Citation: Huang Fanyang, Jie Yulin, Li Xinpeng, Chen Yawei, Cao Ruiguo, Zhang Genqiang, Jiao Shuhong. Correlation between Li Plating Morphology and Reversibility of Li Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200808. doi: 10.3866/PKU.WHXB202008081 shu

Correlation between Li Plating Morphology and Reversibility of Li Metal Anode

  • Corresponding author: Jiao Shuhong, jiaosh@ustc.edu.cn
  • These authors contribute equally to this work.
  • Received Date: 27 August 2020
    Revised Date: 27 September 2020
    Accepted Date: 28 September 2020
    Available Online: 19 October 2020

    Fund Project: the National Natural Science Foundation of China 21776265the National Key Research and Development Program of China 2017YFA0206700the Anhui Provincial Natural Science Foundation 1908085ME122The project was supported by the National Key Research and Development Program of China (2017YFA0402802, 2017YFA0206700), the National Natural Science Foundation of China (51902304, 21776265), the Anhui Provincial Natural Science Foundation (1908085ME122), the Fundamental Research Funds for the Central Universities, China (Wk2060140026)the Fundamental Research Funds for the Central Universities, China Wk2060140026the National Key Research and Development Program of China 2017YFA0402802the National Natural Science Foundation of China 51902304

  • Commercialization of high-energy rechargeable batteries can promote the rapid development of portable electronics and electric vehicles. Li metal batteries (LMBs) have attracted considerable attention owing to their high theoretical energy density. Li metal anodes (LMAs) used in LMBs suffer from the disadvantages of high reactivity, interface instability and dendrite growth, which impede the practical development of the LMBs. Coulombic efficiency (CE), which depends on the type of electrolyte used, is one of the key parameters for evaluating the reversibility of battery systems. Herein, we use atomic force microscopy (AFM) to study the initial plating stages and growth of the lithium metal in different electrolytes, such as 1 mol·L-1 lithium hexafluorophosphate (LiPF6)-ethylene carbonate/dimethyl carbonate (EC/DMC, 1 : 1, V/V), 1 mol·L-1 LiPF6-EC/DMC (1 : 1, V/V) + 5% (mass fraction, w) fluoroethylene carbonate (FEC), 1 mol·L-1 lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-1, 3-dioxolane/dimethoxyethane (DOL/DME, 1 : 1, V/V) + 2% (w) lithium nitrate (LiNO3), and 4 mol·L-1 lithium bis(fluorosulfonyl)imide (LiFSI)-DME, and further investigate the correlation between the CE of LMA and Li plating morphology. There are two types of Li morphologies in these electrolytes: strip-like and particle-like morphology. Since the specific surface area of particle-like deposits is much smaller than that of strip-like deposits, the particle-like morphology facilitates higher CE. (1) In the conventional carbonate electrolyte (1 mol·L-1 LiPF6-EC/DMC), Li predominantly forms strip-like deposits with large specific surface area, consuming much active Li (due to the side reaction between Li and the electrolyte). The dendrite morphology of the Li deposits lead to the formation of dead Li during the stripping process, which results in low CE. (2) FEC, an effective additive often used in carbonate electrolyte, can induce the transformation of Li plating morphology from strip-like to particle-like morphology. Therefore, the CE in FEC-containing electrolytes has been significantly improved with stable electrode/electrolyte interphase and small specific surface area of deposited Li. (3) In ether electrolytes, which have better compatibility with LMAs than carbonate electrolytes, Li metal exhibits a particle-like morphology and achieves high CE. (4) In the highly concentrated electrolyte (4 mol·L-1 LiFSI-DME), Li metal grows into large particles without dendrite formation, which hampers the parasitic side reactions, and further enhances CE.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    2. [2]

      Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Nat. Energy 2018, 3, 279. doi: 10.1038/s41560-018-0108-1  doi: 10.1038/s41560-018-0108-1

    3. [3]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    4. [4]

      Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y.; et al. Nat. Commun. 2020, 11, 93. doi: 10.1038/s41467-019-13774-2  doi: 10.1038/s41467-019-13774-2

    5. [5]

      Yu, X.; Wang, L.; Ma, J.; Sun, X.; Zhou, X.; Cui, G. Adv. Energy Mater. 2020, 10, 1903939. doi: 10.1002/aenm.201903939  doi: 10.1002/aenm.201903939

    6. [6]

      Lim, H. D.; Lee, B.; Bae, Y.; Park, H.; Ko, Y.; Kim, H.; Kim, J.; Kang, K. Chem. Soc. Rev. 2017, 46, 2873. doi: 10.1039/C6CS00929H  doi: 10.1039/C6CS00929H

    7. [7]

      Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P.; et al. Nature 2018, 555, 502. doi: 10.1038/nature25984  doi: 10.1038/nature25984

    8. [8]

      Jung, J. W.; Cho, S. H.; Nam, J. S.; Kim, I. D. Energy Storage Mater. 2020, 24, 512. doi: 10.1016/j.ensm.2019.07.006  doi: 10.1016/j.ensm.2019.07.006

    9. [9]

      Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. doi: 10.1002/anie.201304762  doi: 10.1002/anie.201304762

    10. [10]

      Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v  doi: 10.1021/cr500062v

    11. [11]

      Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45, 5605. doi: 10.1039/c5cs00410a  doi: 10.1039/c5cs00410a

    12. [12]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    13. [13]

      Sun, Y.; Liu, N.; Cui, Y. Nat. Energy 2016, 1, 16071. doi: 10.1038/nenergy.2016.71  doi: 10.1038/nenergy.2016.71

    14. [14]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    15. [15]

      Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 82. doi: 10.1021/jacs.7b10864  doi: 10.1021/jacs.7b10864

    16. [16]

      Jiao, S.; Zheng, J.; Li, Q.; Li, X.; Engelhard, M. H.; Cao, R.; Zhang, J. G.; Xu, W. Joule 2018, 2, 110. doi: 10.1016/j.joule.2017.10.007  doi: 10.1016/j.joule.2017.10.007

    17. [17]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, e1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    18. [18]

      Chen, L.; Fan, X.; Ji, X.; Chen, J.; Hou, S.; Wang, C. Joule 2019, 3, 732. doi: 10.1016/j.joule.2018.11.025  doi: 10.1016/j.joule.2018.11.025

    19. [19]

      Wood, K. N.; Noked, M.; Dasgupta, N. P. ACS Energy Lett. 2017, 2, 664. doi: 10.1021/acsenergylett.6b00650  doi: 10.1021/acsenergylett.6b00650

    20. [20]

      Pang, Q.; Liang, X.; Shyamsunder, A.; Nazar, L. F. Joule 2017, 1, 871. doi: 10.1016/j.joule.2017.11.009  doi: 10.1016/j.joule.2017.11.009

    21. [21]

      Ye, H.; Yin, Y. X.; Zhang, S. F.; Shi, Y.; Liu, L.; Zeng, X. X.; Wen, R.; Guo, Y. G.; Wan, L. J. Nano Energy 2017, 36, 411. doi: 10.1016/j.nanoen.2017.04.056  doi: 10.1016/j.nanoen.2017.04.056

    22. [22]

      Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; et al. Nano Lett. 2014, 14, 6889. doi: 10.1021/nl5039117  doi: 10.1021/nl5039117

    23. [23]

      Jie, Y.; Liu, X.; Lei, Z.; Wang, S.; Chen, Y.; Huang, F.; Cao, R.; Zhang, G.; Jiao, S. Angew. Chem. Int. Ed. 2020, 59, 3505. doi: 10.1002/anie.201914250  doi: 10.1002/anie.201914250

    24. [24]

      Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    25. [25]

      Lan, X.; Ye, W.; Zheng, H.; Cheng, Y.; Zhang, Q.; Peng, D. L.; Wang, M. S. Nano Energy 2019, 66, 104178. doi: 10.1016/j.nanoen.2019.104178  doi: 10.1016/j.nanoen.2019.104178

    26. [26]

      Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y.; et al. Science 2017, 358, 506. doi: 10.1126/science.aam6014  doi: 10.1126/science.aam6014

    27. [27]

      Li, Y.; Huang, W.; Li, Y.; Pei, A.; Boyle, D. T.; Cui, Y. Joule 2018, 2, 2167. doi: 10.1016/j.joule.2018.08.004  doi: 10.1016/j.joule.2018.08.004

    28. [28]

      Wang, X.; Zhang, M.; Alvarado, J.; Wang, S.; Sina, M.; Lu, B.; Bouwer, J.; Xu, W.; Xiao, J.; Zhang, J. G.; et al. Nano Lett. 2017, 17, 7606. doi: 10.1021/acs.nanolett.7b03606  doi: 10.1021/acs.nanolett.7b03606

    29. [29]

      Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4, 796. doi: 10.1038/s41560-019-0464-5  doi: 10.1038/s41560-019-0464-5

    30. [30]

      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    31. [31]

      Chen, X.; Lai, J.; Shen, Y.; Chen, Q.; Chen, L. Adv. Mater. 2018, 30, e1802490. doi: 10.1002/adma.201802490  doi: 10.1002/adma.201802490

    32. [32]

      Wang, S.; Liu, Q.; Zhao, C.; Lv, F.; Qin, X.; Du, H.; Kang, F.; Li, B. Energy Environ. Mater. 2018, 1, 28. doi: 10.1002/eem2.12002  doi: 10.1002/eem2.12002

    33. [33]

      Zhao, W.; Song, W.; Cheong, L. Z.; Wang, D.; Li, H.; Besenbacher, F.; Huang, F.; Shen, C. Ultramicroscopy 2019, 204, 34. doi: 10.1016/j.ultramic.2019.05.004  doi: 10.1016/j.ultramic.2019.05.004

    34. [34]

      Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. Angew. Chem. Int. Ed. 2018, 57, 1505. doi: 10.1002/anie.201710806  doi: 10.1002/anie.201710806

    35. [35]

      Aurbach, D. J. Electrochem. Soc. 1997, 144, 3355. doi: 10.1149/1.1838018  doi: 10.1149/1.1838018

    36. [36]

      Aurbach, D.; Cohen, Y. J. Electrochem. Soc. 1996, 143, 3525. doi: 10.1149/1.1837248  doi: 10.1149/1.1837248

    37. [37]

      Han, Y.; Jie, Y.; Huang, F.; Chen, Y.; Lei, Z.; Zhang, G.; Ren, X.; Qin, L.; Cao, R.; Jiao, S. Adv. Funct. Mater. 2019, 29, 1904629. doi: 10.1002/adfm.201904629  doi: 10.1002/adfm.201904629

    38. [38]

      Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, 1706102. doi: 10.1002/adma.201706102  doi: 10.1002/adma.201706102

    39. [39]

      Shi, F.; Pei, A.; Vailionis, A.; Xie, J.; Liu, B.; Zhao, J.; Gong, Y.; Cui, Y. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 12138. doi: 10.1073/pnas.1708224114  doi: 10.1073/pnas.1708224114

    40. [40]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    41. [41]

      Yu, Z.; Wang, H.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K.; Wang, X.; Huang, W.; Choudhury, S.; et al. Nat. Energy 2020, 5, 526. doi: 10.1038/s41560-020-0634-5  doi: 10.1038/s41560-020-0634-5

    42. [42]

      Adams, B. D.; Zheng, J.; Ren, X.; Xu, W.; Zhang, J. G. Adv. Energy Mater. 2018, 8, 1702097. doi: 10.1002/aenm.201702097  doi: 10.1002/aenm.201702097

    43. [43]

      Jie, Y.; Ren, X.; Cao, R.; Cai, W.; Jiao, S. Adv. Funct. Mater. 2020, 30, 1910777. doi: 10.1002/adfm.201910777  doi: 10.1002/adfm.201910777

    44. [44]

      Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g  doi: 10.1021/cr030203g

    45. [45]

      Wang, J.; Huang, W.; Pei, A.; Li, Y.; Shi, F.; Yu, X.; Cui, Y. Nature Energy 2019, 4, 664. doi: 10.1038/s41560-019-0413-3  doi: 10.1038/s41560-019-0413-3

    46. [46]

      Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. Angew. Chem. Int. Ed. 2019, 58, 11364. doi: 10.1002/anie.201905251  doi: 10.1002/anie.201905251

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    8. [8]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(19)
  • Abstract views(1499)
  • HTML views(393)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return