylett.9b02562

    14. [14]

      Leng, M.; Yang, Y.; Chen, Z.; Gao, W.; Zhang, J.; Niu, G.; Li, D.; Song, H.; Zhang, J.; Jin, S.; Tang, J. Nano Lett. 2018, 18, 6076. doi: 10.1021/acs.nanolett.8b03090  doi: 10.1021/acs.nanolett.8b03090

    15. [15]

      Tan, Z.; Li, J.; Zhang, C.; Li, Z.; Hu, Q.; Xiao, Z.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; et al. Adv. Funct. Mater. 2018, 28, 1801131. doi: 10.1002/adfm.201801131  doi: 10.1002/adfm.201801131

    16. [16]

      Wang, L.; Shi, Z.; Ma, Z.; Yang, D.; Zhang, F.; Ji, X.; Wang, M.; Chen, X.; Na, G.; Chen, S.; et al. Nano Lett. 2020, 20, 3568. doi: 10.1021/acs.nanolett.0c00513  doi: 10.1021/acs.nanolett.0c00513

    17. [17]

      Mitzi, D. B. J. Chem. Soc. Dalton Trans. 2001, (1), 1. doi: 10.1039/b007070j  doi: 10.1039/b007070j

    18. [18]

      Mao, L.; Ke, W.; Pedesseau, L.; Wu, Y.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. J. Am. Chem. Soc. 2018, 140, 3775. doi: 10.1021/jacs.8b00542  doi: 10.1021/jacs.8b00542

    19. [19]

      Chen, Z.; Zhang, C.; Jiang, X. F.; Liu, M.; Xia, R.; Shi, T.; Chen, D.; Xue, Q.; Zhao, Y. J.; Su, S.; et al. Adv. Mater. 2017, 29, 1603157. doi: 10.1002/adma.201603157  doi: 10.1002/adma.201603157

    20. [20]

      Herz, L. M. Annu. Rev. Phys. Chem. 2016, 67, 65. doi: 10.1146/annurev-physchem-040215-112222  doi: 10.1146/annurev-physchem-040215-112222

    21. [21]

      Sutherland, B. R.; Sargent, E. H. Nat. Photonics 2016, 10, 295. doi: 10.1038/nphoton.2016.62  doi: 10.1038/nphoton.2016.62

    22. [22]

      Liang, D.; Peng, Y.; Fu, Y.; Shearer, M. J.; Zhang, J.; Zhai, J.; Zhang, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. ACS Nano 2016, 10, 6897. doi: 10.1021/acsnano.6b02683  doi: 10.1021/acsnano.6b02683

    23. [23]

      Hong, X.; Ishihara, T.; Nurmikko, A. V. Phys. Rev. B 1992, 45, 6961. doi: 10.1103/PhysRevB.45.6961  doi: 10.1103/PhysRevB.45.6961

    24. [24]

      Ishihara, T.; Takahashi, J.; Goto, T. Solid State Commun. 1989, 69, 933. doi: 10.1016/0038-1098(89)90935-6  doi: 10.1016/0038-1098(89)90935-6

    25. [25]

      Tanaka, K.; Takahashi, T.; Kondo, T.; Umeda, K.; Ema, K.; Umebayashi, T.; Asai, K.; Uchida, K.; Miura, N. Jpn. J. Appl. Phys 2005, 44, 5923. doi: 10.1143/jjap.44.5923  doi: 10.1143/jjap.44.5923

    26. [26]

      Kataoka, T.; Kondo, T.; Ito, R.; Sasaki, S.; Uchida, K.; Miura, N. Phys. B 1993, 184, 132. doi: 10.1016/0921-4526(93)90336-5  doi: 10.1016/0921-4526(93)90336-5

    27. [27]

      Straus, D. B.; Kagan, C. R. J. Phys. Chem. Lett. 2018, 9, 1434. doi: 10.1021/acs.jpclett.8b00201  doi: 10.1021/acs.jpclett.8b00201

    28. [28]

      Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; et al. Nat. Photonics 2016, 10, 699. doi: 10.1038/nphoton.2016.185  doi: 10.1038/nphoton.2016.185

    29. [29]

      Chen, P.; Meng, Y.; Ahmadi, M.; Peng, Q.; Gao, C.; Xu, L.; Shao, M.; Xiong, Z.; Hu, B. Nano Energy 2018, 50, 615. doi: 10.1016/j.nanoen.2018.06.008  doi: 10.1016/j.nanoen.2018.06.008

    30. [30]

      Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; et al. Nat. Nanotechnol. 2016, 11, 872. doi: 10.1038/nnano.2016.110  doi: 10.1038/nnano.2016.110

    31. [31]

      Yang, D.; Zou, Y.; Li, P.; Liu, Q.; Wu, L.; Hu, H.; Xu, Y.; Sun, B.; Zhang, Q.; Lee, S. T. Nano Energy 2018, 47, 235. doi: 10.1016/j.nanoen.2018.03.019  doi: 10.1016/j.nanoen.2018.03.019

    32. [32]

      Liang, Z.; Zhao, S.; Xu, Z.; Qiao, B.; Song, P.; Gao, D.; Xu, X. ACS Appl. Mater. Interfaces 2016, 8, 28824.doi: 10.1021/acsami.6b08528  doi: 10.1021/acsami.6b08528

    33. [33]

      Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Nano Lett. 2015, 15, 5635. doi: 10.1021/acs.nanolett.5b02404  doi: 10.1021/acs.nanolett.5b02404

    34. [34]

      Kumawat, N. K.; Liu, X. K.; Kabra, D.; Gao, F. Nanoscale 2019, 11, 2109. doi: 10.1039/c8nr09885a  doi: 10.1039/c8nr09885a

    35. [35]

      Chen, X.; Peng, L.; Huang, K.; Shi, Z.; Xie, R.; Yang, W. Nano Res. 2016, 9, 1994. doi: 10.1007/s12274-016-1090-1  doi: 10.1007/s12274-016-1090-1

    36. [36]

      Hou, S.; Gangishetty, M. K.; Quan, Q.; Congreve, D. N. Joule 2018, 2, 2421. doi: 10.1016/j.joule.2018.08.005  doi: 10.1016/j.joule.2018.08.005

    37. [37]

      Kumawat, N. K.; Dey, A.; Kumar, A.; Gopinathan, S. P.; Narasimhan, K. L.; Kabra, D. ACS Appl. Mater. Interfaces 2015, 7, 13119. doi: 10.1021/acsami.5b02159  doi: 10.1021/acsami.5b02159

    38. [38]

      Kim, H. P.; Kim, J.; Kim, B. S.; Kim, H. M.; Kim, J.; Yusoff, A. R. B. M.; Jang, J.; Nazeeruddin, M. K. Adv. Opt. Mater. 2017, 5, 1600920. doi: 10.1002/adom.201600920  doi: 10.1002/adom.201600920

    39. [39]

      Cheng, L.; Cao, Y.; Ge, R.; Wei, Y. Q.; Wang, N. N.; Wang, J. P.; Huang, W. Chin. Chem. Lett. 2017, 28, 29. doi: 10.1016/j.cclet.2016.07.001  doi: 10.1016/j.cclet.2016.07.001

    40. [40]

      Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; Wang, P.; Zhang, L.; Yin, Z.; You, J. Nat. Commun. 2018, 9, 570. doi: 10.1038/s41467-018-02978-7  doi: 10.1038/s41467-018-02978-7

    41. [41]

      Xing, J.; Zhao, Y.; Askerka, M.; Quan, L. N.; Gong, X.; Zhao, W.; Zhao, J.; Tan, H.; Long, G.; Gao, L.; et al. Nat. Commun. 2018, 9, 3541. doi: 10.1038/s41467-018-05909-8  doi: 10.1038/s41467-018-05909-8

    42. [42]

      Li, Z.; Chen, Z.; Yang, Y.; Xue, Q.; Yip, H. L.; Cao, Y. Nat. Commun. 2019, 10, 1027. doi: 10.1038/s41467-019-09011-5  doi: 10.1038/s41467-019-09011-5

    43. [43]

      Wang, Q.; Wang, X.; Yang, Z.; Zhou, N.; Deng, Y.; Zhao, J.; Xiao, X.; Rudd, P.; Moran, A.; Yan, Y.; Huang, J. Nat. Commun. 2019, 10, 5633. doi: 10.1038/s41467-019-13580-w  doi: 10.1038/s41467-019-13580-w

    44. [44]

      Chu, Z.; Zhao, Y.; Ma, F.; Zhang, C. X.; Deng, H.; Gao, F.; Ye, Q.; Meng, J.; Yin, Z.; Zhang, X.; You, J. Nat. Commun. 2020, 11, 4165. doi: 10.1038/s41467-020-17943-6  doi: 10.1038/s41467-020-17943-6

    45. [45]

      Liu, Y.; Cui, J.; Du, K.; Tian, H.; He, Z.; Zhou, Q.; Yang, Z.; Deng, Y.; Chen, D.; Zuo, X.; et al. Nat. Photonics 2019, 13, 760. doi: 10.1038/s41566-019-0505-4  doi: 10.1038/s41566-019-0505-4

    46. [46]

      Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; et al. Adv. Mater. 2016, 28, 8718. doi: 10.1002/adma.201600784  doi: 10.1002/adma.201600784

    47. [47]

      Comin, R.; Walters, G.; Thibau, E. S.; Voznyy, O.; Lu, Z. H.; Sargent, E. H. J. Mater. Chem. C 2015, 3, 8839. doi: 10.1039/c5tc01718a  doi: 10.1039/c5tc01718a

    48. [48]

      Wang, H.; Zhao, X.; Zhang, B.; Xie, Z. J. Mater. Chem. C 2019, 7, 5596. doi: 10.1039/c9tc01205b  doi: 10.1039/c9tc01205b

    49. [49]

      Yantara, N.; Jamaludin, N. F.; Febriansyah, B.; Giovanni, D.; Bruno, A.; Soci, C.; Sum, T. C.; Mhaisalkar, S.; Mathews, N. ACS Energy Lett. 2020, 5, 1593. doi: 10.1021/acsenergylett.0c00559  doi: 10.1021/acsenergylett.0c00559

    50. [50]

      Yuan, S.; Wang, Z. K.; Xiao, L. X.; Zhang, C. F.; Yang, S. Y.; Chen, B. B.; Ge, H. T.; Tian, Q. S.; Jin, Y.; Liao, L. S. Adv. Mater. 2019, 31, 1904319. doi: 10.1002/adma.201904319  doi: 10.1002/adma.201904319

    51. [51]

      Pang, P.; Jin, G.; Liang, C.; Wang, B.; Xiang, W.; Zhang, D.; Xu, J.; Hong, W.; Xiao, Z.; Wang, L.; X et al. ACS Nano 2020, 14, 11420. doi: 10.1021/acsnano.0c03765  doi: 10.1021/acsnano.0c03765

    52. [52]

      Meng, F.; Liu, X.; Cai, X.; Gong, Z.; Li, B.; Xie, W.; Li, M.; Chen, D.; Yip, H. L.; Su, S. J. Nanoscale 2019, 11, 1295. doi: 10.1039/c8nr07907b  doi: 10.1039/c8nr07907b

    53. [53]

      Pan, G.; Bai, X.; Xu, W.; Chen, X.; Zhai, Y.; Zhu, J.; Shao, H.; Ding, N.; Xu, L.; Dong, B.; et al. ACS Appl. Mater. Interfaces 2020, 12, 14195. doi: 10.1021/acsami.0c01074  doi: 10.1021/acsami.0c01074

    54. [54]

      Zheng, X.; Yuan, S.; Liu, J.; Yin, J.; Yuan, F.; Shen, W. S.; Yao, K.; Wei, M.; Zhou, C.; et al. ACS Energy Lett. 2020, 5, 793. doi: 10.1021/acsenergylett.0c00057  doi: 10.1021/acsenergylett.0c00057

    55. [55]

      Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L. Z.; Gödel, K. C.; Bein, T.; Docampo, P.; et al. Nano Lett. 2015, 15, 6095. doi: 10.1021/acs.nanolett.5b02369  doi: 10.1021/acs.nanolett.5b02369

    56. [56]

      Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W.; Alivisatos, A. P. J. Am. Chem. Soc. 2018, 140, 17760. doi: 10.1021/jacs.8b11035  doi: 10.1021/jacs.8b11035

    57. [57]

      Congreve, D. N.; Weidman, M. C.; Seitz, M.; Paritmongkol, W.; Dahod, N. S.; Tisdale, W. A. ACS Photonics 2017, 4, 476. doi: 10.1021/acsphotonics.6b00963  doi: 10.1021/acsphotonics.6b00963

    58. [58]

      Ishihara, T.; Hong, X.; Ding, J.; Nurmikko, A. V. Surf. Sci. 1992, 267, 323. doi: 10.1016/0039-6028(92)91147-4  doi: 10.1016/0039-6028(92)91147-4

    59. [59]

      Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Adv. Mater. 2015, 27, 7162. doi: 10.1002/adma.201502567  doi: 10.1002/adma.201502567

    60. [60]

      Wang, S.; Bi, C.; Yuan, J.; Zhang, L.; Tian, J. ACS Energy Lett. 2017, 3, 245. doi: 10.1021/acsenergylett.7b01243  doi: 10.1021/acsenergylett.7b01243

    61. [61]

      Wu, Y.; Wei, C.; Li, X.; Li, Y.; Qiu, S.; Shen, W.; Cai, B.; Sun, Z.; Yang, D.; Deng, Z.; Zeng, H. ACS Energy Lett. 2018, 3, 2030. doi: 10.1021/acsenergylett.8b01025  doi: 10.1021/acsenergylett.8b01025

    62. [62]

      Zhang, B. B.; Yuan, S.; Ma, J. P.; Zhou, Y.; Hou, J.; Chen, X.; Zheng, W.; Shen, H.; Wang, X. C.; Sun, B.; et al. J. Am. Chem. Soc. 2019, 141, 15423.doi: 10.1021/jacs.9b08140  doi: 10.1021/jacs.9b08140

    63. [63]

      Yao, J.; Wang, L.; Wang, K.; Yin, Y.; Yang, J.; Zhang, Q.; Yao, H. Sci. Bull. 2020, 65, 1150. doi: :10.1016/j.scib.2020.03.036

    64. [64]

      Gangishetty, M. K.; Hou, S.; Quan, Q.; Congreve, D. N. Adv. Mater. 2018, 30, 1706226. doi: 10.1002/adma.201706226  doi: 10.1002/adma.201706226

    65. [65]

      Wang, Y. N.; Ma, P.; Peng, L. M.; Zhang, D.; Fang, Y. Y.; Zhou, X. W.; Lin, Y. Acta Phys. -Chim. Sin. 2017, 33, 2099.  doi: 10.3866/PKU.WHXB201705115

    66. [66]

      Luo, C.; Li, W.; Xiong, D.; Fu, J.; Yang, W. Nanoscale 2019, 11, 15206. doi: 10.1039/c9nr05217h  doi: 10.1039/c9nr05217h

    67. [67]

      Shao, H.; Zhai, Y.; Wu, X.; Xu, W.; Xu, L.; Dong, B.; Bai, X.; Cui, H.; Song, H. Nanoscale 2020, 12, 11728. doi: 10.1039/d0nr02597f  doi: 10.1039/d0nr02597f

    68. [68]

      Zirak, M.; Moyen, E.; Alehdaghi, H.; Kanwat, A.; Choi, W. C.; Jang, J. ACS Appl. Nano Mater. 2019, 2, 5655. doi: 10.1021/acsanm.9b01187  doi: 10.1021/acsanm.9b01187

    69. [69]

      Zhang, X.; Han, D. B.; Chen, X. M.; Chen, Y.; Chang, S.; Zhong, H. Z. Acta Phys. -Chim. Sin. 2021, 37, 2008055.  doi: 10.3866/PKU.WHXB202008055

    70. [70]

      Ten Brinck, S.; Infante, I. ACS Energy Lett. 2016, 1, 1266. doi: 10.1021/acsenergylett.6b00595  doi: 10.1021/acsenergylett.6b00595

    71. [71]

      Ohmann, R.; Ono, L. K.; Kim, H. S.; Lin, H.; Lee, M. V.; Li, Y.; Park, N. G.; Qi, Y. J. Am. Chem. Soc. 2015, 137, 16049. doi: 10.1021/jacs.5b08227  doi: 10.1021/jacs.5b08227

    72. [72]

      Huang, X.; Paudel, T. R.; Dowben, P. A.; Dong, S.; Tsymbal, E. Y. Phys. Rev. B 2016, 94, 195309. doi: 10.1103/PhysRevB.94.195309  doi: 10.1103/PhysRevB.94.195309

    73. [73]

      Han, G.; Koh, T. M.; Lim, S. S.; Goh, T. W.; Guo, X.; Leow, S. W.; Begum, R.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. ACS Appl. Mater. Interfaces 2017, 9, 21292. doi: 10.1021/acsami.7b05133  doi: 10.1021/acsami.7b05133

    74. [74]

      Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J.; Sinatra, L.; Alyami, N.; Zhao, C.; et al. 2021, 37, J. Phys. Chem. Lett. 2015, 6, 5027. doi: 10.1021/acs.jpclett.5b02460

    75. [75]

      Tan, Y.; Zou, Y.; Wu, L.; Huang, Q.; Yang, D.; Chen, M.; Ban, M.; Wu, C.; Wu, T.; Bai, S.; et al. ACS Appl. Mater. Interfaces 2018, 10, 3784. doi: 10.1021/acsami.7b17166  doi: 10.1021/acsami.7b17166

    76. [76]

      Ahmed, G. H.; El-Demellawi, J. K.; Yin, J.; Pan, J.; Velusamy, D. B.; Hedhili, M. N.; Alarousu, E.; Bakr, O. M.; Alshareef, H. N.; Mohammed, O. F. ACS Energy Lett. 2018, 3, 2301. doi: 10.1021/acsenergylett.8b01441  doi: 10.1021/acsenergylett.8b01441

    77. [77]

      Yong, Z. J.; Guo, S. Q.; Ma, J. P.; Zhang, J. Y.; Li, Z. Y.; Chen, Y. M.; Zhang, B. B.; Zhou, Y.; Shu, J.; Gu, J. L.; et al. J. Am. Chem. Soc. 2018, 140, 9942. doi: 10.1021/jacs.8b04763  doi: 10.1021/jacs.8b04763

    78. [78]

      Luo, C.; Yan, C.; Li, W.; Chun, F.; Xie, M.; Zhu, Z.; Gao, Y.; Guo, B.; Yang, W. Adv. Funct. Mater. 2020, 30, 2000026. doi: 10.1002/adfm.202000026  doi: 10.1002/adfm.202000026

    79. [79]

      Cho, H.; Kim, Y. H.; Wolf, C.; Lee, H. D.; Lee, T. W. Adv. Mater. 2018, 30, e1704587. doi: 10.1002/adma.201704587  doi: 10.1002/adma.201704587

    80. [80]

      Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. J. Phys. Chem. Lett. 2016, 7, 1368. doi: 10.1021/acs.jpclett.6b00433  doi: 10.1021/acs.jpclett.6b00433

    81. [81]

      Yoon, S. J.; Kuno, M.; Kamat, P. V. ACS Energy Lett. 2017, 2, 1507. doi: 10.1021/acsenergylett.7b00357  doi: 10.1021/acsenergylett.7b00357

    82. [82]

      Chiba, T.; Ishikawa, S.; Sato, J.; Takahashi, Y.; Ebe, H.; Ohisa, S.; Kido, J. Adv. Opt. Mater. 2020, 8, 2000289. doi: 10.1002/adom.202000289  doi: 10.1002/adom.202000289

    83. [83]

      Yao, E. P.; Yang, Z.; Meng, L.; Sun, P.; Dong, S.; Yang, Y.; Yang, Y. Adv. Mater. 2017, 29, 1606859. doi: 10.1002/adma.201606859  doi: 10.1002/adma.201606859

    84. [84]

      Zhang, X.; Liu, H.; Wang, W.; Zhang, J.; Xu, B.; Karen, K. L.; Zheng, Y.; Liu, S.; Chen, S.; Wang, K.; Sun, X. W. Adv. Mater. 2017, 29, 1606405. doi: 10.1002/adma.201606405  doi: 10.1002/adma.201606405

    85. [85]

      Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; Chen, X. J. Am. Chem. Soc. 2017, 139, 11443. doi: 10.1021/jacs.7b04000  doi: 10.1021/jacs.7b04000

    86. [86]

      Shi, Z.; Li, Y.; Zhang, Y.; Chen, Y.; Li, X.; Wu, D.; Xu, T.; Shan, C.; Du, G. Nano Lett. 2017, 17, 313. doi: 10.1021/acs.nanolett.6b04116  doi: 10.1021/acs.nanolett.6b04116

    87. [87]

      Shan, Q.; Li, J.; Song, J.; Zou, Y.; Xu, L.; Xue, J.; Dong, Y.; Huo, C.; Chen, J.; Han, B.; Zeng, H. J. Mater. Chem. C. 2017, 5, 4565. doi: 10.1039/c6tc05578h  doi: 10.1039/c6tc05578h

    88. [88]

      Cheng, T.; Tumen-Ulzii, G.; Klotz, D.; Watanabe, S.; Matsushima, T.; Adachi, C. ACS Appl. Mater. Interfaces 2020, 12, 33004. doi: 10.1021/acsami.0c06737  doi: 10.1021/acsami.0c06737

    89. [89]

      Yusoff, A. R. B. M.; Gavim, A. E. X.; Macedo, A. G.; da Silva, W. J.; Schneider, F. K.; Teridi, M. A. M. Mater. Today Chem. 2018, 10, 104. doi: 10.1016/j.mtchem.2018.08.005  doi: 10.1016/j.mtchem.2018.08.005

    90. [90]

      Vashishtha, P.; Ng, M.; Shivarudraiah, S. B.; Halpert, J. E. Chem. Mater. 2019, 31, 83. doi: 10.1021/acs.chemmater.8b02999  doi: 10.1021/acs.chemmater.8b02999

    91. [91]

      Wang, F.; Wang, Z.; Sun, W.; Wang, Z.; Bai, Y.; Hayat, T.; Alsaedi, A.; Tan, Z. Small 2020, 16, e2002940. doi: 10.1002/smll.202002940  doi: 10.1002/smll.202002940

    92. [92]

      Zhang, F.; Cai, B.; Song, J.; Han, B.; Zhang, B.; Zeng, H. Adv. Funct. Mater. 2020, 30, 2001732. doi: 10.1002/adfm.202001732  doi: 10.1002/adfm.202001732

    93. [93]

      Jiang, Y.; Qin, C.; Cui, M.; He, T.; Liu, K.; Huang, Y.; Luo, M.; Zhang, L.; Xu, H.; Li, S.; et al. Nat Commun 2019, 10, 1868. doi: 10.1038/s41467-019-09794-7  doi: 10.1038/s41467-019-09794-7

    94. [94]

      Ren, Z.; Xiao, X.; Ma, R.; Lin, H.; Wang, K.; Sun, X. W.; Choy, W. C. H. Adv. Funct. Mater. 2019, 29, 1905339. doi: 10.1002/adfm.201905339  doi: 10.1002/adfm.201905339

    95. [95]

      Wang, Q.; Ren, J.; Peng, X. F.; Ji, X. X.; Yang, X. H. ACS Appl. Mater. Interfaces 2017, 9, 29901. doi: 10.1021/acsami.7b07458  doi: 10.1021/acsami.7b07458

    96. [96]

      Yang, F.; Chen, H.; Zhang, R.; Liu, X.; Zhang, W.; Zhang, J.; Gao, F.; Wang, L. Adv. Funct. Mater. 2020, 30, 1908760. doi: 10.1002/adfm.201908760  doi: 10.1002/adfm.201908760

    97. [97]

      Yassitepe, E.; Yang, Z.; Voznyy, O.; Kim, Y.; Walters, G.; Castañeda, J. A.; Kanjanaboos, P.; Yuan, M.; Gong, X.; Fan, F.; et al. Adv. Funct. Mater. 2016, 26, 8757. doi: 10.1002/adfm.201604580  doi: 10.1002/adfm.201604580

    98. [98]

      Deng, W.; Xu, X.; Zhang, X.; Zhang, Y.; Jin, X.; Wang, L.; Lee, S. T.; Jie, J. Adv. Funct. Mater. 2016, 26, 4797. doi: 10.1002/adfm.201601054  doi: 10.1002/adfm.201601054

    99. [99]

      Tan, Z.; Luo, J.; Yang, L.; Li, X.; Deng, Z.; Gao, L.; Chen, H.; Li, J.; Du, P.; Niu, G.; Tang, J. Adv. Opt. Mater. 2019, 8, 1901094. doi: 10.1002/adom.201901094  doi: 10.1002/adom.201901094

    100. [100]

      Hu, H.; Salim, T.; Chen, B.; Lam, Y. M. Sci. Rep. 2016, 6, 33546. doi: 10.1038/srep33546  doi: 10.1038/srep33546

    101. [101]

      Kumar, S.; Jagielski, J.; Yakunin, S.; Rice, P.; Chiu, Y. C.; Wang, M.; Nedelcu, G.; Kim, Y.; Lin, S.; Santos, E. J. G.; et al. ACS Nano 2016, 10, 9720. doi: 10.1021/acsnano.6b05775  doi: 10.1021/acsnano.6b05775

    102. [102]

      Ochsenbein, S. T.; Krieg, F.; Shynkarenko, Y.; Raino, G.; Kovalenko, M. V. ACS Appl. Mater. Interfaces 2019, 11, 21655. doi: 10.1021/acsami.9b02472  doi: 10.1021/acsami.9b02472

    103. [103]

      Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Doblinger, M.; Wang, K.; Hoye, R. L. Z.; Muller-Buschbaum, P.; Stranks, S. D.; Urban, A. S.; et al. Nano Lett. 2018, 18, 5231. doi: 10.1021/acs.nanolett.8b02190  doi: 10.1021/acs.nanolett.8b02190

    104. [104]

      Ren, Z.; Li, L.; Yu, J.; Ma, R.; Xiao, X.; Chen, R.; Wang, K.; Sun, X. W.; Yin, W. J.; Choy, W. C. H. ACS Energy Lett. 2020, 5, 2569. doi: 10.1021/acsenergylett.0c01015  doi: 10.1021/acsenergylett.0c01015

    105. [105]

      Todorović, P.; Ma, D.; Chen, B.; Quintero-Bermudez, R.; Saidaminov, M. I.; Dong, Y.; Lu, Z. H.; Sargent, E. H. Adv. Opt. Mater. 2019, 7, 1901440. doi: 10.1002/adom.201901440  doi: 10.1002/adom.201901440

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    6. [6]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    7. [7]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    8. [8]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    9. [9]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    12. [12]

      Sunting Xuan Hang Shen Xin Wang . Discussion on the Current Situation and Strategies for Academic Master’s Education in Chemistry. University Chemistry, 2024, 39(6): 37-41. doi: 10.3866/PKU.DXHX202401013

    13. [13]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(40)
  • Abstract views(1828)
  • HTML views(407)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return