Citation: Qian Huaming, Li Xifei. Progress in Functional Solid Electrolyte Interphases for Boosting Li Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200809. doi: 10.3866/PKU.WHXB202008092 shu

Progress in Functional Solid Electrolyte Interphases for Boosting Li Metal Anode

  • Corresponding author: Li Xifei, xfli2011@hotmail.com
  • Received Date: 31 August 2020
    Revised Date: 25 September 2020
    Available Online: 20 October 2020

    Fund Project: the National Key Research and Development Program of China 2018YFB0105900The project was supported by the National Key Research and Development Program of China (2018YFB0105900)

  • The ever-increasing demand for high-energy Li-ion batteries has acted as a powerful stimulus for the development of Li metal as an anode material. Li metal has long been regarded as a "Holy Grail" in Li-ion batteries due to its high discharge capacity (3860 mAh·g-1) and low electric potential (-3.04 V). However, the formation of unstable solid electrolyte interphases (SEIs) and Li dendrites, as well as the resultant safety issues initiated by catastrophic dendrite growth, have greatly impeded further application. High ion conductivity, surface electron insulation, and favorable mechanical strength are essential properties for an ideal SEI film, which can allow for uniform Li deposition, providing a fast transfer path for Li ions and suppressing Li dendrite growth. Therefore, designing a functional SEI layer is an effective strategy to solve the problems encountered with Li metal anodes. So far, a variety of inorganic, organic, and inorganic/organic hybird SEI layers have been designed and fabricated. Inorganic SEIs are characterized by mechanical strength and ion conductivity; organic SEIs are flexible and have electron insulation properties. Inorganic/organic composite SEIs show favorable ion conductivity derived from the inorganic components, electron insulation properties originating from the organic components, and mechanical strength benefiting from the reinforcing effect between the inorganic and organic components. Oxides, metal sulfides, lithium nitride (Li3N) and its derivates, lithium halide (LiX, X = F, Cl), two-dimensional (2D) layered structure materials, lithium phosphate and "Janus" composite are the representative examples of inorganic SEIs. The design principle of various SEI layers is based on the inhibition of Li dendrite formation and growth. Therefore, it is a prerequisite to better understand the relevant intrinsic mechanisms. Despite past investigations, further studies are still required to fully elucidate the related mechanisms by providing more broadly accepted evidence combined with theoretical calculations and offer reliable guidance for the design of multifunctional SEI layers, boosting the performance of Li metal anodes. In this review, on the basis of the mechanisms underlying Li dendrite formation and growth, strategies for constructing various functional SEI films, highlights in structure and property of the films, and their effects on the performance of Li metal anodes are summarized. Moreover, some challenges encountered with the practical applications of Li metal anodes and the future direction for the development of Li metal anodes are addressed. This review can reveal possible strategies for the commercialization of high-energy, safe and stable Li-ion batteries.
  • 加载中
    1. [1]

      Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Mater. Today 2020, 33, 56. doi: 10.1016/j.mattod.2019.09.018  doi: 10.1016/j.mattod.2019.09.018

    2. [2]

      Liu, J.; Bao, Z. N; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/s41560-019-0338-x  doi: 10.1038/s41560-019-0338-x

    3. [3]

      Adair, K. R.; Iqbal, M.; Wang, C. H.; Zhao, Y.; Banis, M. N.; Li, R. Y.; Zhang, L.; Yang, R.; Lu, S. G.; Sun, X. L. Nano Energy 2018, 54, 375. doi: 10.1016/j.nanoen.2018.10.002  doi: 10.1016/j.nanoen.2018.10.002

    4. [4]

      Chen, L.; Connell, J. G.; Nie, A.; Huang, Z. N.; Zavadil, K. R.; Klavetter, K. C.; Yuan, Y. F.; Sharifi-Asl, S.; Shahbazian-Yassar, R.; Libera, J. A. J. Mater. Chem. A 2017, 5, 12297. doi: 10.1039/C7TA03116E  doi: 10.1039/C7TA03116E

    5. [5]

      Jin, S.; Sun, Z. W.; Guo, Y. L.; Qi, Z. K.; Guo, C. K.; Kong, X. H.; Zhu, Y. W.; Ji, H. X. Adv. Mater. 2017, 29, 1700783. doi: 10.1002/adma.201700783  doi: 10.1002/adma.201700783

    6. [6]

      Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. N.; et al. J. Am. Chem. Soc. 2017, 139, 4815. doi: 10.1021/jacs.6b13314  doi: 10.1021/jacs.6b13314

    7. [7]

      An, Y. L.; Zhang, Z.; Fei, H. F.; Xu, X. Y.; Xiong, S. L.; Feng, J. K.; Ci, L. J. J. Power Sources 2017, 363, 193. doi: 10.1016/j.jpowsour.2017.07.101  doi: 10.1016/j.jpowsour.2017.07.101

    8. [8]

      Wang, M. Q.; Peng, Z.; Luo, W. W.; Zhang, Q.; Li, Z. D.; Zhu, Y.; Lin, H.; Cai, L. T.; Yao, X. Y.; Ouyang, C. Y.; et al. Adv. Sci. 2020, 7, 2000237. doi: 10.1002/advs.202000237  doi: 10.1002/advs.202000237

    9. [9]

      Liu, F. F; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    10. [10]

      Zhang, X.; Yang, Y. A.; Zhou, Z. Chem. Soc. Rev. 2020, 49, 3040. doi: 10.1039/c9cs00838a  doi: 10.1039/c9cs00838a

    11. [11]

      Xie, J.; Lu, Y. C. Nat. Commun. 2020, 11, 2499. doi: 10.1038/s41467-020-16259-9  doi: 10.1038/s41467-020-16259-9

    12. [12]

      Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G. Adv. Sci. 2017, 4, 1600445. doi: 10.1002/advs.201600445  doi: 10.1002/advs.201600445

    13. [13]

      Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. Nat. Energy 2017, 2, 17119. doi: 10.1038/nenergy.2017.119  doi: 10.1038/nenergy.2017.119

    14. [14]

      Lin, D. C; Liu, Y. Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/NNANO.2017.16  doi: 10.1038/NNANO.2017.16

    15. [15]

      Wu, F. X.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. doi: 10.1039/c7cs00863e  doi: 10.1039/c7cs00863e

    16. [16]

      Lee, D.; Sun, S.; Kwon, J.; Park, H.; Jang, M.; Park, E.; Son, B.; Jung, Y.; Song, T.; Paik, U. Adv. Mater. 2020, 32, e1905573. doi: 10.1002/adma.201905573  doi: 10.1002/adma.201905573

    17. [17]

      Zhai, P. B.; Liu, L. X.; Gu, X. K.; Wang, T. S.; Gong, Y. J. Adv. Energy Mater. 2020, 2001257. doi: 10.1002/aenm.202001257  doi: 10.1002/aenm.202001257

    18. [18]

      Kim, M. S.; Ryu, J. H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Cho, W. I. Nat. Energy 2018, 3, 889. doi: 10.1038/s41560-018-0237-6  doi: 10.1038/s41560-018-0237-6

    19. [19]

      Brissot C.; Rosso M.; Chazalviel J. N.; Lascaud S. J. Power Sources 1999, 81-82, 925. doi: 10.1016/S0378-7753(98)00242-0  doi: 10.1016/S0378-7753(98)00242-0

    20. [20]

      Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    21. [21]

      Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 7743. doi: 10.1002/anie.202000375  doi: 10.1002/anie.202000375

    22. [22]

      Peled, E. Golodnitsky, D.; Ardel G. J. Electrochem. Soc. 1997, 144, L208. doi: 10.1149/1.1837858  doi: 10.1149/1.1837858

    23. [23]

      Peled, E.; Menkin, S. J. Electrochem. Soc. 2017, 164, A1703. doi: 10.1149/2.1441707jes  doi: 10.1149/2.1441707jes

    24. [24]

      Yu, X. W.; Manthiram, A. Energy Environ. Sci. 2018, 11, 527. doi: 10.1039/C7EE02555F  doi: 10.1039/C7EE02555F

    25. [25]

      Zhang W. D.; Zhuang. H. L. L.; Fan, L, Gao L. N.; Lu Y. Y. Sci. Adv. 2018, 4, eaar4410. doi: 10.1126/sciadv.aar4410  doi: 10.1126/sciadv.aar4410

    26. [26]

      Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Nat. Energy 2016, 1, 16114. doi: 10.1038/NENERGY.2016.114  doi: 10.1038/NENERGY.2016.114

    27. [27]

      Shi, F. F.; Pei, A.; Boyle, D. T.; Xie, J.; Yu, X. Y.; Zhang, X. K.; Cui, Y. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 8529. doi: 10.1073/pnas.1806878115  doi: 10.1073/pnas.1806878115

    28. [28]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    29. [29]

      Han, B.; Feng, D. Y.; Li, S.; Zhang, Z.; Zou, Y. C.; Gu, M.; Meng, H.; Wang, C. Y.; Xu, K.; Zhao, Y. S.; et al. Nano Lett. 2020, 20, 4029. doi: 10.1021/acs.nanolett.0c01400  doi: 10.1021/acs.nanolett.0c01400

    30. [30]

      Liu, D. H.; Bai, Z. Y.; Li, M.; Yu, A. P.; Luo, D.; Liu, W. W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. W. Chem. Soc. Rev. 2020, 49, 5407. doi: 10.1039/c9cs00636b  doi: 10.1039/c9cs00636b

    31. [31]

      Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Energy Environ. Sci. 2016, 9, 3221. doi: 10.1039/c6ee01674j  doi: 10.1039/c6ee01674j

    32. [32]

      Wang, X. F.; Pawar, G.; Li, Y. J.; Ren, X. D.; Zhang, M. Z.; Lu, B. Y.; Banerjee, A.; Liu, P.; Dufek, E. J.; Zhang, J. G.; et al. Nat. Mater. 2020, 1. doi: 10.1038/s41563-020-0729-1  doi: 10.1038/s41563-020-0729-1

    33. [33]

      Li, Y. B.; Huang, W.; Li, Y. Z.; Chiu, W.; Cui, Y. ACS Nano 2020, 14, 9263. doi: 10.1021/acsnano.0c05020  doi: 10.1021/acsnano.0c05020

    34. [34]

      Wang, X. F.; Zhang, M. H.; Alvarado, J.; Wang, S.; Sina, M.; Lu, B. Y.; Bouwer, J.; Xu, W.; Xiao, J.; Zhang, J. G.; et al. Nano Lett. 2017, 17, 7606. doi: 10.1021/acs.nanolett.7b03606  doi: 10.1021/acs.nanolett.7b03606

    35. [35]

      Zachman, M. J.; Tu, Z. Y.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560, 345. doi: 10.1038/s41586-018-0397-3  doi: 10.1038/s41586-018-0397-3

    36. [36]

      Wang, W. W.; Gu, Y.; Yan, H.; Li, S.; He, J. W.; Xu, H. Y.; Wu, Q. H.; Yan, J. W.; Mao, B. W. Chem 2020, 6, 1. doi: 10.1016/j.chempr.2020.07.014  doi: 10.1016/j.chempr.2020.07.014

    37. [37]

      Zhang, W. D.; Shen, Z.; Li, S. Y.; Fan, L.; Wang, X. Y.; Chen, F.; Zang, X. X.; Wu, T.; Ma, F. Y.; Lu, Y. Y. Adv. Funct. Mater. 2020, 2003800. doi: 10.1002/adfm.202003800  doi: 10.1002/adfm.202003800

    38. [38]

      Zhao, J. M.; Cano, M.; Giner-Casares, J. J.; Luque, R.; Xu, G. B. Energy Environ. Sci. 2020, 13, 2618. doi: 10.1039/D0EE01184C  doi: 10.1039/D0EE01184C

    39. [39]

      Huang, W.; Wang, H. S.; Boyle, D. T.; Li, Y. Z.; Cui, Y. ACS Energy Lett. 2020, 5, 1128. doi: 10.1021/acsenergylett.0c00194  doi: 10.1021/acsenergylett.0c00194

    40. [40]

      Adair, K. R.; Banis, M. N.; Zhao, Y.; Bond, T.; Li, R. Y.; Sun, X. L. Adv. Mater. 2020, 32, 2002550. doi: 10.1002/adma.202002550  doi: 10.1002/adma.202002550

    41. [41]

      Zhou, Y. F.; Su, M.; Yu, X. F.; Zhang, Y. Y.; Wang, J. G.; Ren, X. D.; Cao, R. G.; Xu, W.; Baer, D. R.; Du, Y. G.; et al. Nat. Nanotechnol. 2020, 15, 224. doi: 10.1038/s41565-019-0618-4  doi: 10.1038/s41565-019-0618-4

    42. [42]

      Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. J. Am. Chem. Soc. 2015, 137, 15209. doi: 10.1021/jacs.5b09385  doi: 10.1021/jacs.5b09385

    43. [43]

      Li, H.; Chao, D. L.; Chen, B.; Chen, X.; Chuah, C.; Tang, Y. H.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2020, 142, 2012. doi: 10.1021/jacs.9b11774  doi: 10.1021/jacs.9b11774

    44. [44]

      Chen, Y. M.; Wang, Z. Q.; Li, X. Y.; Yao, X. H.; Wang, C.; Li, Y. T.; Xue, W. J.; Yu, D. W.; Kim, S. Y.; Yang, F.; et al. Nature 2020, 578, 251. doi: 10.1038/s41586-020-1972-y  doi: 10.1038/s41586-020-1972-y

    45. [45]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    46. [46]

      Yang, S. J.; Xu, X. Q.; Cheng, X. B.; Wang, X. M.; Chen, J. X.; Xiao, Y.; Yuan, H.; Liu, H.; Chen, A. B.; Zhu, W. C.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2007058.  doi: 10.3866/PKU.WHXB202007058

    47. [47]

      Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    48. [48]

      Yu, Z. A.; Cui, Y.; Bao, Z. N. Cell Rep. Phys. Sci. 2020, 1, 100119. doi: 10.1016/j.xcrp.2020.100119  doi: 10.1016/j.xcrp.2020.100119

    49. [49]

      Gao, S. L.; Sun, F. Y.; Liu, N.; Yang, H. B.; Cao, P. F. Mater. Today 2020. doi: 10.1016/j.mattod.2020.06.011  doi: 10.1016/j.mattod.2020.06.011

    50. [50]

      Fu, C. Y.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A. W.; Viswanathan, V.; Helms, B. A. Nat. Mater. 2020, 19, 758. doi: 10.1038/s41563-020-0655-2  doi: 10.1038/s41563-020-0655-2

    51. [51]

      Lin, C. F.; Kozen, A. C.; Noked, M.; Liu, C. Y.; Rubloff, G. W. Adv. Mater. Interfaces. 2016, 3, 1600426. doi: 10.1002/admi.201600426  doi: 10.1002/admi.201600426

    52. [52]

      Lee, J. I.; Shin, M.; Hong, D.; Park, S. Adv. Energy Mater. 2019, 9, 1803722. doi: 10.1002/aenm.201803722  doi: 10.1002/aenm.201803722

    53. [53]

      Zhang, F.; Shen, F.; Fan, Z. Y.; Ji, X.; Zhao, B.; Sun, Z. T.; Xuan, Y. Y.; Han, X. G. Rare Met. 2018, 37, 510. doi: 10.1007/s12598-018-1054-6  doi: 10.1007/s12598-018-1054-6

    54. [54]

      Gao, Y.; Zhao, Y. M.; Li, Y. C.; Huang, Q. Q.; Mallouk, T. E.; Wang, D. H. J. Am. Chem. Soc. 2017, 139, 15288. doi: 10.1021/jacs.7b06437  doi: 10.1021/jacs.7b06437

    55. [55]

      Jang, E. K.; Ahn, J.; Yoon, S.; Cho, K. Y. Adv. Funct. Mater. 2019, 29, 1905078. doi: 10.1002/adfm.201905078  doi: 10.1002/adfm.201905078

    56. [56]

      Chai, J. C.; Chen, B. B.; Xian, F.; Wang, P.; Du, H. P.; Zhang, J. J.; Liu, Z. H.; Zhang, H. R.; Dong, S. M.; Zhou, X. H.; et al. Small 2018, 14, 1802244. doi: 10.1002/smll.201802244  doi: 10.1002/smll.201802244

    57. [57]

      Bai, W. L.; Zhang, Z.; Chen, X.; Wei, X.; Zhang, Q.; Xu, Z. X.; Liu, Y. S.; Chang, B. B.; Wang, K. X.; Chen, J. S. Energy Storage Mater. 2020, 31, 373. doi: 10.1016/j.ensm.2020.06.036  doi: 10.1016/j.ensm.2020.06.036

    58. [58]

      Shen, Z. Y.; Zhang, W. D.; Li, S. Y.; Mao, S. L.; Wang, X. Y.; Chen, F.; Lu, Y. Y. Nano Lett. 2020, 20, 6606. doi: 10.1021/acs.nanolett.0c02371  doi: 10.1021/acs.nanolett.0c02371

    59. [59]

      Zhu, J. G.; Li, P. K.; Chen, X.; Legut, D.; Fan, Y. C.; Zhang, R. F.; Lu, Y. Y.; Cheng, X. B.; Zhang, Q. Energy Storage Mater. 2019, 16, 426. doi: 10.1016/j.ensm.2018.06.023  doi: 10.1016/j.ensm.2018.06.023

    60. [60]

      Han, X. G.; Gong, Y. H.; Fu, K. K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G.; et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/NMAT4821  doi: 10.1038/NMAT4821

    61. [61]

      Zhou, Y. G.; Zhang, X.; Ding, Y.; Bae, J.; Guo, X. L.; Zhao, Y.; Yu, G. H. Adv. Mater. 2020, 32, 2003920. doi: 10.1002/adma.202003920  doi: 10.1002/adma.202003920

    62. [62]

      Alaboina, P. K.; Rodrigues, S.; Rottmayer, M.; Cho, S. J. ACS Appl. Mater. Interfaces 2018, 10, 32801. doi: 10.1021/acsami.8b08585  doi: 10.1021/acsami.8b08585

    63. [63]

      Kim, J. Y.; Kim, A. Y.; Liu, G. C.; Woo, J. Y.; Kim, H.; Lee, J. K. ACS Appl. Mater. Interfaces 2018, 10, 8692. doi: 10.1021/acsami.7b18997  doi: 10.1021/acsami.7b18997

    64. [64]

      Nan, Y.; Li, S. M.; Zhu, M. Q.; Li, B.; Yang, S. B. ACS Appl. Mater. Interfaces 2019, 11, 28878. doi: 10.1021/acsami.9b07942  doi: 10.1021/acsami.9b07942

    65. [65]

      Liu, F. F.; Wang, L. F.; Zhang, Z. W.; Shi, P. C.; Feng, Y. Z.; Yao, Y.; Ye, S. F.; Wang, H. Y.; Wu, X. J.; Yu, Y. Adv. Funct. Mater. 2020, 30, 2001607. doi: 10.1002/adfm.202001607  doi: 10.1002/adfm.202001607

    66. [66]

      Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. Nat. Nanotechnol. 2018, 13, 337. doi: 10.1038/s41565-018-0061-y  doi: 10.1038/s41565-018-0061-y

    67. [67]

      Park, K.; Goodenough, J. B. Adv. Energy Mater. 2017, 7, 1700732. doi: 10.1002/aenm.201700732  doi: 10.1002/aenm.201700732

    68. [68]

      Guo, Y. P.; Niu, P.; Liu, Y. Y.; Ouyang, Y.; Li, D.; Zhai, T. Y.; Li, H. Q.; Cui, Y. Adv. Mater. 2019, 31, 1900342. doi: 10.1002/adma.201900342  doi: 10.1002/adma.201900342

    69. [69]

      Wang, Z. J.; Wang, Y. Y.; Zhang, Z. H.; Chen, X. W.; Lie, W.; He, Y. B.; Zhou, Z.; Xia, G. L.; Guo, Z. P. Adv. Funct. Mater. 2020, 30, 2002414. doi: 10.1002/adfm.202002414  doi: 10.1002/adfm.202002414

    70. [70]

      Zhong, Y. R.; Xie, Y. J.; Hwang, S.; Wang, Q.; Cha, J. J.; Su, D.; Wang, H. L. Angew. Chem. Int. Ed. 2020, 59, 14003. doi: 10.1002/anie.202004477  doi: 10.1002/anie.202004477

    71. [71]

      Huang, Z. M.; Meng, J. T.; Xie, M. L.; Shen, Y.; Huang, Y. H. J. Mater. Chem. A 2020, 8, 14198. doi: 10.1039/D0TA05147K  doi: 10.1039/D0TA05147K

    72. [72]

      Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, et al. Nano Res. 2020, 13, 430. doi: 10.1007/s12274-020-2625-z  doi: 10.1007/s12274-020-2625-z

    73. [73]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, 1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    74. [74]

      Liu, Y. Y.; Xiong, S. Z.; Deng, J. K.; Jiao, X. X.; Song, B. R.; Matic, A.; Song, J. X. Sci. China Mater. 2020, 63, 1036. doi: 10.1007/s40843-019-1277-3  doi: 10.1007/s40843-019-1277-3

    75. [75]

      Liao, K. M.; Wu, S. C.; Mu, X. W.; Lu, Q.; Han, M.; He, P.; Shao, Z. P.; Zhou, H. S. Adv. Mater. 2018, 30, 1705711. doi: 10.1002/adma.201705711  doi: 10.1002/adma.201705711

    76. [76]

      Yu, Y.; Huang, G.; Wang, J. Z.; Li, K.; Ma, J. L.; Zhang, X. B. Adv. Mater. 2020, 2004157. doi: 10.1002/adma.202004157  doi: 10.1002/adma.202004157

    77. [77]

      Shen, X. W.; Li, Y. T.; Qian, T.; Liu, J.; Zhou, J. Q.; Yan, C. L.; Goodenough, J. B. Nat. Commun. 2019, 10, 900. doi: 10.1038/s41467-019-08767-0  doi: 10.1038/s41467-019-08767-0

    78. [78]

      Shen, X.; Cheng, X. B.; Shi, P.; Huang, J. Q.; Zhang, X. Q.; Yan, C.; Li, T.; Zhang, Q. J. Energy Chem. 2019, 37, 29. doi: 10.1016/j.jechem.2018.11.016  doi: 10.1016/j.jechem.2018.11.016

    79. [79]

      Yin, Y. C.; Wang, Q.; Yang, J. T.; Li, F.; Zhang, G. Z.; Jiang, C. H.; Mo, H. S.; Yao, J. S.; Wang, K. H.; Zhou, F.; et al. Nat. Commun. 2020, 11, 1761. doi: 10.1038/s41467-020-15643-9  doi: 10.1038/s41467-020-15643-9

    80. [80]

      Bai, M. H.; Xie, K. Y.; Yuan, K.; Zhang, K.; Li, N.; Shen, C.; Lai, Y. Q.; Vajtai, R.; Ajayan, P.; Wei, B. Q. Adv. Mater. 2018, 30, 1801213. doi: 10.1002/adma.201801213  doi: 10.1002/adma.201801213

    81. [81]

      Zhang, D.; Wang, S.; Li, B.; Gong, Y. J.; Yang, S. B. Adv. Mater. 2019, 31, 1901820. doi: 10.1002/adma.201901820  doi: 10.1002/adma.201901820

    82. [82]

      Chen, X.; Shang, M. W.; Niu, J. J. Nano Lett. 2020, 20, 2639. doi: 10.1021/acs.nanolett.0c00201  doi: 10.1021/acs.nanolett.0c00201

    83. [83]

      Tang, W.; Yin, X. S.; Kang, S. J.; Chen, Z. X.; Tian, B. B.; Teo, S. L.; Wang, X. W.; Chi, X.; Loh, K. P.; Lee, H. W.; et al. Adv. Mater. 2018, 30, 1801745. doi: 10.1002/adma.201801745  doi: 10.1002/adma.201801745

    84. [84]

      Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    85. [85]

      Bai, M. H.; Xie, K. Y.; Hong, B.; Yuan, K.; Li, Z. B.; Huang, Z. M.; Shen, C.; Lai, Y. Q. Solid State Ionics 2019, 333, 101. doi: 10.1016/j.ssi.2019.01.016  doi: 10.1016/j.ssi.2019.01.016

    86. [86]

      Zhang, Z. H.; Chen, S. J.; Yang, J.; Wang, J. Y.; Yao, L. L.; Yao, X. Y.; Cui, P.; Xu, X. X. ACS Appl. Mater. Interfaces 2018, 10, 2556. doi: 10.1021/acsami.7b16176  doi: 10.1021/acsami.7b16176

    87. [87]

      Lai, Y. M.; Zhao, Y.; Cai, W. P.; Song, J.; Jia, Y. T.; Ding, B.; Yan, J. H. Small 2019, 15, 1905171. doi: 10.1002/smll.201905171  doi: 10.1002/smll.201905171

    88. [88]

      Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y.; et al. Nat. Commun. 2018, 9, 3729. doi: 10.1038/s41467-018-06126-z  doi: 10.1038/s41467-018-06126-z

    89. [89]

      Zhang, X.; Zhang, Q. M.; Wang, X. G.; Wang, C. Y.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. Angew. Chem. Int. Ed. 2018, 57, 12814. doi: 10.1002/anie.201807985  doi: 10.1002/anie.201807985

    90. [90]

      Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. Adv. Funct. Mater. 2019, 30, 1907717. doi: 10.1002/adfm.201907717  doi: 10.1002/adfm.201907717

    91. [91]

      Cui, X. M.; Chu, Y.; Qin, L. M.; Pan, Q. M. ACS Sustain. Chem. Eng. 2018, 6, 11097. doi: 10.1021/acssuschemeng.8b02564  doi: 10.1021/acssuschemeng.8b02564

    92. [92]

      Lee, Y. G.; Ryu, S.; Sugimoto, T.; Yu, T.; Chang, W. S.; Yang, Y.; Jung, C.; Woo, J.; Kang, S. G.; Han, H. N.; et al. Chem. Mater. 2017, 29, 5906. doi: 10.1021/acs.chemmater.7b01304  doi: 10.1021/acs.chemmater.7b01304

    93. [93]

      Wang, C. H.; Yang, Y. F.; Liu, X. J.; Zhong, H.; Xu, H.; Xu, Z. B.; Shao, H. X.; Ding, F. ACS Appl. Mater. Interfaces 2017, 9, 13694. doi: 10.1021/acsami.7b00336  doi: 10.1021/acsami.7b00336

    94. [94]

      Li, G. X.; Gao, Y.; He, X.; Huang, Q. Q.; Chen, S. R.; Kim, S. H.; Wang, D. H. Nat. Commun. 2017, 8, 850. doi: 10.1038/s41467-017-00974-x  doi: 10.1038/s41467-017-00974-x

    95. [95]

      Yan, C.; Cheng, X. B.; Tian, Y.; Chen, X.; Zhang, X. Q.; Li, W. J.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2018, 30, e1707629. doi: 10.1002/adma.201707629  doi: 10.1002/adma.201707629

    96. [96]

      Liu, S. F.; Xia, X. H.; Deng, S. J.; Xie, D.; Yao, Z. J.; Zhang, L. Y.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. Adv. Mater. 2019, 31, 1806470. doi: 10.1002/adma.201806470  doi: 10.1002/adma.201806470

    97. [97]

      Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H. Huang, Q. Q.; Li, Y. G. C.; Wang, H. Y.; Kim, S. H.; et al. Nat. Mater. 2019, 18, 384. doi: 10.1038/s41563-019-0305-8  doi: 10.1038/s41563-019-0305-8

    98. [98]

      Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. Adv. Mater. 2017, 29, 1605531. doi: 10.1002/adma.201605531  doi: 10.1002/adma.201605531

    99. [99]

      Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, W. J.; Li, H.; Cui, G. L.; Chen, L. Q. Chem. Mater. 2017, 29, 4682. doi: 10.1021/acs.chemmater.7b00091  doi: 10.1021/acs.chemmater.7b00091

    100. [100]

      Zhao, Q.; Tu, Z. Y.; Wei, S. Y.; Zhang, K. H.; Choudhury, S.; Liu, X. T.; Archer, L. A. Angew. Chem. Int. Ed. 2018, 57, 992. doi: 10.102/anie.201711598  doi: 10.102/anie.201711598

    101. [101]

      Liang, W.; Lian, F.; Meng, N.; Lu, J. H.; Ma, L. J.; Zhao, C. Z.; Zhang, Q. Energy Storage Mater. 2020, 28, 350. doi: 10.1016/j.ensm.2020.03.022  doi: 10.1016/j.ensm.2020.03.022

    102. [102]

      Wu, C.; Guo, F. H.; Zhuang, L.; Ai, X. P.; Zhong, F. P.; Yang, H. X.; Qian, J. F. ACS Energy Lett. 2020, 5, 1644. doi: 10.1021/acsenergylett.0c00804  doi: 10.1021/acsenergylett.0c00804

    103. [103]

      Zhao, Y.; Goncharova, L. V.; Sun, Q.; Li, X.; Lushington, A.; Wang, B. Q.; Li, R. Y.; Dai, F.; Cai, M.; Sun, X. L. Small Methods 2018, 2, 1700417. doi: 10.1002/smtd.201700417  doi: 10.1002/smtd.201700417

    104. [104]

      Sun, Y. P.; Amirmaleki, M.; Zhao, Y.; Zhao, C. T.; Liang, J. N.; Wang, C. H.; Adair, K. R.; Li, J. J.; Cui, T.; Wang, G. R.; et al. Adv. Energy Mater. 2020, 10, 2001139. doi: 10.1002/aenm.202001139  doi: 10.1002/aenm.202001139

    105. [105]

      Wood, D. L.; Li, J. L.; An, S. J. Joule 2019, 3, 2884. doi: 10.1016/j.joule.2019.11.002  doi: 10.1016/j.joule.2019.11.002

    106. [106]

      Zhao, Y.; Goncharova, L. V.; Zhang, Q.; Kaghazchi, P.; Sun, Q.; Lushington, A.; Wang, B. Q.; Li, R. Y.; Sun, X. L. Nano Lett. 2017, 17, 5653. doi: 10.1021/acs.nanolett.7b02464  doi: 10.1021/acs.nanolett.7b02464

    107. [107]

      Xie, J.; Wang, J. Y.; Lee, H. R.; Yan, K.; Li, Y. Z.; Shi, F. F.; Huang, W.; Pei, A.; Chen, G.; Subbaraman, R.; et al. Sci. Adv. 2018, 4, eaat5168. doi: 10.1126/sciadv.aat5168  doi: 10.1126/sciadv.aat5168

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    5. [5]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    6. [6]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    10. [10]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(16)
  • Abstract views(573)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return