Citation: Liu Dongdong, Chen Chao, Xiong Xunhui. Research Progress on Artificial Protective Films for Lithium Metal Anodes[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200807. doi: 10.3866/PKU.WHXB202008078 shu

Research Progress on Artificial Protective Films for Lithium Metal Anodes

  • Corresponding author: Xiong Xunhui, esxxiong@scut.edu.cn
  • Received Date: 25 August 2020
    Revised Date: 21 September 2020
    Accepted Date: 21 September 2020
    Available Online: 12 October 2020

    Fund Project: the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program 2019TQ05L903the National Natural Science Foundation of China 51874142the Young Elite Scientists Sponsorship Program by CAST 2019QNRC001The project was supported by the National Natural Science Foundation of China (51874142, ), the Fundamental Research Funds for the Central Universities (2019JQ09), and the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2019TQ05L903), and the Young Elite Scientists Sponsorship Program by CAST (2019QNRC001)the Fundamental Research Funds for the Central Universities 2019JQ09

  • In the early 1990s, Sony launched the first commercial lithium ion battery (LIB), which achieved great success in energy storage systems. The current commercially used insertion anode, graphite, is approaching its capacity limit (~372 mAh·g-1), and is inadequate to satisfy the ever-increasing energy demand for power grids and large-scale energy storage systems. In order to address this challenge, lithium metal anodes have been the focus of considerable research effort in recent years, and are regarded as the most promising anode materials because of their extremely high theoretical capacity (3860 mAh·g-1), lowest electrode potential (-3.04 V vs. standard hydrogen electrode), and low density (0.534 g·cm-3). For example, the theoretical energy densities of lithium-sulfur batteries and lithium-air batteries are as high as 2567 and 3505 Wh·kg-1, respectively. However, the uncontrollable dendrite growth during cycling leads to low coulombic efficiency and puncture of the separator, causing a short circuit or even explosion of the battery, thereby seriously hindering the development of the lithium metal anode. Many solutions have been proposed to inhibit dendrite growth, including the use of electrolyte additives, solid electrolytes, and artificial protective films. During charging and discharging, the solid electrolyte interphase (SEI) plays an important role in lithium metal anodes. However, the infinite volume changes of the electrode during plating/stripping processes result in breakage of the SEI film, which continuously consumes the electrolyte and lithium metal. Designing an artificial interface on the surface of lithium metal anodes has been considered as a simple and efficient strategy to control lithium deposition behavior, and is achieved by precoating a protective layer on the surface of lithium metal. An ideal artificial protective film should possess high ionic conductivity, chemical stability, and excellent mechanical strength, in order to prevent side reactions between lithium metal and the electrolyte and realize dendrite-free lithium metal anodes with a long cycle life and high coulombic efficiencies. In this paper, the research progress on artificial protective films for lithium metal anodes in recent years is reviewed. Further, the structural characteristics and preparation methods of various protective films are introduced in detail, including polymer protective films, inorganic protective films, organic-inorganic composite protective films, and alloy protective films. The mechanisms of various protective films toward the suppression of dendrite growth are summarized. Existing challenges and future research directions are also proposed, which together provide a reference for promoting the use of lithium metal in high-energy batteries.
  • 加载中
    1. [1]

      Evarts, E. C. Nature 2015, 526, S93. doi: 10.1038/526S93a  doi: 10.1038/526S93a

    2. [2]

      Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141  doi: 10.1038/nenergy.2016.141

    3. [3]

      Li, P.; Hwang, J. Y.; Sun, Y. K. ACS Nano 2019, 13, 2624. doi: 10.1021/acsnano.9b00169  doi: 10.1021/acsnano.9b00169

    4. [4]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    5. [5]

      Sun, Y.; Ma, P.; Liu, L.; Chen, J.; Zhang, X.; Lang, J.; Yan, X. Sol. RRL 2018, 2, 1800223. doi: 10.1002/solr.201800223  doi: 10.1002/solr.201800223

    6. [6]

      Sun, Y.; Yan, X. Sol. RRL 2017, 1, 1700002. doi: 10.1002/solr.201700002  doi: 10.1002/solr.201700002

    7. [7]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    8. [8]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/C3EE40795K  doi: 10.1039/C3EE40795K

    9. [9]

      Niu, C.; Pan, H.; Xu, W.; Xiao, J.; Zhang, J. G.; Luo, L.; Wang, C.; Mei, D.; Meng, J.; Wang, X.; et al. Nat. Nanotechnol. 2019, 14, 594. doi: 10.1038/s41565-019-0427-9  doi: 10.1038/s41565-019-0427-9

    10. [10]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    11. [11]

      Bruce, P. G.; Hardwick, L. J.; Abraham, K. M. MRS Bull. 2011, 36, 506. doi: 10.1557/mrs.2011.157  doi: 10.1557/mrs.2011.157

    12. [12]

      Xu, X.; Wang, S.; Wang, H.; Hu, C.; Jin, Y.; Liu, J.; Yan, H. J. Energy Chem. 2018, 27, 513. doi: 10.1016/j.jechem.2017.11.010  doi: 10.1016/j.jechem.2017.11.010

    13. [13]

      Zhang, X. Q.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Engineering 2018, 4, 831. doi: 10.1016/j.eng.2018.10.008  doi: 10.1016/j.eng.2018.10.008

    14. [14]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    15. [15]

      Feng, Y.; Zhang, C.; Li, B.; Xiong, S.; Song, J. J. Mater. Chem. A 2019, 7, 6090. doi: 10.1039/C8TA10779C  doi: 10.1039/C8TA10779C

    16. [16]

      Qie, L.; Zu, C.; Manthiram, A. Adv. Energy Mater. 2016, 6, 1502459. doi: 10.1002/aenm.201502459  doi: 10.1002/aenm.201502459

    17. [17]

      Zhang, Y.; Luo, W.; Wang, C.; Li, Y.; Chen, C.; Song, J.; Dai, J.; Hitz, E. M.; Xu, S.; Yang, C.; et al. Proc. Natl. Acad. Sci. 2017, 114, 3584. doi: 10.1073/pnas.1618871114  doi: 10.1073/pnas.1618871114

    18. [18]

      Chazalviel, J. N. Phys. Rev. A 1990, 42, 7355. doi: 10.1103/PhysRevA.42.7355  doi: 10.1103/PhysRevA.42.7355

    19. [19]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Power Sources 1999, 8182, 925. doi: 10.1016/S0378-7753(98)00242-0  doi: 10.1016/S0378-7753(98)00242-0

    20. [20]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    21. [21]

      Enze, L. J. Phys. D: Appl. Phys. 1986, 19, 1. doi: 10.1088/0022-3727/19/1/005  doi: 10.1088/0022-3727/19/1/005

    22. [22]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    23. [23]

      Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Nano Energy 2017, 32, 271. doi: 10.1016/j.nanoen.2016.12.001  doi: 10.1016/j.nanoen.2016.12.001

    24. [24]

      Jäckle, M.; Groß, A. J. Chem. Phys. 2014, 141, 174710. doi: 10.1063/1.4901055  doi: 10.1063/1.4901055

    25. [25]

      Wang, D.; Zhang, W.; Zheng, W.; Cui, X.; Rojo, T.; Zhang, Q. Adv. Sci. 2017, 4, 1600168. doi: 10.1002/advs.201600168  doi: 10.1002/advs.201600168

    26. [26]

      Yamaki, J.; Tobishima, S.; Hayashi, K.; Saito, K.; Nemoto, Y.; Arakawa, M. J. Power Sources 1998, 74, 219. doi: 10.1016/S0378-7753(98)00067-6  doi: 10.1016/S0378-7753(98)00067-6

    27. [27]

      Wang, G.; Xiong, X.; Xie, D.; Fu, X.; Ma, X.; Li, Y.; Liu, Y.; Lin, Z.; Yang, C.; Liu, M. Energy Storage Mater. 2019, 23, 701. doi: 10.1016/j.ensm.2019.02.026  doi: 10.1016/j.ensm.2019.02.026

    28. [28]

      Fu, X.; Wang, G.; Dang, D.; Liu, Q.; Xiong, X.; Wu, C. J. Mater. Chem. A 2019, 7, 25003. doi: 10.1039/C9TA09068A  doi: 10.1039/C9TA09068A

    29. [29]

      Ran, Q.; Sun, T. Y.; Han, C. Y.; Zhang, H. N.; Yan, J.; Wang, J. L. Acta Phys. -Chim. Sin. 2020, 36, 1912068.  doi: 10.3866/PKU.WHXB201912068

    30. [30]

      Luo, C.; Ji, X.; Chen, J.; Gaskell, K. J.; He, X.; Liang, Y.; Jiang, J.; Wang, C. Angew. Chem. 2018, 130, 8703. doi: 10.1002/ange.201804068  doi: 10.1002/ange.201804068

    31. [31]

      Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F. Energy Storage Mater. 2018, 10, 139. doi: 10.1016/j.ensm.2017.08.015  doi: 10.1016/j.ensm.2017.08.015

    32. [32]

      Luo, W.; Gong, Y.; Zhu, Y.; Fu, K. K.; Dai, J.; Lacey, S. D.; Wang, C.; Liu, B.; Han, X.; Mo, Y.; et al. J. Am. Chem. Soc. 2016, 138, 12258. doi: 10.1021/jacs.6b06777  doi: 10.1021/jacs.6b06777

    33. [33]

      Gu, J.; Zhu, Q.; Shi, Y.; Chen, H.; Zhang, D.; Du, Z.; Yang, S. ACS Nano 2020, 14, 891. doi: 10.1021/acsnano.9b08141  doi: 10.1021/acsnano.9b08141

    34. [34]

      Xu, B.; Zhai, H.; Liao, X.; Qie, B.; Mandal, J.; Gong, T.; Tan, L.; Yang, X.; Sun, K.; Cheng, Q.; et al. Energy Storage Mater. 2019, 17, 31. doi: 10.1016/j.ensm.2018.11.035  doi: 10.1016/j.ensm.2018.11.035

    35. [35]

      Kim, M. S.; Ryu, J. H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Il Cho, W. Nat. Energy 2018, 3, 889. doi: 10.1038/s41560-018-0237-6  doi: 10.1038/s41560-018-0237-6

    36. [36]

      Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. Adv. Mater. 2017, 29, 1605531. doi: 10.1002/adma.201605531  doi: 10.1002/adma.201605531

    37. [37]

      Deng, K.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y. J. Mater. Chem. A 2019, 7, 13113. doi: 10.1039/C9TA02407G  doi: 10.1039/C9TA02407G

    38. [38]

      Zhang, C.; Lyu, R.; Lv, W.; Li, H.; Jiang, W.; Li, J.; Gu, S.; Zhou, G.; Huang, Z.; Zhang, Y.; et al. Adv. Mater. 2019, 31, 1904991. doi: 10.1002/adma.201904991  doi: 10.1002/adma.201904991

    39. [39]

      Chi, S.; Liu, Y.; Song, W.; Fan, L.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1700348. doi: 10.1002/adfm.201700348  doi: 10.1002/adfm.201700348

    40. [40]

      Luo, L.; Li, J.; Yaghoobnejad Asl, H.; Manthiram, A. Adv. Mater. 2019, 31, 1904537. doi: 10.1002/adma.201904537  doi: 10.1002/adma.201904537

    41. [41]

      Wang, M. Q.; Peng, Z.; Lin, H.; Li, Z. D.; Liu, J.; Ren, Z. M.; He, H. Y.; Wang, D. Y. Acta Phys. -Chim. Sin. 2021, 37, 2007016.  doi: 10.3866/PKU.WHXB202007016

    42. [42]

      Chen, X.; Hou, T. Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Energy Storage Mater. 2017, 8, 194. doi: 10.1016/j.ensm.2017.01.003  doi: 10.1016/j.ensm.2017.01.003

    43. [43]

      Tao, R.; Bi, X.; Li, S.; Yao, Y.; Wu, F.; Wang, Q.; Zhang, C.; Lu, J. ACS Appl. Mater. Interfaces 2017, 9, 7003. doi: 10.1021/acsami.6b13859  doi: 10.1021/acsami.6b13859

    44. [44]

      Huang, G.; Han, J.; Zhang, F.; Wang, Z.; Kashani, H.; Watanabe, K.; Chen, M. Adv. Mater. 2019, 31, 1805334. doi: 10.1002/adma.201805334  doi: 10.1002/adma.201805334

    45. [45]

      Liu, S.; Zhang, X.; Li, R.; Gao, L.; Luo, J. Energy Storage Mater. 2018, 14, 143. doi: 10.1016/j.ensm.2018.03.004  doi: 10.1016/j.ensm.2018.03.004

    46. [46]

      Cheng, X.; Zhang, R.; Zhao, C.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi: 10.1002/advs.201500213  doi: 10.1002/advs.201500213

    47. [47]

      Rui, K.; Wen, Z.; Lu, Y.; Jin, J.; Shen, C. Adv. Energy Mater. 2015, 5, 1401716. doi: 10.1002/aenm.201401716  doi: 10.1002/aenm.201401716

    48. [48]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2, 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    49. [49]

      Yan, K.; Lee, H. W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Lu, Z.; Zhou, Y.; Liang, Z.; Liu, Z.; et al. Nano Lett. 2014, 14, 6016. doi: 10.1021/nl503125u  doi: 10.1021/nl503125u

    50. [50]

      Chen, L.; Connell, J. G.; Nie, A.; Huang, Z.; Zavadil, K. R.; Klavetter, K. C.; Yuan, Y.; Sharifi-Asl, S.; Shahbazian-Yassar, R.; Libera, J. A.; et al. J. Mater. Chem. A 2017, 5, 12297. doi: 10.1039/C7TA03116E  doi: 10.1039/C7TA03116E

    51. [51]

      Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Nano Energy 2017, 32, 271. doi: 10.1016/j.nanoen.2016.12.001  doi: 10.1016/j.nanoen.2016.12.001

    52. [52]

      Zheng, G.; Wang, C.; Pei, A.; Lopez, J.; Shi, F.; Chen, Z.; Sendek, A. D.; Lee, H. W.; Lu, Z.; Schneider, H.; et al. ACS Energy Lett. 2016, 1, 1247. doi: 10.1021/acsenergylett.6b00456  doi: 10.1021/acsenergylett.6b00456

    53. [53]

      Choi, S. M.; Kang, I. S.; Sun, Y. K.; Song, J. H.; Chung, S. M.; Kim, D. W. J. Power Sources 2013, 244, 363. doi: 10.1016/j.jpowsour.2012.12.106  doi: 10.1016/j.jpowsour.2012.12.106

    54. [54]

      Zhu, J.; Li, P.; Chen, X.; Legut, D.; Fan, Y.; Zhang, R.; Lu, Y.; Cheng, X.; Zhang, Q. Energy Storage Mater. 2019, 16, 426. doi: 10.1016/j.ensm.2018.06.023  doi: 10.1016/j.ensm.2018.06.023

    55. [55]

      Bai, M.; Xie, K.; Yuan, K.; Zhang, K.; Li, N.; Shen, C.; Lai, Y.; Vajtai, R.; Ajayan, P.; Wei, B. Adv. Mater. 2018, 30, 1801213. doi: 10.1002/adma.201801213  doi: 10.1002/adma.201801213

    56. [56]

      Wang, G.; Xiong, X.; Xie, D.; Fu, X.; Lin, Z.; Yang, C.; Zhang, K.; Liu, M. ACS Appl. Mater. Interfaces 2019, 11, 4962. doi: 10.1021/acsami.8b18101  doi: 10.1021/acsami.8b18101

    57. [57]

      Zhou, D.; Liu, R.; He, Y.; Li, F.; Liu, M.; Li, B.; Yang, Q.; Cai, Q.; Kang, F. Adv. Energy Mater. 2016, 6, 1502214. doi: 10.1002/aenm.201502214  doi: 10.1002/aenm.201502214

    58. [58]

      Jang, E. K.; Ahn, J.; Yoon, S.; Cho, K. Y. Adv. Funct. Mater. 2019, 29, 1905078. doi: 10.1002/adfm.201905078  doi: 10.1002/adfm.201905078

    59. [59]

      Zhang, Z.; Zhang, L.; Liu, Y.; Yang, T.; Wang, Z.; Yan, X.; Yu, C. J. Mater. Chem. A 2019, 7, 23173. doi: 10.1039/C9TA08415K  doi: 10.1039/C9TA08415K

    60. [60]

      Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. Nat. Energy 2017, 2, 17119. doi: 10.1038/nenergy.2017.119  doi: 10.1038/nenergy.2017.119

    61. [61]

      Wang, G.; Xiong, X.; Lin, Z.; Zheng, J.; Fenghua, Z.; Li, Y.; Liu, Y.; Yang, C.; Tang, Y.; Liu, M. Nanoscale 2018, 10, 10018. doi: 10.1039/C8NR01995A  doi: 10.1039/C8NR01995A

    62. [62]

      Wu, H.; Yao, Z.; Wu, Q.; Fan, S.; Yin, C.; Li, C. J. Mater. Chem. A 2019, 7, 22257. doi: 10.1039/C9TA09146G  doi: 10.1039/C9TA09146G

    63. [63]

      Sun, Y.; Zhao, Y.; Wang, J.; Liang, J.; Wang, C.; Sun, Q.; Lin, X.; Adair, K. R.; Luo, J.; Wang, D.; et al. Adv. Mater. 2019, 31, 1806541. doi: 10.1002/adma.201806541  doi: 10.1002/adma.201806541

    64. [64]

      Wu, H.; Wu, Q.; Chu, F.; Hu, J.; Cui, Y.; Yin, C.; Li, C. J. Power Sources 2019, 419, 72. doi: 10.1016/j.jpowsour.2019.02.033  doi: 10.1016/j.jpowsour.2019.02.033

    65. [65]

      Wang, G.; Chen, C.; Chen, Y.; Kang, X.; Yang, C.; Wang, F.; Liu, Y.; Xiong, X. Angew. Chem. Int. Ed. 2020, 59, 2055. doi: 10.1002/anie.201913351  doi: 10.1002/anie.201913351

    66. [66]

      Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. J. Am. Chem. Soc. 2018, 140, 11735. doi: 10.1021/jacs.8b06047  doi: 10.1021/jacs.8b06047

    67. [67]

      Monroe, C.; Newman, J. J. Electrochem. Soc. 2003, 150, A1377. doi: 10.1149/1.1606686  doi: 10.1149/1.1606686

    68. [68]

      Stone, G. M.; Mullin, S. A.; Teran, A. A.; Hallinan, D. T.; Minor, A. M.; Hexemer, A.; Balsara, N. P. J. Electrochem. Soc. 2012, 159, A222. doi: 10.1149/2.030203jes  doi: 10.1149/2.030203jes

    69. [69]

      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    70. [70]

      Huang, S.; Zhang, W.; Ming, H.; Cao, G.; Fan, L. Z.; Zhang, H. Nano Lett. 2019, 19, 1832. doi: 10.1021/acs.nanolett.8b04919  doi: 10.1021/acs.nanolett.8b04919

    71. [71]

      Cui, Y. Acta Phys. -Chim. Sin. 2019, 35, 661.  doi: 10.3866/PKU.WHXB201809053

    72. [72]

      Xiang, H.; Chen, J.; Li, Z.; Wang, H. J. Power Sources 2011, 196, 8651. doi: 10.1016/j.jpowsour.2011.06.055  doi: 10.1016/j.jpowsour.2011.06.055

    73. [73]

      He, M.; Zhang, X.; Jiang, K.; Wang, J.; Wang, Y. ACS Appl. Mater. Interfaces 2015, 7, 738. doi: 10.1021/am507145h  doi: 10.1021/am507145h

    74. [74]

      Wang, G.; Xiong, X.; Zou, P.; Fu, X.; Lin, Z.; Li, Y.; Liu, Y.; Yang, C.; Liu, M. Chem. Eng. J. 2019, 378, 122243. doi: 10.1016/j.cej.2019.122243  doi: 10.1016/j.cej.2019.122243

    75. [75]

      Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X.; Hu, L.; Lee, S. B.; Rubloff, G. W.; Noked, M. ACS Nano 2015, 9, 5884. doi: 10.1021/acsnano.5b02166  doi: 10.1021/acsnano.5b02166

    76. [76]

      Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Chem. Mater. 2015, 27, 6457. doi: 10.1021/acs.chemmater.5b02789  doi: 10.1021/acs.chemmater.5b02789

    77. [77]

      Umeda, G. A.; Menke, E.; Richard, M.; Stamm, K. L.; Wudl, F.; Dunn, B. J. Mater. Chem. 2011, 21, 1593. doi: 10.1039/C0JM02305A  doi: 10.1039/C0JM02305A

    78. [78]

      Ma, G.; Wen, Z.; Wu, M.; Shen, C.; Wang, Q.; Jin, J.; Wu, X. Chem. Commun. 2014, 50, 14209. doi: 10.1039/C4CC05535G  doi: 10.1039/C4CC05535G

    79. [79]

      Zhao, J.; Liao, L.; Shi, F.; Lei, T.; Chen, G.; Pei, A.; Sun, J.; Yan, K.; Zhou, G.; Xie, J.; et al. J. Am. Chem. Soc. 2017, 139, 11550. doi: 10.1021/jacs.7b05251  doi: 10.1021/jacs.7b05251

    80. [80]

      Lin, Y.; Wen, Z.; Liu, J.; Wu, D.; Zhang, P.; Zhao, J. J. Energy Chem. 2021, 55, 129. doi: 10.1016/j.jechem.2020.07.003  doi: 10.1016/j.jechem.2020.07.003

    81. [81]

      Li, N.; Yin, Y.; Yang, C.; Guo, Y. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    82. [82]

      Lin, L.; Liang, F.; Zhang, K.; Mao, H.; Yang, J.; Qian, Y. J. Mater. Chem. A 2018, 6, 15859. doi: 10.1039/C8TA05102J  doi: 10.1039/C8TA05102J

    83. [83]

      Liu, F.; Wang, L.; Zhang, Z.; Shi, P.; Feng, Y.; Yao, Y.; Ye, S.; Wang, H.; Wu, X.; Yu, Y. Adv. Funct. Mater. 2020, 30, 2001607. doi: 10.1002/adfm.202001607  doi: 10.1002/adfm.202001607

    84. [84]

      Herbert, E. G.; Tenhaeff, W. E.; Dudney, N. J.; Pharr, G. M. Thin Solid Films 2011, 520, 413. doi: 10.1016/j.tsf.2011.07.068  doi: 10.1016/j.tsf.2011.07.068

    85. [85]

      Wang, W.; Yue, X.; Meng, J.; Wang, J.; Wang, X.; Chen, H.; Shi, D.; Fu, J.; Zhou, Y.; Chen, J.; et al. Energy Storage Mater. 2019, 18, 414. doi: 10.1016/j.ensm.2018.08.010  doi: 10.1016/j.ensm.2018.08.010

    86. [86]

      Zhang, Y. J.; Liu, X. Y.; Bai, W. Q.; Tang, H.; Shi, S. J.; Wang, X. L.; Gu, C. D.; Tu, J. P. J. Power Sources 2014, 266, 43. doi: 10.1016/j.jpowsour.2014.04.147  doi: 10.1016/j.jpowsour.2014.04.147

    87. [87]

      Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    88. [88]

      Bai, M.; Xie, K.; Yuan, K.; Zhang, K.; Li, N.; Shen, C.; Lai, Y.; Vajtai, R.; Ajayan, P.; Wei, B. Adv. Mater. 2018, 30, 1801213. doi: 10.1002/adma.201801213  doi: 10.1002/adma.201801213

    89. [89]

      Xu, R.; Zhang, X.; Cheng, X.; Peng, H.; Zhao, C.; Yan, C.; Huang, J. Adv. Funct. Mater. 2018, 28, 1705838. doi: 10.1002/adfm.201705838  doi: 10.1002/adfm.201705838

    90. [90]

      Wu, C.; Guo, F.; Zhuang, L.; Ai, X.; Zhong, F.; Yang, H.; Qian, J. ACS Energy Lett. 2020, 5, 1644. doi: 10.1021/acsenergylett.0c00804  doi: 10.1021/acsenergylett.0c00804

    91. [91]

      Liu, X.; Liu, J.; Qian, T.; Chen, H.; Yan, C. Adv. Mater. 2020, 32, 1902724. doi: 10.1002/adma.201902724  doi: 10.1002/adma.201902724

    92. [92]

      Zhang, Y.; Wang, G.; Tang, L.; Wu, J.; Guo, B.; Zhu, M.; Wu, C.; Dou, S. X.; Wu, M. J. Mater. Chem. A 2019, 7, 25369. doi: 10.1039/C9TA09523C  doi: 10.1039/C9TA09523C

    93. [93]

      Kim, H.; Lee, J. T.; Lee, D. C.; Oschatz, M.; Cho, W. Il; Kaskel, S.; Yushin, G. Electrochem. Commun. 2013, 36, 38. doi: 10.1016/j.elecom.2013.09.002  doi: 10.1016/j.elecom.2013.09.002

    94. [94]

      Jiang, Y.; Jiang, J.; Wang, Z.; Han, M.; Liu, X.; Yi, J.; Zhao, B.; Sun, X.; Zhang, J. Nano Energy 2020, 70, 104504. doi: 10.1016/j.nanoen.2020.104504  doi: 10.1016/j.nanoen.2020.104504

    95. [95]

      Obrovac, M. N.; Chevrier, V. L. Chem. Rev. 2014, 114, 11444. doi: 10.1021/cr500207g  doi: 10.1021/cr500207g

    96. [96]

      He, G.; Li, Q.; Shen, Y.; Ding, Y. Angew. Chem. Int. Ed. 2019, 58, 18466. doi: 10.1002/anie.201911800  doi: 10.1002/anie.201911800

    97. [97]

      Wang, H.; Li, Y.; Li, Y.; Liu, Y.; Lin, D.; Zhu, C.; Chen, G.; Yang, A.; Yan, K.; Chen, H.; et al. Nano Lett. 2019, 19, 1326. doi: 10.1021/acs.nanolett.8b04906  doi: 10.1021/acs.nanolett.8b04906

    98. [98]

      Yang, C.; Yao, Y.; He, S.; Xie, H.; Hitz, E.; Hu, L. Adv. Mater. 2017, 29, 1702714. doi: 10.1002/adma.201702714  doi: 10.1002/adma.201702714

    99. [99]

      Guo, F.; Wu, C.; Chen, H.; Zhong, F.; Ai, X.; Yang, H.; Qian, J. Energy Storage Mater. 2020, 24, 635. doi: 10.1016/j.ensm.2019.06.010  doi: 10.1016/j.ensm.2019.06.010

    100. [100]

      Wu, L.; He, G.; Ding, Y. J. Mater. Chem. A 2019, 7, 25415. doi: 10.1039/C9TA09464D  doi: 10.1039/C9TA09464D

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(18)
  • Abstract views(448)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return