Citation: Zhao Yumeng, Ren Lingxiao, Wang Aoxuan, Luo Jiayan. Composite Anodes for Lithium Metal Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200809. doi: 10.3866/PKU.WHXB202008090 shu

Composite Anodes for Lithium Metal Batteries


  • Author Bio:


    Prof. Jiayan Luo received his BS/MS in Chemistry from Fudan University in 2006 and 2009, respectively. In 2013, he obtained his Ph.D from Northwestern University in the US. After working at the Massachusetts Institute of Technology (MIT), he started his independent career in the School of Chemical Engineering at Tianjin University in 2014. His current interests focus on light metals for energy storage and additive manufacturing. He is a recipient of the International Society of Electrochemistry Applied Electrochemistry Award, Electrochemical Society Nanocarbon Young Investigator Award, Energy Storage Materials Young Scientist Award, Chinese Chemical Society Young Chemist Award, etc
  • Corresponding author: Luo Jiayan, jluo@tju.edu.cn
  • Received Date: 31 August 2020
    Revised Date: 23 September 2020
    Accepted Date: 23 September 2020
    Available Online: 9 October 2020

    Fund Project: the National Natural Science Foundation of China 51872196the Natural Science Foundation of Tianjin, China 17JCJQJC44100the National Postdoctoral Program for Innovative Talents, China BX20190232The project was supported by the National Natural Science Foundation of China (51872196), the Natural Science Foundation of Tianjin, China (17JCJQJC44100), and the National Postdoctoral Program for Innovative Talents, China (BX20190232)

  • The applications of lithium-ion batteries have been limited because their energy density can no longer meet the requirements of an emerging energy society. Lithium metal batteries (LMBs) are being considered as potential candidate for next-generation energy storage systems owing to the high theoretical specific capacity and low electrochemical potential of lithium metal. However, the commercialization of LMB is limited due to several challenges, such as uncontrollable formation of dendrites, unstable solid electrolyte interface, and infinite anode volume change, which can lead to grievous catastrophe. In this study, several typical mechanisms of lithium dendrite formation and growth are summarized. The results suggest that a smaller current density, greater Li+ transference number, higher mechanical strength of the electrolyte, and a more homogeneous distribution of Li+ on the substrate are conducive to the uniform deposition morphology of lithium metal. In view of these results, combined with the researches on LMBs conducted in recent years, composite anodes can be summarized into three level from internal to external. (ⅰ) Internal composite of lithium metal anode: the scaffolds composited with lithium metal are classified as non-conductive (NC), electron-conductive (EC), ion-conductive (IC), and mixed ion and electron-conductive (MIEC) scaffolds. Composited with NC scaffolds, the tip effect can be weakened through the interaction between polar functional groups and Li+. The composite of lithium metal and EC scaffolds can effectively reduce the local current density, while IC scaffolds can increase the ion flux. However, the performance of LMBs may be hindered by the insulation of electrons or Li+ at high rates. In comparison, MIEC scaffolds can provide fast ion/electron transfer channels for the deposition or dissolution of lithium metal, which is beneficial for the electrochemical performance of LMBs even at high rates. (ⅱ) Internal composite of LMB: Compared with liquid electrolytes, solid-state electrolytes (SSEs) and quasi-solid-state electrolytes are much safer. However, their interfacial contact with lithium metal anodes has been seriously criticized. Lithium metal anodes can be composited with SSEs or quasi-solid-state electrolytes to optimize the interface contact performance and reduce the interface resistance, thereby promoting the development of solid-state batteries. (ⅲ) Composite of internal environment and external operating conditions: Composited with external physical fields, such as electric fields, magnetic fields, and temperature fields, the distribution of Li+ can be homogeneous and the initial nucleation process can be regulated. Overall, this review summarizes several composite anodes that have greatly optimized the performance of LMBs and highlights the potential of multi-level composites for applications in lithium metal anodes.
  • 加载中
    1. [1]

      Grande, L.; Paillard, E.; Hassoun, J.; Park, J.; Lee, Y.; Sun, Y.; Passerini, S.; Scrosati, B. Adv. Mater. 2015, 27, 784. doi: 10.1002/adma.201403064  doi: 10.1002/adma.201403064

    2. [2]

      Zhang, X.; Wang, A.; Liu, X.; Luo, J. Acc. Chem. Res. 2019, 52, 3223. doi: 10.1021/acs.accounts.9b00437  doi: 10.1021/acs.accounts.9b00437

    3. [3]

      Patil, A.; Patil, V.; Wook Shin, D.; Choi, J.; Paik, D.; Yoon, S. Mater. Res. Bull. 2008, 43, 1913. doi: 10.1016/j.materresbull.2007.08.031  doi: 10.1016/j.materresbull.2007.08.031

    4. [4]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    5. [5]

      Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141  doi: 10.1038/nenergy.2016.141

    6. [6]

      Zhang, Z.; Peng, Z.; Zheng, J.; Wang, S.; Liu, Z.; Bi, Y.; Chen, Y.; Wu, G.; Li, H.; Cui, P.; et al. J. Mater. Chem. A 2017, 5, 9339. doi: 10.1039/C7TA02144E  doi: 10.1039/C7TA02144E

    7. [7]

      Ye, H.; Xin, S.; Yin, Y.; Li, J.; Guo, Y.; Wan, L. J. Am. Chem. Soc. 2017, 139, 5916. doi: 10.1021/jacs.7b01763  doi: 10.1021/jacs.7b01763

    8. [8]

      Liu, S.; Zhang, X.; Li, R.; Gao, L.; Luo, J. Energy Storage Mater. 2018, 14, 143. doi: 10.1016/j.ensm.2018.03.004  doi: 10.1016/j.ensm.2018.03.004

    9. [9]

      Ma, Q.; Zhang, X.; Wang, A.; Xia, Y.; Liu, X.; Luo, J. Adv. Funct. Mater. 2020, 30, 2002824. doi: 10.1002/adfm.202002824  doi: 10.1002/adfm.202002824

    10. [10]

      Wang, C.; Wang, A.; Ren, L.; Guan, X.; Wang, D.; Dong, A.; Zhang, C.; Li, G.; Luo, J. Adv. Funct. Mater. 2019, 29, 1905940. doi: 10.1002/adfm.201905940  doi: 10.1002/adfm.201905940

    11. [11]

      Ren, L.; Wang, A.; Zhang, X.; Li, G.; Liu, X.; Luo, J. Adv. Energy Mater. 2019, 10, 1902932. doi: 10.1002/aenm.201902932  doi: 10.1002/aenm.201902932

    12. [12]

      Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A. Nat. Energy 2016, 1, 16114. doi: 10.1038/nenergy.2016.114  doi: 10.1038/nenergy.2016.114

    13. [13]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotech. 2016, 11, 626. doi: 10.1038/nnano.2016.32  doi: 10.1038/nnano.2016.32

    14. [14]

      Ye, H.; Zhang, Y.; Yin, Y.; Cao, F.; Guo, Y. ACS Cent. Sci. 2020, 6, 661. doi: 10.1021/acscentsci.0c00351  doi: 10.1021/acscentsci.0c00351

    15. [15]

      Ye, H.; Xin, S.; Yin, Y.; Guo, Y. Adv. Energy Mater. 2017, 7, 1700530. doi: 10.1002/aenm.201700530  doi: 10.1002/aenm.201700530

    16. [16]

      Shi, P.; Zhang, X. Q.; Shen, X.; Zhang, R.; Liu, H.; Zhang, Q. Adv. Mater. Technol-US. 2020, 5, 1900806. doi: 10.1002/admt.201900806  doi: 10.1002/admt.201900806

    17. [17]

      Zhang, R.; Cheng, X.; Zhao, C.; Peng, H.; Shi, J.; Huang, J.; Wang, J.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi: 10.1002/adma.201504117  doi: 10.1002/adma.201504117

    18. [18]

      Guan, X.; Wang, A.; Liu, S.; Li, G.; Liang, F.; Yang, Y.; Liu, X.; Luo, J. Small 2018, 14, 1801423. doi: 10.1002/smll.201801423  doi: 10.1002/smll.201801423

    19. [19]

      Cheng, X.; Zhang, R.; Zhao, C.; Wei, F.; Zhang, J.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi: 10.1002/advs.201500213  doi: 10.1002/advs.201500213

    20. [20]

      Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez Martínez, L. M.; Armand, M. Angew. Chem. Int. Ed. 2018, 130, 15220. doi: 10.1002/ange.201712702  doi: 10.1002/ange.201712702

    21. [21]

      Li, N.; Yin, Y.; Yang, C.; Guo, Y. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    22. [22]

      Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. Adv. Mater. 2017, 29, 1605531. doi: 10.1002/adma.201605531  doi: 10.1002/adma.201605531

    23. [23]

      Wang, A.; Zhang, X.; Yang, Y.; Huang, J.; Liu, X.; Luo, J. Chem 2018, 4, 2192. doi: 10.1016/j.chempr.2018.06.017  doi: 10.1016/j.chempr.2018.06.017

    24. [24]

      Liu, S.; Wang, A.; Li, Q.; Wu, J.; Chiou, K.; Huang, J.; Luo, J. Joule 2018, 2, 184. doi: 10.1016/j.joule.2017.11.004  doi: 10.1016/j.joule.2017.11.004

    25. [25]

      Guo, W.; Liu, S.; Guan, X.; Zhang, X.; Liu, X.; Luo, J. Adv. Energy Mater. 2019, 9, 1900193. doi: 10.1002/aenm.201900193  doi: 10.1002/aenm.201900193

    26. [26]

      Zhang, X.; Lv, R.; Wang, A.; Guo, W.; Liu, X.; Luo, J. Angew. Chem. Int. Ed. 2018, 130, 15248. doi: 10.1002/ange.201808714  doi: 10.1002/ange.201808714

    27. [27]

      Tang, W.; Tang, S.; Guan, X.; Zhang, X.; Xiang, Q.; Luo, J. Adv. Funct. Mater. 2019, 29, 1900648. doi: 10.1002/adfm.201900648  doi: 10.1002/adfm.201900648

    28. [28]

      Tang, W.; Tang, S.; Zhang, C.; Ma, Q.; Xiang, Q.; Yang, Y.; Luo, J. Adv. Energy Mater. 2018, 8, 1800866. doi: 10.1002/aenm.201800866  doi: 10.1002/aenm.201800866

    29. [29]

      Gopalan, A.; Santhosh, P.; Manesh, K.; Nho, J.; Kim, S.; Hwang, C.; Lee, K. J. Membrane Sci. 2008, 325, 683. doi: 10.1016/j.memsci.2008.08.047  doi: 10.1016/j.memsci.2008.08.047

    30. [30]

      Zhang, W.; Tu, Z.; Qian, J.; Choudhury, S.; Archer, L. A.; Lu, Y. Small 2018, 14, 1703001. doi: 10.1002/smll.201703001  doi: 10.1002/smll.201703001

    31. [31]

      Goodenough, J. B. Energy Storage Mater. 2015, 1, 158. doi: 10.1016/j.ensm.2015.07.001  doi: 10.1016/j.ensm.2015.07.001

    32. [32]

      Chazalviel, J. N. Phys. Rev. A 1990, 42, 7355. doi: 10.1103/physreva.42.7355  doi: 10.1103/physreva.42.7355

    33. [33]

      Monroe, C.; Newman, J. J. Electrochem. Soc. 2005, 152, A396. doi: 10.1149/1.1850854  doi: 10.1149/1.1850854

    34. [34]

      Zuo, T.; Wu, X.; Yang, C.; Yin, Y.; Ye, H.; Li, N.; Guo, Y. Adv. Mater. 2017, 29, 1700389. doi: 10.1002/adma.201700389  doi: 10.1002/adma.201700389

    35. [35]

      Liang, Z.; Lin, D.; Zhao, J.; Lu, Z.; Liu, Y.; Liu, C.; Lu, Y.; Wang, H.; Yan, K.; Tao, X.; et al. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2862. doi: 10.1073/pnas.1518188113  doi: 10.1073/pnas.1518188113

    36. [36]

      Chi, S.; Liu, Y.; Song, W.; Fan, L.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1700348. doi: 10.1002/adfm.201700348  doi: 10.1002/adfm.201700348

    37. [37]

      Chen, K.; Sanchez, A. J.; Kazyak, E.; Davis, A. L.; Dasgupta, N. P. Adv. Energy Mater. 2019, 9, 1802534. doi: 10.1002/aenm.201802534  doi: 10.1002/aenm.201802534

    38. [38]

      Yang, C.; Yin, Y.; Zhang, S.; Li, N.; Guo, Y. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058  doi: 10.1038/ncomms9058

    39. [39]

      Lin, D.; Zhao, J.; Sun, J.; Yao, H.; Liu, Y.; Yan, K.; Cui, Y. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 4613. doi: 10.1073/pnas.1619489114  doi: 10.1073/pnas.1619489114

    40. [40]

      Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992  doi: 10.1038/ncomms10992

    41. [41]

      Yamaki, J.; Tobishima, S.; Hayashi, K.; Keiichi S.; Nemoto, Y.; Arakawa, M. J. Power Sources 1998, 74, 219. doi: 10.1016/S0378-7753(98)00067-6  doi: 10.1016/S0378-7753(98)00067-6

    42. [42]

      Huang, Y.; Chen, B.; Duan, J.; Yang, F.; Wang, T.; Wang, Z.; Yang, W.; Hu, C.; Luo, W.; Huang, Y. Angew. Chem. Int. Ed. 2020, 132, 3728. doi: 10.1002/ange.201914417  doi: 10.1002/ange.201914417

    43. [43]

      Kim, K. H.; Iriyama, Y.; Yamamoto, K.; Kumazaki, S.; Asaka, T.; Tanabe, K.; Fisher, C. A. J.; Hirayama, T.; Murugan, R.; Ogumi, Z. J. Power Sources 2011, 196, 764. doi: 10.1016/j.jpowsour.2010.07.073  doi: 10.1016/j.jpowsour.2010.07.073

    44. [44]

      Yang, C.; Zhang, L.; Liu, B.; Xu, S.; Hamann, T.; McOwen, D.; Dai, J.; Luo, W.; Gong, Y.; Wachsman, E. D.; et al. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3770. doi: 10.1073/pnas.1719758115  doi: 10.1073/pnas.1719758115

    45. [45]

      Zhang, Y.; Shi, Y.; Hu, X. C.; Wang, W. P.; Wen, R.; Xin, S.; Guo, Y. G. Adv. Energy Mater. 2019, 10, 1903325. doi: 10.1002/aenm.201903325  doi: 10.1002/aenm.201903325

    46. [46]

      Xu, S.; Mcowen, D. W.; Wang, C.; Zhang, L.; Luo, W.; Chen, C.; Li, Y.; Gong, Y.; Dai, J.; Kuang, Y.; et al. Nano Lett. 2018, 18, 3926. doi: 10.1021/acs.nanolett.8b01295  doi: 10.1021/acs.nanolett.8b01295

    47. [47]

      Liu, B.; Zhang, L.; Xu, S.; Mcowen, D. W.; Gong, Y.; Yang, C.; Pastel, G. R.; Xie, H.; Fu, K.; Dai, J.; et al. Energy Storage Mater. 2018, 14, 376. doi: 10.1016/j.ensm.2018.04.015  doi: 10.1016/j.ensm.2018.04.015

    48. [48]

      Liu, Y.; Lin, D.; Jin, Y.; Liu, K.; Tao, X.; Zhang, Q.; Zhang, X.; Cui, Y. Sci. Adv. 2017, 3, o713. doi: 10.1126/sciadv.aao0713  doi: 10.1126/sciadv.aao0713

    49. [49]

      Wang, D.; Zhang, W.; Zheng, W.; Cui, X.; Rojo, T.; Zhang, Q. Adv. Sci. 2017, 4, 1600168. doi: 10.1002/advs.201600168  doi: 10.1002/advs.201600168

    50. [50]

      Yun, Q.; He, Y.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q. Adv. Mater. 2016, 28, 6932. doi: 10.1002/adma.201601409  doi: 10.1002/adma.201601409

    51. [51]

      Li, Q.; Zhu, S.; Lu, Y. Adv. Funct. Mater. 2017, 27, 1606422. doi: 10.1002/adfm.201606422  doi: 10.1002/adfm.201606422

    52. [52]

      Liang, Z.; Zheng, G.; Liu, C.; Liu, N.; Li, W.; Yan, K.; Yao, H.; Hsu, P.; Chu, S.; Cui, Y. Nano Lett. 2015, 15, 2910. doi: 10.1021/nl5046318  doi: 10.1021/nl5046318

    53. [53]

      Cheng, X.; Hou, T.; Zhang, R.; Peng, H.; Zhao, C.; Huang, J.; Zhang, Q. Adv. Mater. 2016, 28, 2888. doi: 10.1002/adma.201506124  doi: 10.1002/adma.201506124

    54. [54]

      Yan, K.; Lu, Z.; Lee, H.; Xiong, F.; Hsu, P.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi: 10.1038/nenergy.2016.10  doi: 10.1038/nenergy.2016.10

    55. [55]

      Wang, S.; Yin, Y.; Zuo, T.; Dong, W.; Li, J.; Shi, J.; Zhang, C.; Li, N.; Li, C.; Guo, Y. Adv. Mater. 2017, 29, 1703729. doi: 10.1002/adma.201703729  doi: 10.1002/adma.201703729

    56. [56]

      Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F.; et al. Angew. Chem. Int. Ed. 2019, 58, 1094. doi: 10.1002/anie.201811955  doi: 10.1002/anie.201811955

    57. [57]

      Tang, W.; Yin, X.; Kang, S.; Chen, Z.; Tian, B.; Teo, S. L.; Wang, X.; Chi, X.; Loh, K. P.; Lee, H.; et al. Adv. Mater. 2018, 30, 1801745. doi: 10.1002/adma.201801745  doi: 10.1002/adma.201801745

    58. [58]

      Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. Nat. Energy 2017, 2, 17119. doi: 10.1038/nenergy.2017.119  doi: 10.1038/nenergy.2017.119

    59. [59]

      Yu, Y.; Huang, W.; Song, X.; Wang, W.; Hou, Z.; Zhao, X.; Deng, K.; Ju, H.; Sun, Y.; Zhao, Y.; et al. Electrochim. Acta 2019, 294, 413. doi: 10.1016/j.electacta.2018.10.117  doi: 10.1016/j.electacta.2018.10.117

    60. [60]

      Liu, L.; Yin, Y.; Li, J.; Li, N.; Zeng, X.; Ye, H.; Guo, Y.; Wan, L. Joule 2017, 1, 563. doi: 10.1016/j.joule.2017.06.004  doi: 10.1016/j.joule.2017.06.004

    61. [61]

      Salvatierra, R. V.; López, G. A.; Jalilov, A. S.; Yoon, J.; Wu, G.; Tsai, A. L.; Tour, J. M. Adv. Mater. 2018, 30, 1803869. doi: 10.1002/adma.201803869  doi: 10.1002/adma.201803869

    62. [62]

      Kim, H.; Chou, C.; Ekerdt, J. G.; Hwang, G. S. J. Phys. Chem. C 2010, 115, 2514. doi: 10.1021/jp1083899  doi: 10.1021/jp1083899

    63. [63]

      Ma, J.; Wang, C.; Wroblewski, S. J. Power Sources 2007, 164, 849. doi: 10.1016/j.jpowsour.2006.11.024  doi: 10.1016/j.jpowsour.2006.11.024

    64. [64]

      Zhang, C.; Liu, S.; Li, G.; Zhang, C.; Liu, X.; Luo, J. Adv. Mater. 2018, 30, 1801328. doi: 10.1002/adma.201801328  doi: 10.1002/adma.201801328

    65. [65]

      Yan, C.; Cheng, X.; Yao, Y.; Shen, X.; Li, B.; Li, W.; Zhang, R.; Huang, J.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, 1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    66. [66]

      Yang, C.; Xie, H.; Ping, W.; Fu, K.; Liu, B.; Rao, J.; Dai, J.; Wang, C.; Pastel, G.; Hu, L. Adv. Mater. 2018, 31, 1804815. doi: 10.1002/adma.201804815  doi: 10.1002/adma.201804815

    67. [67]

      Murugan, R.; Thangadurai, V.; Weppner, W. Angew. Chem. Int. Ed. 2007, 46, 7778. doi: 10.1002/anie.200701144  doi: 10.1002/anie.200701144

    68. [68]

      Gu, L. Acta Phys. -Chim. Sin. 2018, 34, 331.  doi: 10.3866/PKU.WHXB201709281

    69. [69]

      Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; et al. Nat. Mater. 2013, 12, 452. doi: 10.1038/nmat3602  doi: 10.1038/nmat3602

    70. [70]

      Fu, K. K.; Gong, Y.; Liu, B.; Zhu, Y.; Xu, S.; Yao, Y.; Luo, W.; Wang, C.; Lacey, S. D.; Dai, J.; et al. Sci. Adv. 2017, 3, e1601659. doi: 10.1126/sciadv.1601659  doi: 10.1126/sciadv.1601659

    71. [71]

      Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. ACS Appl. Mater. Interfaces 2016, 8, 10617. doi: 10.1021/acsami.6b00831  doi: 10.1021/acsami.6b00831

    72. [72]

      Sharafi, A.; Kazyak, E.; Davis, A. L.; Yu, S.; Thompson, T.; Siegel, D. J.; Dasgupta, N. P.; Sakamoto, J. Chem. Mater. 2017, 29, 7961. doi: 10.1021/acs.chemmater.7b03002  doi: 10.1021/acs.chemmater.7b03002

    73. [73]

      Li, Y.; Zhou, W.; Chen, X.; Lü, X.; Cui, Z.; Xin, S.; Xue, L.; Jia, Q.; Goodenough, J. B. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 13313. doi: 10.1073/pnas.1615912113  doi: 10.1073/pnas.1615912113

    74. [74]

      Yu, R.; Du, Q.; Zou, B.; Wen, Z.; Chen, C. J. Power Sources 2016, 306, 623. doi: 10.1016/j.jpowsour.2015.12.065  doi: 10.1016/j.jpowsour.2015.12.065

    75. [75]

      Zheng, J.; Tang, M.; Hu, Y. Angew. Chem. Int. Ed. 2016, 128, 12726. doi: 10.1002/ange.201607539  doi: 10.1002/ange.201607539

    76. [76]

      Trevey, J. E.; Jung, Y. S.; Lee, S. Electrochim. Acta 2011, 56, 4243. doi: 10.1016/j.electacta.2011.01.086  doi: 10.1016/j.electacta.2011.01.086

    77. [77]

      Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Energy Environ. Sci. 2016, 9, 3221. doi: 10.1039/C6EE01674J  doi: 10.1039/C6EE01674J

    78. [78]

      Wang, D.; Zhang, W.; Zheng, W.; Cui, X.; Rojo, T.; Zhang, Q. Adv. Sci. 2017, 4, 1600168. doi: 10.1002/advs.201600168  doi: 10.1002/advs.201600168

    79. [79]

      Monzon, L. M. A.; Coey, J. M. D. Electrochem. Commun. 2014, 42, 38. doi: 10.1016/j.elecom.2014.02.006  doi: 10.1016/j.elecom.2014.02.006

    80. [80]

      Chopart, J. P.; Aaboubi, O.; Merienne, E.; Olivier, A.; Amblard, J. Energy Convers. Manage. 2002, 43, 365. doi: 10.1016/S0196-8904(01)00110-8  doi: 10.1016/S0196-8904(01)00110-8

    81. [81]

      Wang, A.; Deng, Q.; Deng, L.; Guan, X.; Luo, J. Adv. Funct. Mater. 2019, 29, 1902630. doi: 10.1002/adfm.201902630  doi: 10.1002/adfm.201902630

    82. [82]

      Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng, G.; et al. Adv. Energy Mater. 2019, 9, 1900260. doi: 10.1002/aenm.201900260  doi: 10.1002/aenm.201900260

    83. [83]

      Chen, Y.; Dou, X.; Wang, K.; Han, Y. Adv. Energy Mater. 2019, 9, 1900019. doi: 10.1002/aenm.201900019  doi: 10.1002/aenm.201900019

    84. [84]

      Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359, 1513. doi: 10.1126/science.aap8787  doi: 10.1126/science.aap8787

    85. [85]

      Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. Angew. Chem. Int. Ed. 2019, 58, 11364. doi: 10.1002/ange.201905251  doi: 10.1002/ange.201905251

  • 加载中
    1. [1]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    2. [2]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    3. [3]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    4. [4]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    5. [5]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    6. [6]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    7. [7]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    8. [8]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    9. [9]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    10. [10]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    11. [11]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    12. [12]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    13. [13]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    14. [14]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    15. [15]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    18. [18]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    19. [19]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    20. [20]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

Metrics
  • PDF Downloads(13)
  • Abstract views(259)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return