Citation: Zhang Zibo, Deng Wei, Zhou Xufeng, Liu Zhaoping. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200809. doi: 10.3866/PKU.WHXB202008073 shu

LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping

  • Corresponding author: Zhou Xufeng, zhouxf@nimte.ac.cn Liu Zhaoping, liuzp@nimte.ac.cn
  • Received Date: 25 August 2020
    Revised Date: 27 September 2020
    Accepted Date: 6 October 2020
    Available Online: 22 October 2020

  • Lithium metal has the highest theoretical specific energy density (3860 mAh∙g−1) and the most negative redox potential (−3.04 V vs standard hydrogen electrode) among all alkali metals. These features have attracted the interest of battery researchers to put lithium metal into practical use in rechargeable batteries. However, lithium metal tends to deposit as dendritic or mossy morphology during the charging process, and such non-uniform deposition induces low Coulombic efficiency and poor cycling stability. In addition, dendritic metallic lithium can easily penetrate the separator, which causes internal short circuit and leads to severe safety issues. Thus it is important to control the electrodeposition process of lithium to inhibit the formation of Li dendrites. Surface modification of lithium is a widely adopted strategy that can induce uniform deposition of Li. In this paper, a LiC6 heterogeneous interfacial layer is decorated on the surface of lithium metal anode. It is prepared in a simple manner by mechanically rolling graphitized carbon nanospheres on a Li foil. The increase in surface area by this LiC6 layer can homogenize the current density on the surface of the lithium foil. Simultaneously, the electronegativity of LiC6 can also homogenize the lithium ion flux. The effect of heterogeneous interface on the electrochemical plating and stripping behavior of lithium in carbonate electrolyte is also studied. Morphological characterization and electrochemical performance tests reveal that the LiC6 heterogeneous interface can significantly improve the reversibility and uniformity of the electrochemical plating and stripping of Li, thereby inhibiting dendritic growth and maintaining the stability of the anode/electrolyte interface. Alternating current electrochemical impedance spectroscopy analysis determines that the solid electrolyte interface (SEI) impedance of bare lithium decreases from the initial 275 to 100 Ω as the deposition capacity increases, suggesting that severe rupture of the SEI is caused by the huge volume change after lithium deposition. On the contrary, the SEI impedance of the lithium foil with the LiC6 heterogeneous interface layer remains nearly constant (from the initial 26 to 25 Ω after electrodeposition) indicates that the LiC6 layer is able to inhibit dendrite growth and stabilize the interface. Thus, stable lithium plating/stripping over 300 h is achieved at a current density of 1 mA∙cm−2 and at a fixed capacity of 1 mAh∙cm−2 with a voltage hysteresis of less than 50 mV. The Li-LiFePO4 full cell test demonstrates that the cycling stability of the modified lithium metal anode is superior to that of the bare one.
  • 加载中
    1. [1]

      Liu, C.; Jin, Z.; Wang, C.; Liu, H.; Zhang, Q. Energy Chem. 2019, 1 (1), 100003. doi: 10.1016/j.enchem.2019.100003  doi: 10.1016/j.enchem.2019.100003

    2. [2]

      Peng, Z.; Song, J.; Huai, L.; Jia, H.; Xiao, B.; Zou, L. Adv. Energy Mater. 2019, 9 (42), 1901764. doi: 10.1002/aenm.201901764  doi: 10.1002/aenm.201901764

    3. [3]

      Wang, D.; Luan, C.; Zhang, W.; Liu, X.; Wang, P.; Zheng, W. Adv. Energy Mater. 2018, 8 (21), 1800650. doi: 10.1002/aenm.201800650  doi: 10.1002/aenm.201800650

    4. [4]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117 (15), 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    5. [5]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, Q. Adv. Mater. 2018, 30(45), 1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    6. [6]

      Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Zhang, X. Nano Res. 2020, 13 (2), 430. doi: 10.1007/s12274-020-2628-z  doi: 10.1007/s12274-020-2628-z

    7. [7]

      Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. Adv. Mater. 2016, 28 (9), 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    8. [8]

      Aurbach, D.; Gofer, Y.; Langzam, J. J. Electrochem. Soc 1989, 136, 11. doi: 10.1149/1.2096425  doi: 10.1149/1.2096425

    9. [9]

      Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W.; Chen, Z. B. Nat. Commun. 2018, 9 (1), 1. doi: 10.1038/s41467-018-03466-8  doi: 10.1038/s41467-018-03466-8

    10. [10]

      Lee, J. I.; Shin, M.; Hong, D. Adv. Energy Mater. 2019, 9 (13), 1803722.1. doi: 10.1002/aenm.201803722  doi: 10.1002/aenm.201803722

    11. [11]

      Lee, D.; Sun, S.; Kwon, J. Adv. Mater. 2020, 32, 1905573. doi: 10.1002/adma.201905573  doi: 10.1002/adma.201905573

    12. [12]

      Guo, F.; Wu, C.; Chen, S. ACS. Mater. Lett. 2020, 2 (4), 358. doi: 10.1021/acsmaterialslett.0c00001  doi: 10.1021/acsmaterialslett.0c00001

    13. [13]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35 (12), 1365.  doi: 10.3866/PKU.WHXB201903008

    14. [14]

      Guo, F.; Wang, Y.; Kang, T.; Liu, C.; Shen, Y.; Lu, W.; Chen, L. Energy Storage Mater. 2018, 15, 116. doi: 10.1016/j.ensm.2018.03.018  doi: 10.1016/j.ensm.2018.03.018

    15. [15]

      Shi, P.; Li, T.; Zhang, R.; Shen, X.; Huang, J.; Cheng, X.; Zhang, Q. Adv. Mater. 2019, 31(8), 1807131. doi: 10.1002/adma.201807131  doi: 10.1002/adma.201807131

    16. [16]

      Cui, J.; Yao, S.; Wu, J.; Kim, J. Adv. Energy Mater. 2019, 9, 1802777. doi: 10.1002/aenm.201802777  doi: 10.1002/aenm.201802777

    17. [17]

      Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A. Nat Energy. 2019, 4 (5), 365. doi: 10.1038/s41560-019-0349-7  doi: 10.1038/s41560-019-0349-7

    18. [18]

      Yan, K.; Lee, H. W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Chu, S. Nano Lett. 2014, 14(10), 6016. doi: 10.1021/nl503125u  doi: 10.1021/nl503125u

    19. [19]

      Kim, M. S.; Ryu, J. H.; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Cho, W. I. Nat Energy. 2018, 3 (10), 889. doi: 10.1038/s41560-018-0237-6  doi: 10.1038/s41560-018-0237-6

    20. [20]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Cui, Y. Nat. Nanotechnol. 2016, 11 (7), 626. doi: 10.1038/NNANO.2016.32  doi: 10.1038/NNANO.2016.32

    21. [21]

      Huang, S.; Tang, L.; Najafabadi, H. S.; Chen, S.; Ren, Z. Nano Energy 2017, 38, 504. doi: 10.1016/j.nanoen.2017.06.030  doi: 10.1016/j.nanoen.2017.06.030

    22. [22]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56 (27), 7764. doi: 10.1002/anie.201702099  doi: 10.1002/anie.201702099

    23. [23]

      Shao, Y.; Wang, H.; Gong, Z.; Wang, D.; Zheng, B.; Zhu, J.; Huang, X. ACS Energy Lett. 2018, 3 (6), 1212. doi: 10.1021/acsenergylett.8b00453  doi: 10.1021/acsenergylett.8b00453

    24. [24]

      Siroma, Z.; Sato, T.; Tamonari, T.; Nagai, R.; Ota, A.; Ioroi, T. J. Power Sources 2016, 316, 215. doi: 10.1016/j.jpowsour.2016.03.059  doi: 10.1016/j.jpowsour.2016.03.059

    25. [25]

      Salvatierra, R. V.; Yoon, J.; Tour, J. M. Adv. Mater. 2018, 30 (50), 1803869. doi: 10.1002/adma.201803869  doi: 10.1002/adma.201803869

    26. [26]

      Zhou, W. F. Electrochemical measurements. Shanghai Science and Technology Press: Shanghai, 1983; pp. 134-136.

  • 加载中
    1. [1]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    4. [4]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    10. [10]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(11)
  • Abstract views(888)
  • HTML views(224)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return