Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales
- Corresponding author: Yu Xiqian, xyu@iphy.ac.cn
Citation: Pan Hongyi, Li Quan, Yu Xiqian, Li Hong. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200809. doi: 10.3866/PKU.WHXB202008091
Whittingham, M. S. Proc. IEEE 2012, 100, 1518. doi: 10.1109/JPROC.2012.2190170
doi: 10.1109/JPROC.2012.2190170
Spotnitz, R.; Franklin, J. J. Power Sources 2003, 113 (1), 81. doi: 10.1016/S0378-7753(02)00488-3
doi: 10.1016/S0378-7753(02)00488-3
Seitzman, N.; Guthrey, H.; Sulas, D. B.; Platt, H. A. S.; Al-Jassim, M.; Pylypenko, S. J. Electrochem. Soc. 2018, 165 (16), A3732. doi: 10.1149/2.0301816jes
doi: 10.1149/2.0301816jes
Lewis, J. A.; Cortes, F. J. Q.; Boebinger, M. G.; Tippens, J.; Marchese, T. S.; Kondekar, N.; Liu, X.; Chi, M.; McDowell, M. T. ACS Energy Lett. 2019, 4 (2), 591. doi: 10.1021/acsenergylett.9b00093
doi: 10.1021/acsenergylett.9b00093
Stiles, J. A. R.; Brandt, K.; Wainwright, D. S.; Lee, K. C. Constant Volume Lithium Battery Cell and Process. US Patent 4587182, 1986.
Yue, X. Y.; Li, X. L.; Wang, W. W.; Chen, D.; Qiu, Q. Q.; Wang, Q. C.; Wu, X. J.; Fu, Z. W.; Shadike, Z.; Yang, X. Q.; Zhou, Y. N. Nano Energy 2019, 60, 257. doi: 10.1016/j.nanoen.2019.03.057
doi: 10.1016/j.nanoen.2019.03.057
Liu, H.; Cheng, X.; Zhang, R.; Shi, P.; Shen, X.; Chen, X.; Li, T.; Huang, J.; Zhang, Q. Trans. Tianjin Univ. 2020, 26 (2), 127. doi: 10.1007/s12209-020-00241-z
doi: 10.1007/s12209-020-00241-z
Zhao, H.; Lei, D.; He, Y. B.; Yuan, Y.; Yun, Q.; Ni, B.; Lv, W.; Li, B.; Yang, Q. H.; Kang, F.; Lu, J. Adv. Energy Mater. 2018, 8 (19), 1800266. doi: 10.1002/aenm.201800266
doi: 10.1002/aenm.201800266
Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Energy Environ. Sci. 2016, 9 (10), 3221. doi: 10.1039/C6EE01674J
doi: 10.1039/C6EE01674J
Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A.; et al. Adv. Energy Mater. 2015, 5 (3), 1400993. doi: 10.1002/aenm.201400993
doi: 10.1002/aenm.201400993
Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; et al. Nature 2019, 572, 511. doi: 10.1038/s41586-019-1481-z
doi: 10.1038/s41586-019-1481-z
Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135 (11), 4450. doi: 10.1021/ja312241y
doi: 10.1021/ja312241y
Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Angew. Chem. 2018, 130 (43), 14251. doi: 10.1002/ange.201807034
doi: 10.1002/ange.201807034
Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Wang, X. X.; Song, Y.; Fu, Z. W.; Wu, X. J.; Zhou, Y. N. Energy Storage Mater. 2019, 21, 180. doi: 10.1016/j.ensm.2018.12.007
doi: 10.1016/j.ensm.2018.12.007
Yan, Z.; Pan, H. Y.; Wang, J. Y.; Chen, R. S.; Li, Q.; Luo, F.; Yu, X. Q.; Li, H. Rare Met. 2020. doi: 10.1007/s12598-020-01494-2
doi: 10.1007/s12598-020-01494-2
Chen, X.; Zhang, X.; Li, H.; Zhang, Q. Batter. Supercaps 2019, 2 (2), 128. doi: 10.1002/batt.201800118
doi: 10.1002/batt.201800118
Sand Ⅲ, H. J. S. Philos. Mag. 1901, 1 (1), 45. doi: 10.1080/14786440109462590
Yan, K.; Lu, Z.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1 (3), 1. doi: 10.1038/nenergy.2016.10
doi: 10.1038/nenergy.2016.10
Zhang, H.; Liao, X.; Guan, Y.; Xiang, Y.; Li, M.; Zhang, W.; Zhu, X.; Ming, H.; Lu, L.; Qiu, J.; et al. Nat. Commun. 2018, 9 (1), 3729. doi: 10.1038/s41467-018-06126-z
doi: 10.1038/s41467-018-06126-z
Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17 (2), 1132. doi: 10.1021/acs.nanolett.6b04755.
doi: 10.1021/acs.nanolett.6b04755
Barton, J. L.; Bockris, J. O. M. The Electrolytic Growth of Dendrites from Ionic Solutions; Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1962, 268 (1335), 485.
Monroe, C.; Newman, J. J. Electrochem. Soc. 2003, 150 (10), A1377. doi: 10.1149/1.1606686
doi: 10.1149/1.1606686
Akolkar, R. J. Power Sources 2014, 246, 84. doi: 10.1016/j.jpowsour.2013.07.056
doi: 10.1016/j.jpowsour.2013.07.056
Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. NPJ Comput. Mater. 2018, 4 (1), 1. doi: 10.1038/s41524-018-0064-0
doi: 10.1038/s41524-018-0064-0
Hou, C.; Han, J.; Liu, P.; Yang, C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. Adv. Energy Mater. 2019, 9 (45), 1902675. doi: 10.1002/aenm.201902675
doi: 10.1002/aenm.201902675
Steiger, J.; Kramer, D.; Mönig, R. Electrochim. Acta 2014, 136, 529. doi: 10.1016/j.electacta.2014.05.120
doi: 10.1016/j.electacta.2014.05.120
Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6 (1), 6362. doi: 10.1038/ncomms7362.
doi: 10.1038/ncomms7362
Yoshimatsu, I.; Hirai, T.; Yamaki, J. J. Electrochem. Soc. 1988, 135 (10), 2422. doi: 10.1149/1.2095351
doi: 10.1149/1.2095351
Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; et al. Nano Lett. 2014, 14 (12), 6889. doi: 10.1021/nl5039117
doi: 10.1021/nl5039117
Lee, J. Z.; Wynn, T. A.; Schroeder, M. A.; Alvarado, J.; Wang, X.; Xu, K.; Meng, Y. S. ACS Energy Lett. 2019, 4 (2), 489. doi: 10.1021/acsenergylett.8b02381
doi: 10.1021/acsenergylett.8b02381
Foroozan, T.; Sharifi-Asl, S.; Shahbazian-Yassar, R. J. Power Sources 2020, 461, 228135. doi: 10.1016/j.jpowsour.2020.228135
doi: 10.1016/j.jpowsour.2020.228135
Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. J. Mater. Chem. A 2017, 5 (23), 11671. doi: 10.1039/C7TA00371D
doi: 10.1039/C7TA00371D
Fan, L.; Zhuang, H. L. L.; Gao, L. N.; Lu, Y. Y; Archer, L. A. J. Mater. Chem. A 2017, 5 (7), 3483. doi: 10.1039/C6TA10204B
doi: 10.1039/C6TA10204B
Dornbusch, D. A.; Hilton, R.; Lohman, S. D.; Suppes, G. J. J. Electrochem. Soc. 2014, 162 (3), A262. doi: 10.1149/2.0021503jes
doi: 10.1149/2.0021503jes
Cheng, E. J.; Sharafi, A.; Sakamoto, J. Electrochim. Acta 2017, 223, 85. doi: 10.1016/j.electacta.2016.12.018
doi: 10.1016/j.electacta.2016.12.018
Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.; Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2017, 7 (20), 1701003. doi: 10.1002/aenm.201701003
doi: 10.1002/aenm.201701003
Hong, Y. S.; Zhao, C. Z.; Xiao, Y.; Xu, R.; Xu, J. J.; Huang, J. Q.; Zhang, Q.; Yu, X.; Li, H. Batter. Supercaps 2019, 2 (7), 638. doi: 10.1002/batt.201900031
doi: 10.1002/batt.201900031
Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y.; et al. Science 2017, 358 (6362), 506. doi: 10.1126/science.aam6014
doi: 10.1126/science.aam6014
Ju, Z.; Nai, J.; Wang, Y.; Liu, T.; Zheng, J.; Yuan, H.; Sheng, O.; Jin, C.; Zhang, W.; Jin, Z.; et al. Nat. Commun. 2020, 11 (1), 488. doi: 10.1038/s41467-020-14358-1
doi: 10.1038/s41467-020-14358-1
Sheng, O.; Zheng, J.; Ju, Z.; Jin, C.; Wang, Y.; Chen, M.; Nai, J.; Liu, T.; Zhang, W.; Liu, Y.; Tao, X. Adv. Mater. 2020, 32 (34), 2000223. doi: 10.1002/adma.202000223
doi: 10.1002/adma.202000223
Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560 (7718), 345. doi: 10.1038/s41586-018-0397-3
doi: 10.1038/s41586-018-0397-3
Wang, X.; Zhang, M.; Alvarado, J.; Wang, S.; Sina, M.; Lu, B.; Bouwer, J.; Xu, W.; Xiao, J.; Zhang, J. G.; et al. Nano Lett. 2017, 17 (12), 7606. doi: 10.1021/acs.nanolett.7b03606
doi: 10.1021/acs.nanolett.7b03606
Cohen, Y. S.; Cohen, Y.; Aurbach, D. J. Phys. Chem. B 2000, 104 (51), 12282. doi: 10.1021/jp002526b
doi: 10.1021/jp002526b
Kitta, M.; Sano, H. Langmuir 2017, 33 (8), 1861. doi: 10.1021/acs.langmuir.6b04651
doi: 10.1021/acs.langmuir.6b04651
Zhang, L.; Yang, T.; Du, C.; Liu, Q.; Tang, Y.; Zhao, J.; Wang, B.; Chen, T.; Sun, Y.; Jia, P.; et al. Nat. Nanotechnol. 2020, 15 (2), 94. doi: 10.1038/s41565-019-0604-x
doi: 10.1038/s41565-019-0604-x
Arruda, T. M.; Lawton, J. S.; Kumar, A.; Unocic, R. R.; Kravchenko, I. I.; Zawodzinski, T. A.; Jesse, S.; Kalinin, S. V.; Balke, N. ECS Electrochem. Lett. 2013, 3 (1), A4. doi: 10.1149/2.003401eel
doi: 10.1149/2.003401eel
Li, Q.; Pan, H.; Li, W.; Wang, Y.; Wang, J.; Zheng, J.; Yu, X.; Li, H.; Chen, L. ACS Energy Lett. 2018, 3 (9), 2259. doi: 10.1021/acsenergylett.8b01244
doi: 10.1021/acsenergylett.8b01244
Zeng, Z.; Liang, W. I.; Liao, H. G.; Xin, H. L.; Chu, Y. H.; Zheng, H. Nano Lett. 2014, 14 (4), 1745. doi: 10.1021/nl403922u
doi: 10.1021/nl403922u
Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; Xu, W.; Wang, C. M.; et al. Nano Lett. 2015, 15 (3), 2168. doi: 10.1021/acs.nanolett.5b00175
doi: 10.1021/acs.nanolett.5b00175
Ghassemi, H.; Au, M.; Chen, N.; Heiden, P. A.; Yassar, R. S. Appl. Phys. Lett. 2011, 99 (12), 123113. doi: 10.1063/1.3643035
doi: 10.1063/1.3643035
Sacci, R. L.; Black, J. M.; Balke, N.; Dudney, N. J.; More, K. L.; Unocic, R. R. Nano Lett. 2015, 15 (3), 2011. doi: 10.1021/nl5048626
doi: 10.1021/nl5048626
Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Nano Energy 2017, 32, 271. doi: 10.1016/j.nanoen.2016.12.001
doi: 10.1016/j.nanoen.2016.12.001
Leenheer, A. J.; Jungjohann, K. L.; Zavadil, K. R.; Sullivan, J. P.; Harris, C. T. ACS Nano 2015, 9 (4), 4379. doi: 10.1021/acsnano.5b00876
doi: 10.1021/acsnano.5b00876
Frisco, S.; Liu, D.; Kumar, A.; Whitacre, J. F.; Love, C. T.; Swider-Lyons, K.; Litster, S. ACS Appl. Mater. Interfaces 2017, 9 (22), 18748. doi: 10.1021/acsami.7b03003
doi: 10.1021/acsami.7b03003
Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X.; et al. Nano Energy 2019, 63, 103895. doi: 10.1016/j.nanoen.2019.103895
doi: 10.1016/j.nanoen.2019.103895
Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Chem. Mater. 2015, 27 (18), 6457. doi: 10.1021/acs.chemmater.5b02789
doi: 10.1021/acs.chemmater.5b02789
Rong, G.; Zhang, X.; Zhao, W.; Qiu, Y.; Liu, M.; Ye, F.; Xu, Y.; Chen, J.; Hou, Y.; Li, W.; et al. Adv. Mater. 2017, 29 (13), 1606187. doi: 10.1002/adma.201606187
doi: 10.1002/adma.201606187
Eastwood, D. S.; Bayley, P. M.; Chang, H. J.; Taiwo, O. O.; Vila-Comamala, J.; Brett, D. J. L.; Rau, C.; Withers, P. J.; Shearing, P. R.; Grey, C. P.; Lee, P. D. Chem. Commun. 2015, 51 (2), 266. doi: 10.1039/C4CC03187C
doi: 10.1039/C4CC03187C
Steiger, J.; Richter, G.; Wenk, M.; Kramer, D.; Mönig, R. Electrochem. Commun. 2015, 50, 11. doi: 10.1016/j.elecom.2014.11.002
doi: 10.1016/j.elecom.2014.11.002
Li, Q.; Quan, B.; Li, W.; Lu, J.; Zheng, J.; Yu, X.; Li, J.; Li, H. Nano Energy 2018, 45, 463. doi: 10.1016/j.nanoen.2018.01.019
doi: 10.1016/j.nanoen.2018.01.019
Wan, G.; Guo, F.; Li, H.; Cao, Y.; Ai, X.; Qian, J.; Li, Y.; Yang, H. ACS Appl. Mater. Interfaces 2018, 10 (1), 593. doi: 10.1021/acsami.7b14662
doi: 10.1021/acsami.7b14662
Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P. ACS Central Sci. 2016, 2 (11), 790. doi: 10.1021/acscentsci.6b00260
doi: 10.1021/acscentsci.6b00260
Sanchez, A. J.; Kazyak, E.; Chen, Y.; Chen, K. H.; Pattison, E. R.; Dasgupta, N. P. ACS Energy Lett. 2020, 5 (3), 994. doi: 10.1021/acsenergylett.0c00215
doi: 10.1021/acsenergylett.0c00215
Kazyak, E.; Garcia-Mendez, R.; LePage, W. S.; Sharafi, A.; Davis, A. L.; Sanchez, A. J.; Chen, K. H.; Haslam, C.; Sakamoto, J.; Dasgupta, N. P. Matter 2020, 2 (4), 1025. doi: 10.1016/j.matt.2020.02.008
doi: 10.1016/j.matt.2020.02.008
Wang, C.; Gong, Y.; Dai, J.; Zhang, L.; Xie, H.; Pastel, G.; Liu, B.; Wachsman, E.; Wang, H.; Hu, L. J. Am. Chem. Soc. 2017, 139 (40), 14257. doi: 10.1021/jacs.7b07904
doi: 10.1021/jacs.7b07904
Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. Nat. Energy 2019, 4 (3), 187. doi: 10.1038/s41560-018-0312-z
doi: 10.1038/s41560-018-0312-z
Schmitz, R.; Ansgar Müller, R.; Wilhelm Schmitz, R.; Schreiner, C.; Kunze, M.; Lex-Balducci, A.; Passerini, S.; Winter, M. J. Power Sources 2013, 233, 110. doi: 10.1016/j.jpowsour.2013.01.105
doi: 10.1016/j.jpowsour.2013.01.105
Cheng, Q.; Wei, L.; Liu, Z.; Ni, N.; Sang, Z.; Zhu, B.; Xu, W.; Chen, M.; Miao, Y.; Chen, L. Q.; et al. Nat. Commun. 2018, 9 (1), 2942. doi: 10.1038/s41467-018-05289-z
doi: 10.1038/s41467-018-05289-z
Sun, F.; Zielke, L.; Markötter, H.; Hilger, A.; Zhou, D.; Moroni, R.; Zengerle, R.; Thiele, S.; Banhart, J.; Manke, I. ACS Nano 2016, 10 (8), 7990. doi: 10.1021/acsnano.6b03939
doi: 10.1021/acsnano.6b03939
Sun, F.; Moroni, R.; Dong, K.; Markötter, H.; Zhou, D.; Hilger, A.; Zielke, L.; Zengerle, R.; Thiele, S.; Banhart, J.; Manke, I. ACS Energy Lett. 2017, 2 (1), 94. doi: 10.1021/acsenergylett.6b00589
doi: 10.1021/acsenergylett.6b00589
Sun, F.; Osenberg, M.; Dong, K.; Zhou, D.; Hilger, A.; Jafta, C. J.; Risse, S.; Lu, Y.; Markötter, H.; Manke, I. ACS Energy Lett. 2018, 3 (2), 356. doi: 10.1021/acsenergylett.7b01254
doi: 10.1021/acsenergylett.7b01254
Dong, K.; Osenberg, M.; Sun, F.; Markötter, H.; Jafta, C. J.; Hilger, A.; Arlt, T.; Banhart, J.; Manke, I. Nano Energy 2019, 62, 11. doi: 10.1016/j.nanoen.2019.05.022
doi: 10.1016/j.nanoen.2019.05.022
Sun, F.; Zhou, D.; He, X.; Osenberg, M.; Dong, K.; Chen, L.; Mei, S.; Hilger, A.; Markötter, H.; Lu, Y.; et al. ACS Energy Lett. 2020, 5 (1), 152. doi: 10.1021/acsenergylett.9b02424
doi: 10.1021/acsenergylett.9b02424
Louli, A. J.; Eldesoky, A.; Weber, R.; Genovese, M.; Coon, M.; deGooyer, J.; Deng, Z.; White, R. T.; Lee, J.; Rodgers, T.; et al. Nat. Energy 2020. doi: 10.1038/s41560-020-0668-8
doi: 10.1038/s41560-020-0668-8
Yu, S. H.; Huang, X.; Brock, J. D.; Abruña, H. D. J. Am. Chem. Soc. 2019, 141 (21), 8441. doi: 10.1021/jacs.8b13297
doi: 10.1021/jacs.8b13297
Hartmann, P.; Leichtweiss, T.; Busche, M. R.; Schneider, M.; Reich, M.; Sann, J.; Adelhelm, P.; Janek, J. J. Phys. Chem. C 2013, 117 (41), 21064. doi: 10.1021/jp4051275
doi: 10.1021/jp4051275
Fiedler, C.; Luerssen, B.; Rohnke, M.; Sann, J.; Janek, J. J. Electrochem. Soc. 2017, 164 (14), A3742. doi: 10.1149/2.0851714jes
doi: 10.1149/2.0851714jes
Periyapperuma, K.; Arca, E.; Harvey, S.; Ban, C.; Burrell, A.; MacFarlane, D. R.; Pozo-Gonzalo, C.; Forsyth, M.; Howlett, P. C. J. Mater. Chem. A 2020, 8 (7), 3574. doi: 10.1039/C9TA12004A
doi: 10.1039/C9TA12004A
Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. J. Am. Chem. Soc. 2015, 137 (48), 15209. doi: 10.1021/jacs.5b09385
doi: 10.1021/jacs.5b09385
Ilott, A. J.; Mohammadi, M.; Chang, H. J.; Grey, C. P.; Jerschow, A. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (39), 10779. doi: 10.1073/pnas.1607903113
doi: 10.1073/pnas.1607903113
Chandrashekar, S.; Trease, N. M.; Chang, H. J.; Du, L. S.; Grey, C. P.; Jerschow, A. Nat. Mater. 2012, 11 (4), 311. doi: 10.1038/nmat3246
doi: 10.1038/nmat3246
Song, B.; Dhiman, I.; Carothers, J. C.; Veith, G. M.; Liu, J.; Bilheux, H. Z.; Huq, A. ACS Energy Lett. 2019, 4 (10), 2402. doi: 10.1021/acsenergylett.9b01652
doi: 10.1021/acsenergylett.9b01652
Zhang, Y.; Chandran, K. S. R.; Jagannathan, M.; Bilheux, H. Z.; Bilheux, J. C. J. Electrochem. Soc. 2017, 164 (2), A28. doi: 10.1149/2.0051702jes
doi: 10.1149/2.0051702jes
Yue, J. L.; Zhou, Y. N.; Shi, S. Q.; Shadike, Z.; Huang, X. Q.; Luo, J.; Yang, Z. Z.; Li, H.; Gu, L.; Yang, X. Q.; Fu, Z. W. Sci. Rep. 2015, 5 (1), 8810. doi: 10.1038/srep08810
doi: 10.1038/srep08810
Gong, Y.; Zhang, J.; Jiang, L.; Shi, J. A.; Zhang, Q.; Yang, Z.; Zou, D.; Wang, J.; Yu, X.; Xiao, R.; et al. J. Am. Chem. Soc. 2017, 139 (12), 4274. doi: 10.1021/jacs.6b13344
doi: 10.1021/jacs.6b13344
Ren, J.; Wang, Y.; Zhao, J.; Tan, S.; Petek, H. J. Am. Chem. Soc. 2019, 141 (10), 4438. doi: 10.1021/jacs.8b13843
doi: 10.1021/jacs.8b13843
Seidl, L.; Bucher, N.; Chu, E.; Hartung, S.; Martens, S.; Schneider, O.; Stimming, U. Energy Environ. Sci. 2017, 10 (7), 1631. doi: 10.1039/C7EE00546F
doi: 10.1039/C7EE00546F
Liu, Q.; Yu, Q.; Li, S.; Wang, S.; Zhang, L.; Cai, B.; Zhou, D.; Li, B. Energy Storage Mater. 2020, 25, 613. doi: 10.1016/j.ensm.2019.09.023
doi: 10.1016/j.ensm.2019.09.023
Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Solid State Ionics 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001
doi: 10.1016/j.ssi.2015.06.001
Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Nat. Mater. 2014, 13 (1), 69. doi: 10.1038/nmat3793
doi: 10.1038/nmat3793
Devaux, D.; Harry, K. J.; Parkinson, D. Y.; Yuan, R.; Hallinan, D. T.; MacDowell, A. A.; Balsara, N. P. J. Electrochem. Soc. 2015, 162 (7), A1301. doi: 10.1149/2.0721507jes
doi: 10.1149/2.0721507jes
Maslyn, J. A.; Loo, W. S.; McEntush, K. D.; Oh, H. J.; Harry, K. J.; Parkinson, D. Y.; Balsara, N. P. J. Phys. Chem. C 2018, 122 (47), 26797. doi: 10.1021/acs.jpcc.8b06355
doi: 10.1021/acs.jpcc.8b06355
Doux, J.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S. Adv. Energy Mater. 2020, 10 (1), 1903253. doi: 10.1002/aenm.201903253
doi: 10.1002/aenm.201903253
Bhattacharyya, R.; Key, B.; Chen, H.; Best, A. S.; Hollenkamp, A. F.; Grey, C. P. Nat. Mater. 2010, 9 (6), 504. doi: 10.1038/nmat2764
doi: 10.1038/nmat2764
Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Hao Zhao , Zhen Gao , Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122
Zhenjun Mao , Haorui Gu , Haiyan Che , Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013
Congying Wen , Zhengkun Du , Yukun Lu , Zongting Wang , Hua He , Limin Yang , Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089
Dongxue Han , Huiliang Sun , Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055