Citation: Zhang Zibo, Deng Wei, Zhou Xufeng, Liu Zhaoping. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200809. doi: 10.3866/PKU.WHXB202008073 shu

LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping

  • Corresponding author: Zhou Xufeng, zhouxf@nimte.ac.cn Liu Zhaoping, liuzp@nimte.ac.cn
  • Received Date: 25 August 2020
    Revised Date: 27 September 2020
    Accepted Date: 6 October 2020
    Available Online: 22 October 2020

  • Lithium metal has the highest theoretical specific energy density (3860 mAh∙g−1) and the most negative redox potential (−3.04 V vs standard hydrogen electrode) among all alkali metals. These features have attracted the interest of battery researchers to put lithium metal into practical use in rechargeable batteries. However, lithium metal tends to deposit as dendritic or mossy morphology during the charging process, and such non-uniform deposition induces low Coulombic efficiency and poor cycling stability. In addition, dendritic metallic lithium can easily penetrate the separator, which causes internal short circuit and leads to severe safety issues. Thus it is important to control the electrodeposition process of lithium to inhibit the formation of Li dendrites. Surface modification of lithium is a widely adopted strategy that can induce uniform deposition of Li. In this paper, a LiC6 heterogeneous interfacial layer is decorated on the surface of lithium metal anode. It is prepared in a simple manner by mechanically rolling graphitized carbon nanospheres on a Li foil. The increase in surface area by this LiC6 layer can homogenize the current density on the surface of the lithium foil. Simultaneously, the electronegativity of LiC6 can also homogenize the lithium ion flux. The effect of heterogeneous interface on the electrochemical plating and stripping behavior of lithium in carbonate electrolyte is also studied. Morphological characterization and electrochemical performance tests reveal that the LiC6 heterogeneous interface can significantly improve the reversibility and uniformity of the electrochemical plating and stripping of Li, thereby inhibiting dendritic growth and maintaining the stability of the anode/electrolyte interface. Alternating current electrochemical impedance spectroscopy analysis determines that the solid electrolyte interface (SEI) impedance of bare lithium decreases from the initial 275 to 100 Ω as the deposition capacity increases, suggesting that severe rupture of the SEI is caused by the huge volume change after lithium deposition. On the contrary, the SEI impedance of the lithium foil with the LiC6 heterogeneous interface layer remains nearly constant (from the initial 26 to 25 Ω after electrodeposition) indicates that the LiC6 layer is able to inhibit dendrite growth and stabilize the interface. Thus, stable lithium plating/stripping over 300 h is achieved at a current density of 1 mA∙cm−2 and at a fixed capacity of 1 mAh∙cm−2 with a voltage hysteresis of less than 50 mV. The Li-LiFePO4 full cell test demonstrates that the cycling stability of the modified lithium metal anode is superior to that of the bare one.
  • 加载中
    1. [1]

      Liu, C.; Jin, Z.; Wang, C.; Liu, H.; Zhang, Q. Energy Chem. 2019, 1 (1), 100003. doi: 10.1016/j.enchem.2019.100003  doi: 10.1016/j.enchem.2019.100003

    2. [2]

      Peng, Z.; Song, J.; Huai, L.; Jia, H.; Xiao, B.; Zou, L. Adv. Energy Mater. 2019, 9 (42), 1901764. doi: 10.1002/aenm.201901764  doi: 10.1002/aenm.201901764

    3. [3]

      Wang, D.; Luan, C.; Zhang, W.; Liu, X.; Wang, P.; Zheng, W. Adv. Energy Mater. 2018, 8 (21), 1800650. doi: 10.1002/aenm.201800650  doi: 10.1002/aenm.201800650

    4. [4]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117 (15), 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    5. [5]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, Q. Adv. Mater. 2018, 30(45), 1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    6. [6]

      Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Zhang, X. Nano Res. 2020, 13 (2), 430. doi: 10.1007/s12274-020-2628-z  doi: 10.1007/s12274-020-2628-z

    7. [7]

      Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. Adv. Mater. 2016, 28 (9), 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    8. [8]

      Aurbach, D.; Gofer, Y.; Langzam, J. J. Electrochem. Soc 1989, 136, 11. doi: 10.1149/1.2096425  doi: 10.1149/1.2096425

    9. [9]

      Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W.; Chen, Z. B. Nat. Commun. 2018, 9 (1), 1. doi: 10.1038/s41467-018-03466-8  doi: 10.1038/s41467-018-03466-8

    10. [10]

      Lee, J. I.; Shin, M.; Hong, D. Adv. Energy Mater. 2019, 9 (13), 1803722.1. doi: 10.1002/aenm.201803722  doi: 10.1002/aenm.201803722

    11. [11]

      Lee, D.; Sun, S.; Kwon, J. Adv. Mater. 2020, 32, 1905573. doi: 10.1002/adma.201905573  doi: 10.1002/adma.201905573

    12. [12]

      Guo, F.; Wu, C.; Chen, S. ACS. Mater. Lett. 2020, 2 (4), 358. doi: 10.1021/acsmaterialslett.0c00001  doi: 10.1021/acsmaterialslett.0c00001

    13. [13]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35 (12), 1365.  doi: 10.3866/PKU.WHXB201903008

    14. [14]

      Guo, F.; Wang, Y.; Kang, T.; Liu, C.; Shen, Y.; Lu, W.; Chen, L. Energy Storage Mater. 2018, 15, 116. doi: 10.1016/j.ensm.2018.03.018  doi: 10.1016/j.ensm.2018.03.018

    15. [15]

      Shi, P.; Li, T.; Zhang, R.; Shen, X.; Huang, J.; Cheng, X.; Zhang, Q. Adv. Mater. 2019, 31(8), 1807131. doi: 10.1002/adma.201807131  doi: 10.1002/adma.201807131

    16. [16]

      Cui, J.; Yao, S.; Wu, J.; Kim, J. Adv. Energy Mater. 2019, 9, 1802777. doi: 10.1002/aenm.201802777  doi: 10.1002/aenm.201802777

    17. [17]

      Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A. Nat Energy. 2019, 4 (5), 365. doi: 10.1038/s41560-019-0349-7  doi: 10.1038/s41560-019-0349-7

    18. [18]

      Yan, K.; Lee, H. W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Chu, S. Nano Lett. 2014, 14(10), 6016. doi: 10.1021/nl503125u  doi: 10.1021/nl503125u

    19. [19]

      Kim, M. S.; Ryu, J. H.; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Cho, W. I. Nat Energy. 2018, 3 (10), 889. doi: 10.1038/s41560-018-0237-6  doi: 10.1038/s41560-018-0237-6

    20. [20]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Cui, Y. Nat. Nanotechnol. 2016, 11 (7), 626. doi: 10.1038/NNANO.2016.32  doi: 10.1038/NNANO.2016.32

    21. [21]

      Huang, S.; Tang, L.; Najafabadi, H. S.; Chen, S.; Ren, Z. Nano Energy 2017, 38, 504. doi: 10.1016/j.nanoen.2017.06.030  doi: 10.1016/j.nanoen.2017.06.030

    22. [22]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56 (27), 7764. doi: 10.1002/anie.201702099  doi: 10.1002/anie.201702099

    23. [23]

      Shao, Y.; Wang, H.; Gong, Z.; Wang, D.; Zheng, B.; Zhu, J.; Huang, X. ACS Energy Lett. 2018, 3 (6), 1212. doi: 10.1021/acsenergylett.8b00453  doi: 10.1021/acsenergylett.8b00453

    24. [24]

      Siroma, Z.; Sato, T.; Tamonari, T.; Nagai, R.; Ota, A.; Ioroi, T. J. Power Sources 2016, 316, 215. doi: 10.1016/j.jpowsour.2016.03.059  doi: 10.1016/j.jpowsour.2016.03.059

    25. [25]

      Salvatierra, R. V.; Yoon, J.; Tour, J. M. Adv. Mater. 2018, 30 (50), 1803869. doi: 10.1002/adma.201803869  doi: 10.1002/adma.201803869

    26. [26]

      Zhou, W. F. Electrochemical measurements. Shanghai Science and Technology Press: Shanghai, 1983; pp. 134-136.

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    10. [10]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(11)
  • Abstract views(789)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return