Citation: Huang Fanyang, Jie Yulin, Li Xinpeng, Chen Yawei, Cao Ruiguo, Zhang Genqiang, Jiao Shuhong. Correlation between Li Plating Morphology and Reversibility of Li Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200808. doi: 10.3866/PKU.WHXB202008081 shu

Correlation between Li Plating Morphology and Reversibility of Li Metal Anode

  • Corresponding author: Jiao Shuhong, jiaosh@ustc.edu.cn
  • These authors contribute equally to this work.
  • Received Date: 27 August 2020
    Revised Date: 27 September 2020
    Accepted Date: 28 September 2020
    Available Online: 19 October 2020

    Fund Project: the National Natural Science Foundation of China 21776265the National Key Research and Development Program of China 2017YFA0206700the Anhui Provincial Natural Science Foundation 1908085ME122The project was supported by the National Key Research and Development Program of China (2017YFA0402802, 2017YFA0206700), the National Natural Science Foundation of China (51902304, 21776265), the Anhui Provincial Natural Science Foundation (1908085ME122), the Fundamental Research Funds for the Central Universities, China (Wk2060140026)the Fundamental Research Funds for the Central Universities, China Wk2060140026the National Key Research and Development Program of China 2017YFA0402802the National Natural Science Foundation of China 51902304

  • Commercialization of high-energy rechargeable batteries can promote the rapid development of portable electronics and electric vehicles. Li metal batteries (LMBs) have attracted considerable attention owing to their high theoretical energy density. Li metal anodes (LMAs) used in LMBs suffer from the disadvantages of high reactivity, interface instability and dendrite growth, which impede the practical development of the LMBs. Coulombic efficiency (CE), which depends on the type of electrolyte used, is one of the key parameters for evaluating the reversibility of battery systems. Herein, we use atomic force microscopy (AFM) to study the initial plating stages and growth of the lithium metal in different electrolytes, such as 1 mol·L-1 lithium hexafluorophosphate (LiPF6)-ethylene carbonate/dimethyl carbonate (EC/DMC, 1 : 1, V/V), 1 mol·L-1 LiPF6-EC/DMC (1 : 1, V/V) + 5% (mass fraction, w) fluoroethylene carbonate (FEC), 1 mol·L-1 lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-1, 3-dioxolane/dimethoxyethane (DOL/DME, 1 : 1, V/V) + 2% (w) lithium nitrate (LiNO3), and 4 mol·L-1 lithium bis(fluorosulfonyl)imide (LiFSI)-DME, and further investigate the correlation between the CE of LMA and Li plating morphology. There are two types of Li morphologies in these electrolytes: strip-like and particle-like morphology. Since the specific surface area of particle-like deposits is much smaller than that of strip-like deposits, the particle-like morphology facilitates higher CE. (1) In the conventional carbonate electrolyte (1 mol·L-1 LiPF6-EC/DMC), Li predominantly forms strip-like deposits with large specific surface area, consuming much active Li (due to the side reaction between Li and the electrolyte). The dendrite morphology of the Li deposits lead to the formation of dead Li during the stripping process, which results in low CE. (2) FEC, an effective additive often used in carbonate electrolyte, can induce the transformation of Li plating morphology from strip-like to particle-like morphology. Therefore, the CE in FEC-containing electrolytes has been significantly improved with stable electrode/electrolyte interphase and small specific surface area of deposited Li. (3) In ether electrolytes, which have better compatibility with LMAs than carbonate electrolytes, Li metal exhibits a particle-like morphology and achieves high CE. (4) In the highly concentrated electrolyte (4 mol·L-1 LiFSI-DME), Li metal grows into large particles without dendrite formation, which hampers the parasitic side reactions, and further enhances CE.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    2. [2]

      Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Nat. Energy 2018, 3, 279. doi: 10.1038/s41560-018-0108-1  doi: 10.1038/s41560-018-0108-1

    3. [3]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    4. [4]

      Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y.; et al. Nat. Commun. 2020, 11, 93. doi: 10.1038/s41467-019-13774-2  doi: 10.1038/s41467-019-13774-2

    5. [5]

      Yu, X.; Wang, L.; Ma, J.; Sun, X.; Zhou, X.; Cui, G. Adv. Energy Mater. 2020, 10, 1903939. doi: 10.1002/aenm.201903939  doi: 10.1002/aenm.201903939

    6. [6]

      Lim, H. D.; Lee, B.; Bae, Y.; Park, H.; Ko, Y.; Kim, H.; Kim, J.; Kang, K. Chem. Soc. Rev. 2017, 46, 2873. doi: 10.1039/C6CS00929H  doi: 10.1039/C6CS00929H

    7. [7]

      Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P.; et al. Nature 2018, 555, 502. doi: 10.1038/nature25984  doi: 10.1038/nature25984

    8. [8]

      Jung, J. W.; Cho, S. H.; Nam, J. S.; Kim, I. D. Energy Storage Mater. 2020, 24, 512. doi: 10.1016/j.ensm.2019.07.006  doi: 10.1016/j.ensm.2019.07.006

    9. [9]

      Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. doi: 10.1002/anie.201304762  doi: 10.1002/anie.201304762

    10. [10]

      Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v  doi: 10.1021/cr500062v

    11. [11]

      Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45, 5605. doi: 10.1039/c5cs00410a  doi: 10.1039/c5cs00410a

    12. [12]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    13. [13]

      Sun, Y.; Liu, N.; Cui, Y. Nat. Energy 2016, 1, 16071. doi: 10.1038/nenergy.2016.71  doi: 10.1038/nenergy.2016.71

    14. [14]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    15. [15]

      Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 82. doi: 10.1021/jacs.7b10864  doi: 10.1021/jacs.7b10864

    16. [16]

      Jiao, S.; Zheng, J.; Li, Q.; Li, X.; Engelhard, M. H.; Cao, R.; Zhang, J. G.; Xu, W. Joule 2018, 2, 110. doi: 10.1016/j.joule.2017.10.007  doi: 10.1016/j.joule.2017.10.007

    17. [17]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, e1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    18. [18]

      Chen, L.; Fan, X.; Ji, X.; Chen, J.; Hou, S.; Wang, C. Joule 2019, 3, 732. doi: 10.1016/j.joule.2018.11.025  doi: 10.1016/j.joule.2018.11.025

    19. [19]

      Wood, K. N.; Noked, M.; Dasgupta, N. P. ACS Energy Lett. 2017, 2, 664. doi: 10.1021/acsenergylett.6b00650  doi: 10.1021/acsenergylett.6b00650

    20. [20]

      Pang, Q.; Liang, X.; Shyamsunder, A.; Nazar, L. F. Joule 2017, 1, 871. doi: 10.1016/j.joule.2017.11.009  doi: 10.1016/j.joule.2017.11.009

    21. [21]

      Ye, H.; Yin, Y. X.; Zhang, S. F.; Shi, Y.; Liu, L.; Zeng, X. X.; Wen, R.; Guo, Y. G.; Wan, L. J. Nano Energy 2017, 36, 411. doi: 10.1016/j.nanoen.2017.04.056  doi: 10.1016/j.nanoen.2017.04.056

    22. [22]

      Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; et al. Nano Lett. 2014, 14, 6889. doi: 10.1021/nl5039117  doi: 10.1021/nl5039117

    23. [23]

      Jie, Y.; Liu, X.; Lei, Z.; Wang, S.; Chen, Y.; Huang, F.; Cao, R.; Zhang, G.; Jiao, S. Angew. Chem. Int. Ed. 2020, 59, 3505. doi: 10.1002/anie.201914250  doi: 10.1002/anie.201914250

    24. [24]

      Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    25. [25]

      Lan, X.; Ye, W.; Zheng, H.; Cheng, Y.; Zhang, Q.; Peng, D. L.; Wang, M. S. Nano Energy 2019, 66, 104178. doi: 10.1016/j.nanoen.2019.104178  doi: 10.1016/j.nanoen.2019.104178

    26. [26]

      Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y.; et al. Science 2017, 358, 506. doi: 10.1126/science.aam6014  doi: 10.1126/science.aam6014

    27. [27]

      Li, Y.; Huang, W.; Li, Y.; Pei, A.; Boyle, D. T.; Cui, Y. Joule 2018, 2, 2167. doi: 10.1016/j.joule.2018.08.004  doi: 10.1016/j.joule.2018.08.004

    28. [28]

      Wang, X.; Zhang, M.; Alvarado, J.; Wang, S.; Sina, M.; Lu, B.; Bouwer, J.; Xu, W.; Xiao, J.; Zhang, J. G.; et al. Nano Lett. 2017, 17, 7606. doi: 10.1021/acs.nanolett.7b03606  doi: 10.1021/acs.nanolett.7b03606

    29. [29]

      Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4, 796. doi: 10.1038/s41560-019-0464-5  doi: 10.1038/s41560-019-0464-5

    30. [30]

      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    31. [31]

      Chen, X.; Lai, J.; Shen, Y.; Chen, Q.; Chen, L. Adv. Mater. 2018, 30, e1802490. doi: 10.1002/adma.201802490  doi: 10.1002/adma.201802490

    32. [32]

      Wang, S.; Liu, Q.; Zhao, C.; Lv, F.; Qin, X.; Du, H.; Kang, F.; Li, B. Energy Environ. Mater. 2018, 1, 28. doi: 10.1002/eem2.12002  doi: 10.1002/eem2.12002

    33. [33]

      Zhao, W.; Song, W.; Cheong, L. Z.; Wang, D.; Li, H.; Besenbacher, F.; Huang, F.; Shen, C. Ultramicroscopy 2019, 204, 34. doi: 10.1016/j.ultramic.2019.05.004  doi: 10.1016/j.ultramic.2019.05.004

    34. [34]

      Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. Angew. Chem. Int. Ed. 2018, 57, 1505. doi: 10.1002/anie.201710806  doi: 10.1002/anie.201710806

    35. [35]

      Aurbach, D. J. Electrochem. Soc. 1997, 144, 3355. doi: 10.1149/1.1838018  doi: 10.1149/1.1838018

    36. [36]

      Aurbach, D.; Cohen, Y. J. Electrochem. Soc. 1996, 143, 3525. doi: 10.1149/1.1837248  doi: 10.1149/1.1837248

    37. [37]

      Han, Y.; Jie, Y.; Huang, F.; Chen, Y.; Lei, Z.; Zhang, G.; Ren, X.; Qin, L.; Cao, R.; Jiao, S. Adv. Funct. Mater. 2019, 29, 1904629. doi: 10.1002/adfm.201904629  doi: 10.1002/adfm.201904629

    38. [38]

      Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, 1706102. doi: 10.1002/adma.201706102  doi: 10.1002/adma.201706102

    39. [39]

      Shi, F.; Pei, A.; Vailionis, A.; Xie, J.; Liu, B.; Zhao, J.; Gong, Y.; Cui, Y. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 12138. doi: 10.1073/pnas.1708224114  doi: 10.1073/pnas.1708224114

    40. [40]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    41. [41]

      Yu, Z.; Wang, H.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K.; Wang, X.; Huang, W.; Choudhury, S.; et al. Nat. Energy 2020, 5, 526. doi: 10.1038/s41560-020-0634-5  doi: 10.1038/s41560-020-0634-5

    42. [42]

      Adams, B. D.; Zheng, J.; Ren, X.; Xu, W.; Zhang, J. G. Adv. Energy Mater. 2018, 8, 1702097. doi: 10.1002/aenm.201702097  doi: 10.1002/aenm.201702097

    43. [43]

      Jie, Y.; Ren, X.; Cao, R.; Cai, W.; Jiao, S. Adv. Funct. Mater. 2020, 30, 1910777. doi: 10.1002/adfm.201910777  doi: 10.1002/adfm.201910777

    44. [44]

      Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g  doi: 10.1021/cr030203g

    45. [45]

      Wang, J.; Huang, W.; Pei, A.; Li, Y.; Shi, F.; Yu, X.; Cui, Y. Nature Energy 2019, 4, 664. doi: 10.1038/s41560-019-0413-3  doi: 10.1038/s41560-019-0413-3

    46. [46]

      Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. Angew. Chem. Int. Ed. 2019, 58, 11364. doi: 10.1002/anie.201905251  doi: 10.1002/anie.201905251

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    6. [6]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    13. [13]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    17. [17]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    19. [19]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    20. [20]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

Metrics
  • PDF Downloads(20)
  • Abstract views(1586)
  • HTML views(406)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return