Citation: Ji Jun, Liu Xin, Huang Hao, Jiang Haoran, Duan Mingjun, Liu Benyu, Cui Peng, Li Yingfeng, Li Meicheng. Recent Progress on Perovskite Homojunction Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200809. doi: 10.3866/PKU.WHXB202008095 shu

Recent Progress on Perovskite Homojunction Solar Cells

  • Corresponding author: Li Meicheng, mcli@ncepu.edu.cn
  • These authors contribute equally to this work.
  • Received Date: 31 August 2020
    Revised Date: 25 September 2020
    Accepted Date: 25 September 2020
    Available Online: 16 October 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (51772096, 51972110), the Beijing Science and Technology Project (Z181100005118002), the Par-Eu Scholars Program, the Science and Technology Beijing 100 Leading Talent Training Project, the Fundamental Research Funds for the Central Universities (2017ZZD02, 2019QN060) and the NCEPU "Double First-Class" Graduate Talent Cultivation Programthe National Natural Science Foundation of China 51772096the Fundamental Research Funds for the Central Universities 2019QN060the Fundamental Research Funds for the Central Universities 2017ZZD02the Beijing Science and Technology Project Z181100005118002the National Natural Science Foundation of China 51972110

  • Perovskite solar cell is a star of the new generation of photovoltaic technology with the greatest application potential due to its simple preparation process and rapid efficiency improvement. At present, the mainstream perovskite solar cell adopts p-i-n structure, using carrier transport materials to extract electrons and holes respectively, so as to realize electric energy output. However, the dependence of traditional p-i-n perovskite solar cell on electron transport layer and hole transport layer makes it not a cost-effective cell, and greatly increases the risk of device stability. Therefore, the design and preparation of perovskite p-n homojunction to realize carrier separation and transmission is considered as an important direction of structural innovation. In recent years, it has been reported frequently that perovskite photoelectric materials exhibit flexible conductivity from p-type, intrinsic to n-type depending on self-doping or external impurities doping. Furthermore, the perovskite p-n homojunction has been developed by a combined deposition method, which provide the possibility for designing and preparing perovskite homojunction solar cells (PHSCs). PHSCs abandon the traditional electron transport layer and hole transport layer, simplifying the device structure. It can not only improve the working stability and reduce the production cost, but also further release the application potential of perovskite solar cells in the field of flexibility and translucency, which can promote the practical popularization of perovskite solar cells. Nevertheless, the PHSCs is still in its infancy, and there are many technical problems to be solved which restrict its efficiency and stability improvement as well as its scale and industrial production. Firstly, the doping degree of perovskite materials should be further increased for high efficiency perovskite homojunction. It means that more accurate self-doping method and exogenous doping processes for heavy doping perovskite need to be developed. Secondly, the stability of the perovskite homojunction should be enhanced to promote the practical application, which requires us to start with the three aspects of inhibiting perovskite decomposition, blocking ion migration, and developing the supporting encapsulation technology to carry out relevant research programs. Thirdly, it is an important task for the industrialization of PHSCs to realize the large-scale preparation through combined deposition method, preservation transfer of perovskite films or superficial doping technology. In this paper, the research progress of PHSCs is reviewed in terms of p-type/n-type doping process and perovskite homojunction. The basic structure, working principle and existing technical problems of PHSCs are discussed in detail. This work has wide ranging impacts beyond solar cells, including emerging applications in light emission, photoelectric detector and neuromorphic computing.
  • 加载中
    1. [1]

      https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200803.pdf (accessed Aug 9, 2020).

    2. [2]

      Giordano, F.; Abate, A.; Correa Baena, J. P.; Saliba, M.; Matsui, T.; Im, S. H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Hagfeldt, A.; Graetzel, M. Nat. Commun. 2016, 7, 10379. doi: 10.1038/ncomms10379  doi: 10.1038/ncomms10379

    3. [3]

      Wei, D.; Ji, J.; Song, D.; Li, M.; Cui, P.; Li, Y.; Mbengue, J. M.; Zhou, W.; Ning, Z.; Park, N. G. J. Mater. Chem. A 2017, 5, 1406. doi: 10.1039/C6TA10418E  doi: 10.1039/C6TA10418E

    4. [4]

      Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Nat. Energy 2016, 2, 16177. doi: 10.1038/nenergy.2016.177  doi: 10.1038/nenergy.2016.177

    5. [5]

      Huang, H.; Liu, X.; Duan, M.; Ji, J.; Jiang, H.; Liu, B.; Sajid, S.; Cui, P.; Wei, D.; Li, Y.; Li, M. ACS Appl. Energy Mater. 2020, 3, 5039. doi: 10.1021/acsaem.0c00563  doi: 10.1021/acsaem.0c00563

    6. [6]

      Han, J.; Kwon, H.; Kim, E.; Kim, D. W.; Son, H. J.; Kim, D. H. J. Mater. Chem. A 2020, 8, 2105. doi: 10.1039/C9TA12750J  doi: 10.1039/C9TA12750J

    7. [7]

      Jeng, J. Y.; Chen, K. C.; Chiang, T. Y.; Lin, P. Y.; Tsai, T. D.; Chang, Y. C.; Guo, T. F.; Chen, P.; Wen, T. C.; Hsu, Y. J. Adv. Mater. 2014, 26, 4107. doi: 10.1002/adma.201306217  doi: 10.1002/adma.201306217

    8. [8]

      Liu, B.; Cui, R.; Huang, H.; Guo, X.; Dong, J.; Yao, H.; Li, Y.; Zhao, D.; Wang, J.; Zhang, J.; Chen, Y.; Sun, B. J. Mater. Chem. A 2020, 8, 3145. doi: 10.1039/C9TA10763K  doi: 10.1039/C9TA10763K

    9. [9]

      Liu, Q.; Fan, L.; Zhang, Q. E.; Zhou, A. A.; Wang, B.; Bai, H.; Tian, Q.; Fan, B.; Zhang, T. ChemSusChem 2017, 10, 3098. doi: 10.1002/cssc.201700872  doi: 10.1002/cssc.201700872

    10. [10]

      Yoo, J. J.; Wieghold, S.; Sponseller, M. C.; Chua, M. R.; Bertram, S. N.; Hartono, N. T. P.; Tresback, J. S.; Hansen, E. C.; Correa-Baena, J. P.; Bulović, V.; et al. Energ. Environ. Sci. 2019, 12, 2192. doi: 10.1039/C9EE00751B  doi: 10.1039/C9EE00751B

    11. [11]

      Kim, Y.; Jung, E. H.; Kim, G.; Kim, D.; Kim, B. J.; Seo, J. Adv. Energy Mater. 2018, 8, 1801668. doi: 10.1002/aenm.201801668  doi: 10.1002/aenm.201801668

    12. [12]

      Zhao, X.; Chen, J.; Park, N. G. Sol. RRL 2019, 3, 1800339. doi: 10.1002/solr.201800339  doi: 10.1002/solr.201800339

    13. [13]

      Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4, 2885. doi: 10.1038/ncomms3885  doi: 10.1038/ncomms3885

    14. [14]

      Ji, J.; Liu, X.; Jiang, H.; Duan, M.; Liu, B.; Huang, H.; Wei, D.; Li, Y.; Li, M. iScience 2020, 23, 101013. doi: 10.1016/j.isci.2020.101013  doi: 10.1016/j.isci.2020.101013

    15. [15]

      Divitini, G.; Cacovich, S.; Matteocci, F.; Cinà, L.; Di Carlo, A.; Ducati, C. Nat. Energy 2016, 1, 15012. doi: 10.1038/nenergy.2015.12  doi: 10.1038/nenergy.2015.12

    16. [16]

      Luo, J.; Jia, C.; Wan, Z.; Han, F.; Zhao, B.; Wang, R. J. Power Sources 2017, 342, 886. doi: 10.1016/j.jpowsour.2017.01.010  doi: 10.1016/j.jpowsour.2017.01.010

    17. [17]

      Lu, Y.; Ge, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2021, 37, 2007088.  doi: 10.3866/PKU.WHXB202007088

    18. [18]

      Ge, Y.; Mu, X. L.; Lu, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039.  doi: 10.3866/PKU.WHXB201905039

    19. [19]

      Poorkazem, K.; Liu, D.; Kelly, T. L. J. Mater. Chem. A 2015, 3, 9241. doi: 10.1039/C5TA00084J  doi: 10.1039/C5TA00084J

    20. [20]

      Ahn, S. M.; Jung, E. D.; Kim, S. H.; Kim, H.; Lee, S.; Song, M. H.; Kim, J. Y. Nano Lett. 2019, 19, 3707. doi: 10.1021/acs.nanolett.9b00796  doi: 10.1021/acs.nanolett.9b00796

    21. [21]

      You, P.; Liu, Z.; Tai, Q.; Liu, S.; Yan, F. Adv. Mater. 2015, 27, 3632. doi: 10.1002/adma.201501145  doi: 10.1002/adma.201501145

    22. [22]

      Ou, X. L.; Feng, J.; Xu, M.; Sun, H. B. Opt. Lett. 2017, 42, 1958. doi: 10.1364/OL.42.001958  doi: 10.1364/OL.42.001958

    23. [23]

      Wang, Q.; Shao, Y.; Xie, H.; Lyu, L.; Liu, X.; Gao, Y.; Huang, J. Appl. Phys. Lett. 2014, 105, 163508. doi: 10.1063/1.4899051  doi: 10.1063/1.4899051

    24. [24]

      Cui, P.; Wei, D.; Ji, J.; Song, D.; Li, Y.; Liu, X.; Huang, J.; Wang, T.; You, J.; Li, M. Sol. RRL 2017, 1, 1600027. doi: 10.1002/solr.201600027  doi: 10.1002/solr.201600027

    25. [25]

      Semonin, O. E.; Elbaz, G. A.; Straus, D. B.; Hull, T. D.; Paley, D. W.; Van der Zande, A. M.; Hone, J. C.; Kymissis, I.; Kagan, C. R.; Roy, X.; Owen, J. S. J. Phys. Chem. Lett. 2017, 8, 6092. doi: 10.1021/acs.jpclett.7b03064  doi: 10.1021/acs.jpclett.7b03064

    26. [26]

      Shi, T.; Yin, W. J.; Hong, F.; Zhu, K.; Yan, Y. Appl. Phys. Lett. 2015, 106, 103902. doi: 10.1063/1.4914544  doi: 10.1063/1.4914544

    27. [27]

      Song, S.; Moon, B. J.; Hörantner, M. T.; Lim, J.; Kang, G.; Park, M.; Kim, J. Y.; Snaith, H. J.; Park, T. Nano Energy 2016, 28, 269. doi: 10.1016/j.nanoen.2016.06.046  doi: 10.1016/j.nanoen.2016.06.046

    28. [28]

      Bin, Z.; Li, J.; Wang, L.; Duan, L. Energ Environ. Sci. 2016, 9, 3424. doi: 10.1039/C6EE01987K  doi: 10.1039/C6EE01987K

    29. [29]

      Zhang, J.; Shang, M. H.; Wang, P.; Huang, X.; Xu, J.; Hu, Z.; Zhu, Y.; Han, L. ACS Energy Lett. 2016, 1, 535. doi: 10.1021/acsenergylett.6b00241  doi: 10.1021/acsenergylett.6b00241

    30. [30]

      Cui, P.; Wei, D.; Ji, J.; Huang, H.; Jia, E.; Dou, S.; Wang, T.; Wang, W.; Li, M. Nat. Energy 2019, 4, 150. doi: 10.1038/s41560-018-0324-8  doi: 10.1038/s41560-018-0324-8

    31. [31]

      Ralaiarisoa, M.; Busby, Y.; Frisch, J.; Salzmann, I.; Pireaux, J. J.; Koch, N. Phys. Chem. Chem. Phys. 2017, 19, 828. doi: 10.1039/C6CP06347K  doi: 10.1039/C6CP06347K

    32. [32]

      Frolova, L. A.; Dremova, N. N.; Troshin, P. A. Chem. Commun. 2015, 51, 14917. doi: 10.1039/C5CC05205J  doi: 10.1039/C5CC05205J

    33. [33]

      Naikaew, A.; Prajongtat, P.; Lux-Steiner, M. C.; Arunchaiya, M.; Dittrich, T. Appl. Phys. Lett. 2015, 106, 232104. doi: 10.1063/1.4922554  doi: 10.1063/1.4922554

    34. [34]

      Yin, W. J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903. doi: 10.1063/1.4864778  doi: 10.1063/1.4864778

    35. [35]

      Shi, T.; Yin, W. J.; Yan, Y. J. Phys. Chem. C 2014, 118, 25350. doi: 10.1021/jp508328u  doi: 10.1021/jp508328u

    36. [36]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x  doi: 10.1021/ic401215x

    37. [37]

      Liu, Q.; Hsiao, Y. C.; Ahmadi, M.; Wu, T.; Liu, L.; Haacke, S.; Wang, H.; Hu, B. Org. Electron. 2016, 35, 216. doi: 10.1016/j.orgel.2016.05.025  doi: 10.1016/j.orgel.2016.05.025

    38. [38]

      Xiong, S.; Zhu, M. Solar cell foundation and application, 2nd Ed.; Science Press: Beijing, 2009; pp. 43-132.

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(14)
  • Abstract views(288)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return