Citation: Zheng Guorui, Xiang Yuxuan, Yang Yong. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200809. doi: 10.3866/PKU.WHXB202008094 shu

Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes

  • Corresponding author: Yang Yong, yyang@xmu.edu.cn
  • Received Date: 31 August 2020
    Revised Date: 21 September 2020
    Accepted Date: 22 September 2020
    Available Online: 19 October 2020

    Fund Project: the National Natural Science Foundation of China 21935009the National Key Research and Development Program of China 2018YFB0905400The project was supported by the National Natural Science Foundation of China (21935009) and the National Key Research and Development Program of China (2018YFB0905400)

  • The attention towards lithium (Li) metal anode (LMA) has been rekindled in recent years as it can augment the energy density of Li batteries due to its high theoretical specific capacity (3860 mAh·g-1) and low electrochemical potential (-3.04 V versus standard hydrogen electrode), especially when paired with Li-free cathodes such as Li-oxygen and Li-sulfur. However, severe interfacial instability and safety concerns on rechargeable LMA, associated with Li dendrite formation, continuous side reactions, and infinite volume changes, extremely hinder its commercialization. Numerous strategies have been employed to modify LMA for realizing a uniform distribution of the Li ion flux through interface and dendrite-free Li deposits during repeated Li plating/stripping, which leads to a better cycling performance; however, to the best of our knowledge, a clear understanding of the Li deposition/dissolution behavior and the nucleation growth mechanism of Li dendrites is still lacking, which is conducive to more efficient modification studies on LMA. Therefore, it is critical to achieve considerable progress in the development of advanced characterization techniques. However, the high reactivity of Li metal, which leads to complexity of products and diversity in morphology, causes many difficulties in the characterization of in situ spectroscopy. Recently, some promising characterization techniques have been introduced to further investigate the evolution of LMA during cycling, such as cryo-electron microscopy, solid-state nuclear magnetic resonance technology, and neutron depth profiling (NDP) technique. Because of its high-penetration characteristics, quantitative and nondestructive merits, and highly selective sensitivity to 6Li via the capture reaction with neutrons, the NDP technique shows a broad application prospect for obtaining real-time information of the electrochemical behavior of Li in Li metal batteries. The NDP results contain a wealth of information about time and space for Li. Accordingly, not only can the real-time distribution and migration of Li ions be detected, but also changes in the active sites of Li deposition/dissolution can be analyzed to understand the formation principle of Li dendrites and the failure mechanism of Li metal batteries. In addition, the NDP technique has shown its potential in the diagnosis and prediction of short circuit in Li metal batteries, which is confirmed through voltage curves. This review first briefly introduces the principle of the NDP technique and the methods for improving its space/time resolution; second, it summarizes the recent use of the NDP technique in the research on LMAs based on liquid or solid cell systems. Finally, it provides a prospect for the future development of NDP technique.
  • 加载中
    1. [1]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    2. [2]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    3. [3]

      Markevich, E.; Salitra, G.; Chesneau, F.; Schmidt, M.; Aurbach, D. ACS Energy Lett. 2017, 2, 1321. doi: 10.1021/acsenergylett.7b00300  doi: 10.1021/acsenergylett.7b00300

    4. [4]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2, 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    5. [5]

      Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y.; Fu, K. K.; Pastel, G.; Lin, C. F.; Mo, Y.; Wachsman, E. D.; Hu, L. Adv. Mater. 2017, 29, 1606042. doi: 10.1002/adma.201606042  doi: 10.1002/adma.201606042

    6. [6]

      Wang, C.; Gong, Y.; Liu, B.; Fu, K.; Yao, Y.; Hitz, E.; Li, Y.; Dai, J.; Xu, S.; Luo, W.; Wachsman, E. D.; Hu, L. Nano Lett. 2017, 17, 565. doi: 10.1021/acs.nanolett.6b04695  doi: 10.1021/acs.nanolett.6b04695

    7. [7]

      Liu, W.; Lin, D.; Pei, A.; Cui, Y. J. Am. Chem. Soc. 2016, 138, 15443. doi: 10.1021/jacs.6b08730  doi: 10.1021/jacs.6b08730

    8. [8]

      Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560, 345. doi: 10.1038/s41586-018-0397-3  doi: 10.1038/s41586-018-0397-3

    9. [9]

      Chang, H. J.; Trease, N. M.; Ilott, A. J.; Zeng, D.; Du, L. S.; Jerschow, A.; Grey, C. P. J. Phys. Chem. C 2015, 119, 16443. doi: 10.1021/acs.jpcc.5b03396  doi: 10.1021/acs.jpcc.5b03396

    10. [10]

      Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. J. Am. Chem. Soc. 2015, 137, 15209. doi: 10.1021/jacs.5b09385  doi: 10.1021/jacs.5b09385

    11. [11]

      Ilott, A. J.; Mohammadi, M.; Chang, H. J.; Grey, C. P.; Jerschow, A. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 10779. doi: 10.1073/pnas.1607903113  doi: 10.1073/pnas.1607903113

    12. [12]

      Lv, S.; Verhallen, T.; Vasileiadis, A.; Ooms, F.; Xu, Y.; Li, Z.; Li, Z.; Wagemaker, M. Nat. Commun. 2018, 9, 2152. doi: 10.1038/s41467-018-04394-3  doi: 10.1038/s41467-018-04394-3

    13. [13]

      Nagpure, S. C.; Downing, R. G.; Bhushan, B.; Babu, S. S.; Cao, L. Electrochim. Acta 2011, 56, 4735. doi: 10.1016/j.electacta.2011.02.037  doi: 10.1016/j.electacta.2011.02.037

    14. [14]

      Wetjen, M.; Trunk, M.; Werner, L.; Gernhäuser, R.; Märkisch, B.; Révay, Z.; Gilles, R.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, A2340. doi: 10.1149/2.1341810jes  doi: 10.1149/2.1341810jes

    15. [15]

      Liu, D. X.; Co, A. C. J. Am. Chem. Soc. 2016, 138, 231. doi: 10.1021/jacs.5b10295  doi: 10.1021/jacs.5b10295

    16. [16]

      Liu, D. X.; Cao, L. R.; Co, A. C. Chem. Mater. 2016, 28, 556. doi: 10.1021/acs.chemmater.5b04039  doi: 10.1021/acs.chemmater.5b04039

    17. [17]

      Yang, Y.; Liu, X.; Dai, Z.; Yuan, F.; Bando, Y.; Golberg, D.; Wang, X. Adv. Mater. 2017, 29. doi: 10.1002/adma.201606922  doi: 10.1002/adma.201606922

    18. [18]

      Tripathi, A. M.; Su, W. N.; Hwang, B. J. Chem. Soc. Rev. 2018, 47, 736. doi: 10.1039/c7cs00180k  doi: 10.1039/c7cs00180k

    19. [19]

      Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 109. doi: 10.6028/jres.098.008  doi: 10.6028/jres.098.008

    20. [20]

      Verhallen, T. W.; Lv, S.; Wagemaker, M. Front. Energy Res. 2018, 6. doi: 10.3389/fenrg.2018.00062  doi: 10.3389/fenrg.2018.00062

    21. [21]

      Oudenhoven, J. F.; Labohm, F.; Mulder, M.; Niessen, R. A.; Mulder, F. M.; Notten, P. H. Adv. Mater. 2011, 23, 4103. doi: 10.1002/adma.201101819  doi: 10.1002/adma.201101819

    22. [22]

      Wilson, W. D.; Haggmark, L. G.; Biersack, J. P. Phys. Rev. B 1977, 15, 2458. doi: 10.1103/PhysRevB.15.2458  doi: 10.1103/PhysRevB.15.2458

    23. [23]

      Ziegler, J. F.; Ziegler, M. D.; Biersack, J. P. Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1818. doi: 10.1016/j.nimb.2010.02.091  doi: 10.1016/j.nimb.2010.02.091

    24. [24]

      Danilov, D. L.; Chen, C.; Jiang, M.; Eichel, R. A.; Notten, P. H. L. Radiat. Eff. Defects Solids 2020, 175, 367. doi: 10.1080/10420150.2019.1701468  doi: 10.1080/10420150.2019.1701468

    25. [25]

      Maki, J. T.; Fleming, R. F.; Vincent, D. H. Nucl. Instrum. Methods Phys. Res. B 1986, 17, 147. doi: 10.1016/0168-583x(86)90077-7  doi: 10.1016/0168-583x(86)90077-7

    26. [26]

      Downing, R. G.; Maki, J. T.; Fleming, R. F. J. Radioanal. Nucl. Chem. 1987, 112, 33. doi: 10.1007/BF02037274  doi: 10.1007/BF02037274

    27. [27]

      Linsenmann, F.; Trunk, M.; Rapp, P.; Werner, L.; Gernhäuser, R.; Gilles, R.; Märkisch, B.; Révay, Z.; Gasteiger, H. A. J. Electrochem. Soc. 2020, 167, 100554. doi: 10.1149/1945-7111/ab9b20  doi: 10.1149/1945-7111/ab9b20

    28. [28]

      Zhang, X.; Verhallen, T. W.; Labohm, F.; Wagemaker, M. Adv. Energy Mater. 2015, 5, 1500498. doi: 10.1002/aenm.201500498  doi: 10.1002/aenm.201500498

    29. [29]

      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    30. [30]

      Jana, A.; García, R. E. Nano Energy 2017, 41, 552. doi: 10.1016/j.nanoen.2017.08.056  doi: 10.1016/j.nanoen.2017.08.056

    31. [31]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. Electrochim. Acta 1998, 43, 1569. doi: 10.1016/S0013-4686(97)10055-X  doi: 10.1016/S0013-4686(97)10055-X

    32. [32]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Electrochem. Soc. 1999, 146, 4393. doi: 10.1149/1.1392649  doi: 10.1149/1.1392649

    33. [33]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Power Sources 1999, 8182, 925. doi: 10.1016/S0378-7753(98)00242-0  doi: 10.1016/S0378-7753(98)00242-0

    34. [34]

      Teyssot, A.; Belhomme, C.; Bouchet, R.; Rosso, M.; Lascaud, S.; Armand, M. J. Electroanal. Chem. 2005, 584, 70. doi: 10.1016/j.jelechem.2005.01.037  doi: 10.1016/j.jelechem.2005.01.037

    35. [35]

      Yin, X.; Tang, W.; Jung, I. D.; Phua, K. C.; Adams, S.; Lee, S. W.; Zheng, G. W. Nano Energy 2018, 50, 659. doi: 10.1016/j.nanoen.2018.06.003  doi: 10.1016/j.nanoen.2018.06.003

    36. [36]

      Thirumalraj, B.; Hagos, T. T.; Huang, C. J.; Teshager, M. A.; Cheng, J. H.; Su, W. N.; Hwang, B. J. J. Am. Chem. Soc. 2019, 141, 18612. doi: 10.1021/jacs.9b10195  doi: 10.1021/jacs.9b10195

    37. [37]

      Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 15109. doi: 10.1002/anie.202002711  doi: 10.1002/anie.202002711

    38. [38]

      Liu, M.; Cheng, Z.; Qian, K.; Verhallen, T.; Wang, C.; Wagemaker, M. Chem. Mater. 2019, 31, 4564. doi: 10.1021/acs.chemmater.9b01325  doi: 10.1021/acs.chemmater.9b01325

    39. [39]

      Zheng, G.; Xiang, Y.; Chen, S.; Ganapathy, S.; Verhallen, T. W.; Liu, M.; Zhong, G.; Zhu, J.; Han, X.; Wang, W.; et al. Energy Storage Mater. 2020, 29, 377. doi: 10.1016/j.ensm.2019.12.027  doi: 10.1016/j.ensm.2019.12.027

    40. [40]

      Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992  doi: 10.1038/ncomms10992

    41. [41]

      Varzi, A.; Raccichini, R.; Passerini, S.; Scrosati, B. J. Mater. Chem. A 2016, 4, 17251. doi: 10.1039/C6TA07384K  doi: 10.1039/C6TA07384K

    42. [42]

      Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K. J. Power Sources 2017, 353, 333. doi: 10.1016/j.jpowsour.2017.04.018  doi: 10.1016/j.jpowsour.2017.04.018

    43. [43]

      Tomandl, I.; Vacik, J.; Kobayashi, T.; Mora Sierra, Y.; Hnatowicz, V.; Lavreniev, V.; Horak, P.; Ceccio, G.; Cannavo, A.; Baba, M.; et al. Radiat. Eff. Defects Solids 2020, 175, 394. doi: 10.1080/10420150.2019.1701471  doi: 10.1080/10420150.2019.1701471

    44. [44]

      Wang, C.; Gong, Y.; Dai, J.; Zhang, L.; Xie, H.; Pastel, G.; Liu, B.; Wachsman, E.; Wang, H.; Hu, L. J. Am. Chem. Soc. 2017, 139, 14257. doi: 10.1021/jacs.7b07904  doi: 10.1021/jacs.7b07904

    45. [45]

      Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X.; et al. Nano Energy 2019, 63, 103895. doi: 10.1016/j.nanoen.2019.103895  doi: 10.1016/j.nanoen.2019.103895

    46. [46]

      Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.; Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2017, 7, 1701003. doi: 10.1002/aenm.201701003  doi: 10.1002/aenm.201701003

    47. [47]

      Ke, X.; Wang, Y.; Dai, L.; Yuan, C. Energy Storage Mater. 2020. doi: 10.1016/j.ensm.2020.07.024  doi: 10.1016/j.ensm.2020.07.024

    48. [48]

      Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    49. [49]

      Ping, W.; Wang, C.; Lin, Z.; Hitz, E.; Yang, C.; Wang, H.; Hu, L. Adv. Energy Mater. 2020, 10, 2000702. doi: 10.1002/aenm.202000702  doi: 10.1002/aenm.202000702

    50. [50]

      Ketzer, B. Nucl. Instrum. Methods Phys. Res. A 2013, 732, 237. doi: 10.1016/j.nima.2013.08.027  doi: 10.1016/j.nima.2013.08.027

  • 加载中
    1. [1]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    2. [2]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(16)
  • Abstract views(1577)
  • HTML views(370)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return