Citation: Pan Hongyi, Li Quan, Yu Xiqian, Li Hong. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200809. doi: 10.3866/PKU.WHXB202008091 shu

Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales

  • Corresponding author: Yu Xiqian, xyu@iphy.ac.cn
  • Received Date: 31 August 2020
    Revised Date: 24 September 2020
    Accepted Date: 25 September 2020
    Available Online: 16 October 2020

    Fund Project: the Science and Technology Planning Project of Beijing, China Z191100004719001the National Key R & D Program of China 2016YFB0100100The project was supported by the National Key R & D Program of China (2016YFB0100100) and the Science and Technology Planning Project of Beijing, China (Z191100004719001)

  • Conventional lithium-ion batteries with graphite anode have gradually ceased satisfying demand for the rapid development of modern electric commodities, such as portable electronic devices and electric vehicles. Therefore, metallic lithium is considered the ultimate alternative anode material for future high-energy-density lithium batteries because of its excellent properties, including the highest theoretical capacity and lowest potential of available materials as well as its low density. However, research on lithium metal anodes in traditional liquid batteries has encountered impediments. Numerous studies have shown that lithium dendrites, dead lithium, solid electrolyte interphase problems, and the correlating safety hazards are the main hindrances to the practical application of liquid-based lithium metal batteries. For solid-state batteries, the challenges of lithium metal anodes continue to grow. Studies on the mechanical, thermal, chemical, and electrochemical stability of solid-state electrolyte and lithium metal anode indicate that, unlike early recognition, solid-state lithium metal batteries remain far from commercialization. Unexpected issues like lithium growth along crystal boundaries, mixed-conductivity interphase generation, and interfacial contact losses have emerged that complicate the solid-state lithium metal battery. To achieve practically applicable lithium metal anodes, it is necessary to deepen our understanding of the basic scientific issues. This review systematically discusses the electrode behaviors of lithium metal and the corresponding electrode characterization techniques at multiple spatial scales. First, the basic science and technology issues of lithium metal anodes at different scales are reviewed. Lithium electrodeposition behaviors from the atomic to the macroscale are divided into ion transportation, deposition, nucleation, crystallization, expansion and growth. Various issues are also categorized among different characteristic scales. Second, advanced characterization techniques for all spatial scales are reviewed in light of recent works. Finally, the technical characteristics of various characterization techniques from the atomic to macroscale are analyzed. Features and possible directions of improvement of various characterization techniques used to examine lithium metal anodes in solid-state batteries are highlighted. In situ observation has become a common requirement for battery characterization as it can connect macroscale phenomena to microscale mechanisms. Meanwhile, non-damaging detection techniques have faced growing demand because of the urgent need to understand the complete actual reactions at the bulk and interfaces of solid-state electrolytes and lithium anodes. The combination of techniques for different scales should provide comprehensive information to characterize lithium metal anodes and identify reasonable mechanisms for their behaviors.
  • 加载中
    1. [1]

      Whittingham, M. S. Proc. IEEE 2012, 100, 1518. doi: 10.1109/JPROC.2012.2190170  doi: 10.1109/JPROC.2012.2190170

    2. [2]

      Spotnitz, R.; Franklin, J. J. Power Sources 2003, 113 (1), 81. doi: 10.1016/S0378-7753(02)00488-3  doi: 10.1016/S0378-7753(02)00488-3

    3. [3]

      Seitzman, N.; Guthrey, H.; Sulas, D. B.; Platt, H. A. S.; Al-Jassim, M.; Pylypenko, S. J. Electrochem. Soc. 2018, 165 (16), A3732. doi: 10.1149/2.0301816jes  doi: 10.1149/2.0301816jes

    4. [4]

      Lewis, J. A.; Cortes, F. J. Q.; Boebinger, M. G.; Tippens, J.; Marchese, T. S.; Kondekar, N.; Liu, X.; Chi, M.; McDowell, M. T. ACS Energy Lett. 2019, 4 (2), 591. doi: 10.1021/acsenergylett.9b00093  doi: 10.1021/acsenergylett.9b00093

    5. [5]

      Stiles, J. A. R.; Brandt, K.; Wainwright, D. S.; Lee, K. C. Constant Volume Lithium Battery Cell and Process. US Patent 4587182, 1986.

    6. [6]

      Yue, X. Y.; Li, X. L.; Wang, W. W.; Chen, D.; Qiu, Q. Q.; Wang, Q. C.; Wu, X. J.; Fu, Z. W.; Shadike, Z.; Yang, X. Q.; Zhou, Y. N. Nano Energy 2019, 60, 257. doi: 10.1016/j.nanoen.2019.03.057  doi: 10.1016/j.nanoen.2019.03.057

    7. [7]

      Liu, H.; Cheng, X.; Zhang, R.; Shi, P.; Shen, X.; Chen, X.; Li, T.; Huang, J.; Zhang, Q. Trans. Tianjin Univ. 2020, 26 (2), 127. doi: 10.1007/s12209-020-00241-z  doi: 10.1007/s12209-020-00241-z

    8. [8]

      Zhao, H.; Lei, D.; He, Y. B.; Yuan, Y.; Yun, Q.; Ni, B.; Lv, W.; Li, B.; Yang, Q. H.; Kang, F.; Lu, J. Adv. Energy Mater. 2018, 8 (19), 1800266. doi: 10.1002/aenm.201800266  doi: 10.1002/aenm.201800266

    9. [9]

      Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Energy Environ. Sci. 2016, 9 (10), 3221. doi: 10.1039/C6EE01674J  doi: 10.1039/C6EE01674J

    10. [10]

      Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A.; et al. Adv. Energy Mater. 2015, 5 (3), 1400993. doi: 10.1002/aenm.201400993  doi: 10.1002/aenm.201400993

    11. [11]

      Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; et al. Nature 2019, 572, 511. doi: 10.1038/s41586-019-1481-z  doi: 10.1038/s41586-019-1481-z

    12. [12]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135 (11), 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    13. [13]

      Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Angew. Chem. 2018, 130 (43), 14251. doi: 10.1002/ange.201807034  doi: 10.1002/ange.201807034

    14. [14]

      Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Wang, X. X.; Song, Y.; Fu, Z. W.; Wu, X. J.; Zhou, Y. N. Energy Storage Mater. 2019, 21, 180. doi: 10.1016/j.ensm.2018.12.007  doi: 10.1016/j.ensm.2018.12.007

    15. [15]

      Yan, Z.; Pan, H. Y.; Wang, J. Y.; Chen, R. S.; Li, Q.; Luo, F.; Yu, X. Q.; Li, H. Rare Met. 2020. doi: 10.1007/s12598-020-01494-2  doi: 10.1007/s12598-020-01494-2

    16. [16]

      Chen, X.; Zhang, X.; Li, H.; Zhang, Q. Batter. Supercaps 2019, 2 (2), 128. doi: 10.1002/batt.201800118  doi: 10.1002/batt.201800118

    17. [17]

      Sand Ⅲ, H. J. S. Philos. Mag. 1901, 1 (1), 45. doi: 10.1080/14786440109462590

    18. [18]

      Yan, K.; Lu, Z.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1 (3), 1. doi: 10.1038/nenergy.2016.10  doi: 10.1038/nenergy.2016.10

    19. [19]

      Zhang, H.; Liao, X.; Guan, Y.; Xiang, Y.; Li, M.; Zhang, W.; Zhu, X.; Ming, H.; Lu, L.; Qiu, J.; et al. Nat. Commun. 2018, 9 (1), 3729. doi: 10.1038/s41467-018-06126-z  doi: 10.1038/s41467-018-06126-z

    20. [20]

      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17 (2), 1132. doi: 10.1021/acs.nanolett.6b04755.  doi: 10.1021/acs.nanolett.6b04755

    21. [21]

      Barton, J. L.; Bockris, J. O. M. The Electrolytic Growth of Dendrites from Ionic Solutions; Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1962, 268 (1335), 485.
       

    22. [22]

      Monroe, C.; Newman, J. J. Electrochem. Soc. 2003, 150 (10), A1377. doi: 10.1149/1.1606686  doi: 10.1149/1.1606686

    23. [23]

      Akolkar, R. J. Power Sources 2014, 246, 84. doi: 10.1016/j.jpowsour.2013.07.056  doi: 10.1016/j.jpowsour.2013.07.056

    24. [24]

      Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. NPJ Comput. Mater. 2018, 4 (1), 1. doi: 10.1038/s41524-018-0064-0  doi: 10.1038/s41524-018-0064-0

    25. [25]

      Hou, C.; Han, J.; Liu, P.; Yang, C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. Adv. Energy Mater. 2019, 9 (45), 1902675. doi: 10.1002/aenm.201902675  doi: 10.1002/aenm.201902675

    26. [26]

      Steiger, J.; Kramer, D.; Mönig, R. Electrochim. Acta 2014, 136, 529. doi: 10.1016/j.electacta.2014.05.120  doi: 10.1016/j.electacta.2014.05.120

    27. [27]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6 (1), 6362. doi: 10.1038/ncomms7362.  doi: 10.1038/ncomms7362

    28. [28]

      Yoshimatsu, I.; Hirai, T.; Yamaki, J. J. Electrochem. Soc. 1988, 135 (10), 2422. doi: 10.1149/1.2095351  doi: 10.1149/1.2095351

    29. [29]

      Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; et al. Nano Lett. 2014, 14 (12), 6889. doi: 10.1021/nl5039117  doi: 10.1021/nl5039117

    30. [30]

      Lee, J. Z.; Wynn, T. A.; Schroeder, M. A.; Alvarado, J.; Wang, X.; Xu, K.; Meng, Y. S. ACS Energy Lett. 2019, 4 (2), 489. doi: 10.1021/acsenergylett.8b02381  doi: 10.1021/acsenergylett.8b02381

    31. [31]

      Foroozan, T.; Sharifi-Asl, S.; Shahbazian-Yassar, R. J. Power Sources 2020, 461, 228135. doi: 10.1016/j.jpowsour.2020.228135  doi: 10.1016/j.jpowsour.2020.228135

    32. [32]

      Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. J. Mater. Chem. A 2017, 5 (23), 11671. doi: 10.1039/C7TA00371D  doi: 10.1039/C7TA00371D

    33. [33]

      Fan, L.; Zhuang, H. L. L.; Gao, L. N.; Lu, Y. Y; Archer, L. A. J. Mater. Chem. A 2017, 5 (7), 3483. doi: 10.1039/C6TA10204B  doi: 10.1039/C6TA10204B

    34. [34]

      Dornbusch, D. A.; Hilton, R.; Lohman, S. D.; Suppes, G. J. J. Electrochem. Soc. 2014, 162 (3), A262. doi: 10.1149/2.0021503jes  doi: 10.1149/2.0021503jes

    35. [35]

      Cheng, E. J.; Sharafi, A.; Sakamoto, J. Electrochim. Acta 2017, 223, 85. doi: 10.1016/j.electacta.2016.12.018  doi: 10.1016/j.electacta.2016.12.018

    36. [36]

      Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.; Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2017, 7 (20), 1701003. doi: 10.1002/aenm.201701003  doi: 10.1002/aenm.201701003

    37. [37]

      Hong, Y. S.; Zhao, C. Z.; Xiao, Y.; Xu, R.; Xu, J. J.; Huang, J. Q.; Zhang, Q.; Yu, X.; Li, H. Batter. Supercaps 2019, 2 (7), 638. doi: 10.1002/batt.201900031  doi: 10.1002/batt.201900031

    38. [38]

      Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y.; et al. Science 2017, 358 (6362), 506. doi: 10.1126/science.aam6014  doi: 10.1126/science.aam6014

    39. [39]

      Ju, Z.; Nai, J.; Wang, Y.; Liu, T.; Zheng, J.; Yuan, H.; Sheng, O.; Jin, C.; Zhang, W.; Jin, Z.; et al. Nat. Commun. 2020, 11 (1), 488. doi: 10.1038/s41467-020-14358-1  doi: 10.1038/s41467-020-14358-1

    40. [40]

      Sheng, O.; Zheng, J.; Ju, Z.; Jin, C.; Wang, Y.; Chen, M.; Nai, J.; Liu, T.; Zhang, W.; Liu, Y.; Tao, X. Adv. Mater. 2020, 32 (34), 2000223. doi: 10.1002/adma.202000223  doi: 10.1002/adma.202000223

    41. [41]

      Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560 (7718), 345. doi: 10.1038/s41586-018-0397-3  doi: 10.1038/s41586-018-0397-3

    42. [42]

      Wang, X.; Zhang, M.; Alvarado, J.; Wang, S.; Sina, M.; Lu, B.; Bouwer, J.; Xu, W.; Xiao, J.; Zhang, J. G.; et al. Nano Lett. 2017, 17 (12), 7606. doi: 10.1021/acs.nanolett.7b03606  doi: 10.1021/acs.nanolett.7b03606

    43. [43]

      Cohen, Y. S.; Cohen, Y.; Aurbach, D. J. Phys. Chem. B 2000, 104 (51), 12282. doi: 10.1021/jp002526b  doi: 10.1021/jp002526b

    44. [44]

      Kitta, M.; Sano, H. Langmuir 2017, 33 (8), 1861. doi: 10.1021/acs.langmuir.6b04651  doi: 10.1021/acs.langmuir.6b04651

    45. [45]

      Zhang, L.; Yang, T.; Du, C.; Liu, Q.; Tang, Y.; Zhao, J.; Wang, B.; Chen, T.; Sun, Y.; Jia, P.; et al. Nat. Nanotechnol. 2020, 15 (2), 94. doi: 10.1038/s41565-019-0604-x  doi: 10.1038/s41565-019-0604-x

    46. [46]

      Arruda, T. M.; Lawton, J. S.; Kumar, A.; Unocic, R. R.; Kravchenko, I. I.; Zawodzinski, T. A.; Jesse, S.; Kalinin, S. V.; Balke, N. ECS Electrochem. Lett. 2013, 3 (1), A4. doi: 10.1149/2.003401eel  doi: 10.1149/2.003401eel

    47. [47]

      Li, Q.; Pan, H.; Li, W.; Wang, Y.; Wang, J.; Zheng, J.; Yu, X.; Li, H.; Chen, L. ACS Energy Lett. 2018, 3 (9), 2259. doi: 10.1021/acsenergylett.8b01244  doi: 10.1021/acsenergylett.8b01244

    48. [48]

      Zeng, Z.; Liang, W. I.; Liao, H. G.; Xin, H. L.; Chu, Y. H.; Zheng, H. Nano Lett. 2014, 14 (4), 1745. doi: 10.1021/nl403922u  doi: 10.1021/nl403922u

    49. [49]

      Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; Xu, W.; Wang, C. M.; et al. Nano Lett. 2015, 15 (3), 2168. doi: 10.1021/acs.nanolett.5b00175  doi: 10.1021/acs.nanolett.5b00175

    50. [50]

      Ghassemi, H.; Au, M.; Chen, N.; Heiden, P. A.; Yassar, R. S. Appl. Phys. Lett. 2011, 99 (12), 123113. doi: 10.1063/1.3643035  doi: 10.1063/1.3643035

    51. [51]

      Sacci, R. L.; Black, J. M.; Balke, N.; Dudney, N. J.; More, K. L.; Unocic, R. R. Nano Lett. 2015, 15 (3), 2011. doi: 10.1021/nl5048626  doi: 10.1021/nl5048626

    52. [52]

      Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Nano Energy 2017, 32, 271. doi: 10.1016/j.nanoen.2016.12.001  doi: 10.1016/j.nanoen.2016.12.001

    53. [53]

      Leenheer, A. J.; Jungjohann, K. L.; Zavadil, K. R.; Sullivan, J. P.; Harris, C. T. ACS Nano 2015, 9 (4), 4379. doi: 10.1021/acsnano.5b00876  doi: 10.1021/acsnano.5b00876

    54. [54]

      Frisco, S.; Liu, D.; Kumar, A.; Whitacre, J. F.; Love, C. T.; Swider-Lyons, K.; Litster, S. ACS Appl. Mater. Interfaces 2017, 9 (22), 18748. doi: 10.1021/acsami.7b03003  doi: 10.1021/acsami.7b03003

    55. [55]

      Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X.; et al. Nano Energy 2019, 63, 103895. doi: 10.1016/j.nanoen.2019.103895  doi: 10.1016/j.nanoen.2019.103895

    56. [56]

      Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Chem. Mater. 2015, 27 (18), 6457. doi: 10.1021/acs.chemmater.5b02789  doi: 10.1021/acs.chemmater.5b02789

    57. [57]

      Rong, G.; Zhang, X.; Zhao, W.; Qiu, Y.; Liu, M.; Ye, F.; Xu, Y.; Chen, J.; Hou, Y.; Li, W.; et al. Adv. Mater. 2017, 29 (13), 1606187. doi: 10.1002/adma.201606187  doi: 10.1002/adma.201606187

    58. [58]

      Eastwood, D. S.; Bayley, P. M.; Chang, H. J.; Taiwo, O. O.; Vila-Comamala, J.; Brett, D. J. L.; Rau, C.; Withers, P. J.; Shearing, P. R.; Grey, C. P.; Lee, P. D. Chem. Commun. 2015, 51 (2), 266. doi: 10.1039/C4CC03187C  doi: 10.1039/C4CC03187C

    59. [59]

      Steiger, J.; Richter, G.; Wenk, M.; Kramer, D.; Mönig, R. Electrochem. Commun. 2015, 50, 11. doi: 10.1016/j.elecom.2014.11.002  doi: 10.1016/j.elecom.2014.11.002

    60. [60]

      Li, Q.; Quan, B.; Li, W.; Lu, J.; Zheng, J.; Yu, X.; Li, J.; Li, H. Nano Energy 2018, 45, 463. doi: 10.1016/j.nanoen.2018.01.019  doi: 10.1016/j.nanoen.2018.01.019

    61. [61]

      Wan, G.; Guo, F.; Li, H.; Cao, Y.; Ai, X.; Qian, J.; Li, Y.; Yang, H. ACS Appl. Mater. Interfaces 2018, 10 (1), 593. doi: 10.1021/acsami.7b14662  doi: 10.1021/acsami.7b14662

    62. [62]

      Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P. ACS Central Sci. 2016, 2 (11), 790. doi: 10.1021/acscentsci.6b00260  doi: 10.1021/acscentsci.6b00260

    63. [63]

      Sanchez, A. J.; Kazyak, E.; Chen, Y.; Chen, K. H.; Pattison, E. R.; Dasgupta, N. P. ACS Energy Lett. 2020, 5 (3), 994. doi: 10.1021/acsenergylett.0c00215  doi: 10.1021/acsenergylett.0c00215

    64. [64]

      Kazyak, E.; Garcia-Mendez, R.; LePage, W. S.; Sharafi, A.; Davis, A. L.; Sanchez, A. J.; Chen, K. H.; Haslam, C.; Sakamoto, J.; Dasgupta, N. P. Matter 2020, 2 (4), 1025. doi: 10.1016/j.matt.2020.02.008  doi: 10.1016/j.matt.2020.02.008

    65. [65]

      Wang, C.; Gong, Y.; Dai, J.; Zhang, L.; Xie, H.; Pastel, G.; Liu, B.; Wachsman, E.; Wang, H.; Hu, L. J. Am. Chem. Soc. 2017, 139 (40), 14257. doi: 10.1021/jacs.7b07904  doi: 10.1021/jacs.7b07904

    66. [66]

      Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. Nat. Energy 2019, 4 (3), 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    67. [67]

      Schmitz, R.; Ansgar Müller, R.; Wilhelm Schmitz, R.; Schreiner, C.; Kunze, M.; Lex-Balducci, A.; Passerini, S.; Winter, M. J. Power Sources 2013, 233, 110. doi: 10.1016/j.jpowsour.2013.01.105  doi: 10.1016/j.jpowsour.2013.01.105

    68. [68]

      Cheng, Q.; Wei, L.; Liu, Z.; Ni, N.; Sang, Z.; Zhu, B.; Xu, W.; Chen, M.; Miao, Y.; Chen, L. Q.; et al. Nat. Commun. 2018, 9 (1), 2942. doi: 10.1038/s41467-018-05289-z  doi: 10.1038/s41467-018-05289-z

    69. [69]

      Sun, F.; Zielke, L.; Markötter, H.; Hilger, A.; Zhou, D.; Moroni, R.; Zengerle, R.; Thiele, S.; Banhart, J.; Manke, I. ACS Nano 2016, 10 (8), 7990. doi: 10.1021/acsnano.6b03939  doi: 10.1021/acsnano.6b03939

    70. [70]

      Sun, F.; Moroni, R.; Dong, K.; Markötter, H.; Zhou, D.; Hilger, A.; Zielke, L.; Zengerle, R.; Thiele, S.; Banhart, J.; Manke, I. ACS Energy Lett. 2017, 2 (1), 94. doi: 10.1021/acsenergylett.6b00589  doi: 10.1021/acsenergylett.6b00589

    71. [71]

      Sun, F.; Osenberg, M.; Dong, K.; Zhou, D.; Hilger, A.; Jafta, C. J.; Risse, S.; Lu, Y.; Markötter, H.; Manke, I. ACS Energy Lett. 2018, 3 (2), 356. doi: 10.1021/acsenergylett.7b01254  doi: 10.1021/acsenergylett.7b01254

    72. [72]

      Dong, K.; Osenberg, M.; Sun, F.; Markötter, H.; Jafta, C. J.; Hilger, A.; Arlt, T.; Banhart, J.; Manke, I. Nano Energy 2019, 62, 11. doi: 10.1016/j.nanoen.2019.05.022  doi: 10.1016/j.nanoen.2019.05.022

    73. [73]

      Sun, F.; Zhou, D.; He, X.; Osenberg, M.; Dong, K.; Chen, L.; Mei, S.; Hilger, A.; Markötter, H.; Lu, Y.; et al. ACS Energy Lett. 2020, 5 (1), 152. doi: 10.1021/acsenergylett.9b02424  doi: 10.1021/acsenergylett.9b02424

    74. [74]

      Louli, A. J.; Eldesoky, A.; Weber, R.; Genovese, M.; Coon, M.; deGooyer, J.; Deng, Z.; White, R. T.; Lee, J.; Rodgers, T.; et al. Nat. Energy 2020. doi: 10.1038/s41560-020-0668-8  doi: 10.1038/s41560-020-0668-8

    75. [75]

      Yu, S. H.; Huang, X.; Brock, J. D.; Abruña, H. D. J. Am. Chem. Soc. 2019, 141 (21), 8441. doi: 10.1021/jacs.8b13297  doi: 10.1021/jacs.8b13297

    76. [76]

      Hartmann, P.; Leichtweiss, T.; Busche, M. R.; Schneider, M.; Reich, M.; Sann, J.; Adelhelm, P.; Janek, J. J. Phys. Chem. C 2013, 117 (41), 21064. doi: 10.1021/jp4051275  doi: 10.1021/jp4051275

    77. [77]

      Fiedler, C.; Luerssen, B.; Rohnke, M.; Sann, J.; Janek, J. J. Electrochem. Soc. 2017, 164 (14), A3742. doi: 10.1149/2.0851714jes  doi: 10.1149/2.0851714jes

    78. [78]

      Periyapperuma, K.; Arca, E.; Harvey, S.; Ban, C.; Burrell, A.; MacFarlane, D. R.; Pozo-Gonzalo, C.; Forsyth, M.; Howlett, P. C. J. Mater. Chem. A 2020, 8 (7), 3574. doi: 10.1039/C9TA12004A  doi: 10.1039/C9TA12004A

    79. [79]

      Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. J. Am. Chem. Soc. 2015, 137 (48), 15209. doi: 10.1021/jacs.5b09385  doi: 10.1021/jacs.5b09385

    80. [80]

      Ilott, A. J.; Mohammadi, M.; Chang, H. J.; Grey, C. P.; Jerschow, A. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (39), 10779. doi: 10.1073/pnas.1607903113  doi: 10.1073/pnas.1607903113

    81. [81]

      Chandrashekar, S.; Trease, N. M.; Chang, H. J.; Du, L. S.; Grey, C. P.; Jerschow, A. Nat. Mater. 2012, 11 (4), 311. doi: 10.1038/nmat3246  doi: 10.1038/nmat3246

    82. [82]

      Song, B.; Dhiman, I.; Carothers, J. C.; Veith, G. M.; Liu, J.; Bilheux, H. Z.; Huq, A. ACS Energy Lett. 2019, 4 (10), 2402. doi: 10.1021/acsenergylett.9b01652  doi: 10.1021/acsenergylett.9b01652

    83. [83]

      Zhang, Y.; Chandran, K. S. R.; Jagannathan, M.; Bilheux, H. Z.; Bilheux, J. C. J. Electrochem. Soc. 2017, 164 (2), A28. doi: 10.1149/2.0051702jes  doi: 10.1149/2.0051702jes

    84. [84]

      Yue, J. L.; Zhou, Y. N.; Shi, S. Q.; Shadike, Z.; Huang, X. Q.; Luo, J.; Yang, Z. Z.; Li, H.; Gu, L.; Yang, X. Q.; Fu, Z. W. Sci. Rep. 2015, 5 (1), 8810. doi: 10.1038/srep08810  doi: 10.1038/srep08810

    85. [85]

      Gong, Y.; Zhang, J.; Jiang, L.; Shi, J. A.; Zhang, Q.; Yang, Z.; Zou, D.; Wang, J.; Yu, X.; Xiao, R.; et al. J. Am. Chem. Soc. 2017, 139 (12), 4274. doi: 10.1021/jacs.6b13344  doi: 10.1021/jacs.6b13344

    86. [86]

      Ren, J.; Wang, Y.; Zhao, J.; Tan, S.; Petek, H. J. Am. Chem. Soc. 2019, 141 (10), 4438. doi: 10.1021/jacs.8b13843  doi: 10.1021/jacs.8b13843

    87. [87]

      Seidl, L.; Bucher, N.; Chu, E.; Hartung, S.; Martens, S.; Schneider, O.; Stimming, U. Energy Environ. Sci. 2017, 10 (7), 1631. doi: 10.1039/C7EE00546F  doi: 10.1039/C7EE00546F

    88. [88]

      Liu, Q.; Yu, Q.; Li, S.; Wang, S.; Zhang, L.; Cai, B.; Zhou, D.; Li, B. Energy Storage Mater. 2020, 25, 613. doi: 10.1016/j.ensm.2019.09.023  doi: 10.1016/j.ensm.2019.09.023

    89. [89]

      Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Solid State Ionics 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001  doi: 10.1016/j.ssi.2015.06.001

    90. [90]

      Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Nat. Mater. 2014, 13 (1), 69. doi: 10.1038/nmat3793  doi: 10.1038/nmat3793

    91. [91]

      Devaux, D.; Harry, K. J.; Parkinson, D. Y.; Yuan, R.; Hallinan, D. T.; MacDowell, A. A.; Balsara, N. P. J. Electrochem. Soc. 2015, 162 (7), A1301. doi: 10.1149/2.0721507jes  doi: 10.1149/2.0721507jes

    92. [92]

      Maslyn, J. A.; Loo, W. S.; McEntush, K. D.; Oh, H. J.; Harry, K. J.; Parkinson, D. Y.; Balsara, N. P. J. Phys. Chem. C 2018, 122 (47), 26797. doi: 10.1021/acs.jpcc.8b06355  doi: 10.1021/acs.jpcc.8b06355

    93. [93]

      Doux, J.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S. Adv. Energy Mater. 2020, 10 (1), 1903253. doi: 10.1002/aenm.201903253  doi: 10.1002/aenm.201903253

    94. [94]

      Bhattacharyya, R.; Key, B.; Chen, H.; Best, A. S.; Hollenkamp, A. F.; Grey, C. P. Nat. Mater. 2010, 9 (6), 504. doi: 10.1038/nmat2764  doi: 10.1038/nmat2764

    95. [95]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    14. [14]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    15. [15]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    16. [16]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    17. [17]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

Metrics
  • PDF Downloads(34)
  • Abstract views(2063)
  • HTML views(653)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return