Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries
- Corresponding author: Lu Yingying, yingyinglu@zju.edu.cn
Citation: Zhang Shichao, Shen Zeyu, Lu Yingying. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200806. doi: 10.3866/PKU.WHXB202008065
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115
doi: 10.1021/acs.chemrev.7b00115
Dunn, J. B.; Gaines, L.; Kelly, J. C.; James, C.; Gallagher, K. G. Energy Environ. Sci. 2015, 8, 158. doi: 10.1039/c4ee03029j
doi: 10.1039/c4ee03029j
Whittingham, M. S. Chem. Rev. 2014, 114, 11414. doi: 10.1021/cr5003003
doi: 10.1021/cr5003003
Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. J. Power Sources 2012, 208, 210. doi: 10.1016/j.jpowsour.2012.02.038
doi: 10.1016/j.jpowsour.2012.02.038
Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. J. Power Sources 2013, 226, 272. doi: 10.1016/j.jpowsour.2012.10.060
doi: 10.1016/j.jpowsour.2012.10.060
Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141
doi: 10.1038/nenergy.2016.141
Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Mater. Today 2020, 33, 56. doi: 10.1016/j.mattod.2019.09.018
doi: 10.1016/j.mattod.2019.09.018
Gao, X.; Zhou, Y. N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J. B. Joule 2020, 4, 1864. doi: 10.1016/j.joule.2020.06.016
doi: 10.1016/j.joule.2020.06.016
Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/s41560-019-0338-x
doi: 10.1038/s41560-019-0338-x
Lin, D. C.; Liu, Y. Y.; Cui, Y. Nat. Nanotech. 2017, 12, 194. doi: 10.1038/nnano.2017.16
doi: 10.1038/nnano.2017.16
Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191
doi: 10.1038/nmat3191
Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. Adv. Mater. 2017, 29, 1606823. doi: 10.1002/adma.201606823
doi: 10.1002/adma.201606823
Xia, C.; Kwok, C. Y.; Nazar, L. F. Science 2018, 361, 777. doi: 10.1126/science.aas9343
doi: 10.1126/science.aas9343
Yue, X. Y.; Ma, C.; Bao, J.; Yang, S. Y.; Chen, D.; Wu, X. J.; Zhou, Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012.
doi: 10.3866/PKU.WHXB202005012
Koch, S.; Fill, A.; Birke, K. P. J. Power Sources 2018, 398, 106. doi: 10.1016/j.jpowsour.2018.07.051
doi: 10.1016/j.jpowsour.2018.07.051
Xu, G. J.; Huang, L.; Lu, C. L.; Zhou, X. H.; Cui, G. L. Energy Storage Mater. 2020, 31, 72. doi: 10.1016/j.ensm.2020.06.004
doi: 10.1016/j.ensm.2020.06.004
Lyu, P. Z.; Liu, X. J.; Qu, J.; Zhao, J. T.; Huo, Y. T.; Qu, Z. G.; Rao, Z. H. Energy Storage Mater. 2020, 31, 195. doi: 10.1016/j.ensm.2020.06.042
doi: 10.1016/j.ensm.2020.06.042
Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Joule 2020, 4, 743. doi: 10.1016/j.joule.2020.02.010
doi: 10.1016/j.joule.2020.02.010
Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Energy Storage Mater. 2018, 10, 246. doi: 10.1016/j.ensm.2017.05.013
doi: 10.1016/j.ensm.2017.05.013
Offer, G.; Patel, Y.; Hales, A.; Diaz, L. B.; Marzook, M. Nature 2020, 582, 485. doi: 10.1038/d41586-020-01813-8
doi: 10.1038/d41586-020-01813-8
Jia, Y. K.; Uddin, M.; Li, Y. X.; Xu, J. J. Energy Storage 2020, 31, 101668. doi: 10.1016/j.est.2020.101668
doi: 10.1016/j.est.2020.101668
Wang, S. J.; Rafiz, K.; Liu, J. L.; Jin, Y.; Lin, J. Y. S. Sustain Energy Fuels 2020, 4, 2342. doi: 10.1039/d0se00027b
doi: 10.1039/d0se00027b
Yuan, L. M.; Dubaniewicz, T.; Zlochower, I.; Thomas, R.; Rayyan, N. Proc. Saf. Environ. Prot. 2020, 144, 186. doi: 10.1016/j.psep.2020.07.028
doi: 10.1016/j.psep.2020.07.028
Chen, S. C; Wang, Z. R.; Yan, W. J. Hazard. Mater. 2020, 400, 123169. doi: 10.1016/j.jhazmat.2020.123169
doi: 10.1016/j.jhazmat.2020.123169
Liao, Z. H, ; Zhang, S.; Li, K.; Zhang, G. Q.; Habetler, T. G. J. Power Sources 2019, 436, 226879. doi: 10.1016/j.jpowsour.2019.226879
doi: 10.1016/j.jpowsour.2019.226879
Orendorff, C. J.; Lambert, T. N.; Chavez, C. A.; Bencomo, M.; Fenton, K. R. Adv. Energy Mater. 2013, 3, 314. doi: 10.1002/aenm.201200292
doi: 10.1002/aenm.201200292
Woo, J. J.; Nam, S. H.; Seo, S. J.; Yun, S. H.; Kim, W. B.; Xu, T. W.; Moon, S. H. Electrochem. Commun. 2013, 35, 68. doi: 10.1016/j.elecom.2013.08.005
doi: 10.1016/j.elecom.2013.08.005
Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w
doi: 10.1021/cr500003w
Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Energy Storage Mater. 2018, 12, 161. doi: 10.1016/j.ensm.2017.12.002
doi: 10.1016/j.ensm.2017.12.002
Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. Nat. Energy 2017, 2, 17108. doi: 10.1038/nenergy.2017.108
doi: 10.1038/nenergy.2017.108
Geng, Z.; Lu, J. Z.; Li, Q.; Qiu, J. L.; Wang, Y.; Peng, J. Y.; Huang, J.; Li, W. J.; Yu, X. Q.; Li, H. Energy Storage Mater. 2019, 23, 646. doi: 10.1016/j.ensm.2019.03.005
doi: 10.1016/j.ensm.2019.03.005
Mandal, B. K.; Padhi, A. K.; Shi, Z.; Chakraborty, S.; Filler, R. J. Power Sources 2006, 161, 1341. doi: 10.1016/j.jpowsour.2006.06.008
doi: 10.1016/j.jpowsour.2006.06.008
Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. J. Power Sources 2006, 155, 401. doi: 10.1016/j.jpowsour.2005.12.002
doi: 10.1016/j.jpowsour.2005.12.002
Ghazi, Z. A.; Sun, Z. H.; Sun, C. G.; Qi, F. L.; An, B. G.; Li, F.; Cheng, H. M. Small 2019, 15, 1900687. doi: 10.1002/smll.201900687
doi: 10.1002/smll.201900687
Han, C. P.; He, Y. B.; Liu, M.; Li, B. H.; Yang, Q. H.; Wong, C. P.; Kang, F. Y. J. Mater. Chem. A 2017, 5, 6368. doi: 10.1039/c7ta00303j
doi: 10.1039/c7ta00303j
Gao, Y. L.; Guo, M. Y.; Yuan, K.; Shen, C.; Ren, Z. Y.; Zhang, K.; Zhao, H.; Qiao, F. H.; Gu, J. L.; Qi, Y. Q.; et al. Adv. Energy Mater. 2020, 10, 1903362. doi: 10.1002/aenm.201903362
doi: 10.1002/aenm.201903362
Chen, R. S.; Nolan, A. M.; Lu, J. Z.; Wang, J. Y.; Yu, X. Q.; Mo, Y. F.; Chen, L. Q.; Huang, X. J.; Li, H. Joule 2020, 4, 812. doi: 10.1016/j.joule.2020.03.012
doi: 10.1016/j.joule.2020.03.012
Feng, X. N.; Zheng, S. Q.; Ren, D. S.; He, X. M.; Wang, L.; Cui, H.; Liu, X.; Jin, C. Y.; Zhang, F. S.; Xu, C. S.; et al. Appl. Energy 2019, 246, 53. doi: 10.1016/j.apenergy.2019.04.009
doi: 10.1016/j.apenergy.2019.04.009
Puthusseri, D.; Paramananda, M.; Mukherjee, P. P.; Pol, V. G. J. Electrochem. Soc. 2020, 167, 120513. doi: 10.1149/1945-7111/ababd2
doi: 10.1149/1945-7111/ababd2
Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k
doi: 10.1039/c3ee40795k
Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755
doi: 10.1021/acs.nanolett.6b04755
Li, L.; Basu, S.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J.; Shi, Y. F.; Narayanan, S.; Koratkar, N. Science 2018, 359, 1513. doi: 10.1126/science.aap8787
doi: 10.1126/science.aap8787
Hundekar, P.; Basu, S.; Pan, J. L.; Bartolucci, S. F.; Narayanan, S.; Yang, Z. Y.; Koratkar, N. Energy Storage Mater. 2019, 20, 291. doi: 10.1016/j.ensm.2019.04.013
doi: 10.1016/j.ensm.2019.04.013
Ishikawa, M. J. Electrochem. Soc. 1997, 144, L90. doi: 10.1149/1.1837563
doi: 10.1149/1.1837563
Mistry, A.; Fear, C.; Carter, R.; Love, C. T.; Mukherjee, P. P. ACS Energy Lett. 2019, 4, 156. doi: 10.1021/acsenergylett.8b02003
doi: 10.1021/acsenergylett.8b02003
Yang, H. J.; Guo, C.; Chen, J. H.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. L. Angew. Chem. Int. Ed. 2019, 58, 791. doi: 10.1002/anie.201811291
doi: 10.1002/anie.201811291
Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4, 1012. doi: 10.1021/acsenergylett.9b00433
doi: 10.1021/acsenergylett.9b00433
Yan, K.; Wang, J. Y.; Zhao, S. Q.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. X. Angew. Chem. Int. Ed. 2019, 58, 11364. doi: 10.1002/anie.201905251
doi: 10.1002/anie.201905251
Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Nat. Energy 2019, 4, 664. doi: 10.1038/s41560-019-0413-3
doi: 10.1038/s41560-019-0413-3
Zhu, Y. Y.; Xie, J.; Pei, A.; Liu, B. F.; Wu, Y. C.; Lin, D. C.; Li, J.; Wang, H. S.; Chen, H.; Xu, J. W.; et al. Nat. Commun. 2019, 10, 2067. doi: 10.1038/s41467-019-09924-1
doi: 10.1038/s41467-019-09924-1
Golozar, M.; Paolella, A.; Demers, H.; Bessette, S.; Lagacé, M.; Bouchard, P.; Guerfi, A.; Gauvin, R.; Zaghib, K. Commun. Chem. 2019, 2, 131. doi: 10.1038/s42004-019-0234-0
doi: 10.1038/s42004-019-0234-0
Vishnugopi, B. S.; Hao, F.; Verma, A.; Mukherjee, P. P. ACS Appl. Mater. Interfaces 2020, 12, 23931. doi: 10.1021/acsami.0c04355
doi: 10.1021/acsami.0c04355
Deng, K. R.; Zeng, Q. G.; Wang, D.; Liu, Z.; Wang, G. X.; Qiu, Z. P.; Zhang, Y. F.; Xiao, M.; Meng, Y. Z. Energy Storage Mater. 2020, 32, 425. doi: 10.1016/j.ensm.2020.07.018
doi: 10.1016/j.ensm.2020.07.018
Yao, X. L.; Xie, S.; Chen, C. H.; Wang, Q. S.; Sun, J. H.; Li, Y. L.; Lu, S. X. J. Power Sources 2005, 144, 170. doi: 10.1016/j.jpowsour.2004.11.042
doi: 10.1016/j.jpowsour.2004.11.042
Yang, H. J.; Li, Q. Y.; Guo, C.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. L. Chem. Commun. 2018, 54, 4132. doi: 10.1039/c7cc09942h
doi: 10.1039/c7cc09942h
Dong, Y.; Zhang, N.; Li, C. X.; Zhang, Y. F.; Jia, M.; Wang, Y. Y.; Zhao, Y. R.; Jiao, L. F.; Cheng, F. Y.; Xu, J. Z. ACS Appl. Energy Mater. 2019, 2, 2708. doi: 10.1021/acsaem.9b00027
doi: 10.1021/acsaem.9b00027
Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J.; et al. Joule 2018, 2, 1548. doi: 10.1016/j.joule.2018.05.002
doi: 10.1016/j.joule.2018.05.002
Yang, G.; Song, Y. D.; Wang, Q.; Zhang, L. B.; Deng, L. J. Mater. Des. 2020, 190, 108563. doi: 10.1016/j.matdes.2020.108563
doi: 10.1016/j.matdes.2020.108563
Huie, M. M.; DiLeo, R. A.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S. ACS Appl. Mater. Interfaces 2015, 7, 11724. doi: 10.1021/acsami.5b00496
doi: 10.1021/acsami.5b00496
Zheng, J. M.; Gu, M.; Chen, H. H.; Meduri, P.; Engelhard, M. H.; Zhang, J. G.; Liu, J.; Xiao, J. J. Mater. Chem. A 2013, 1, 8464. doi: 10.1039/c3ta11553d
doi: 10.1039/c3ta11553d
Lee, S.; Park, K.; Koo, B.; Park, C.; Jang, M.; Lee, H.; Lee, H. Adv. Funct. Mater. 2020, 30, 2003132. doi: 10.1002/adfm.202003132
doi: 10.1002/adfm.202003132
Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. Nat. Commun. 2013, 4, 1481. doi: 10.1038/ncomms2513
doi: 10.1038/ncomms2513
Amine, R.; Liu, J. Z.; Acznik, I.; Sheng, T.; Lota, K.; Sun, H.; Sun, C. J.; Fic, K.; Zuo, X. B.; Ren, Y.; et al. Adv. Energy Mater. 2020, 10, 2000901. doi: 10.1002/aenm.202000901
doi: 10.1002/aenm.202000901
Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2
doi: 10.1038/s41565-018-0183-2
Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q.; et al. Nat. Energy 2019, 4, 882. doi: 10.1038/s41560-019-0474-3
doi: 10.1038/s41560-019-0474-3
Liu, H. Y.; Xu, J.; Guo, B. H.; He, X. M. Ceram. Int. 2014, 40, 14105. doi: 10.1016/j.ceramint.2014.05.142
doi: 10.1016/j.ceramint.2014.05.142
Peng, L. Q.; Shen, X.; Dai, J. H.; Wang, X.; Zeng, J.; Huang, B. Y.; Li, H.; Zhang, P.; Zhao, J. B. J. Electrochem. Soc. 2019, 166, A2111. doi: 10.1149/2.1141910jes
doi: 10.1149/2.1141910jes
Jeon, H.; Jin, S. Y.; Park, W. H.; Lee, H.; Kim, H. T.; Ryou, M. H.; Lee, Y. M. Electrochim. Acta 2016, 212, 649. doi: 10.1016/j.electacta.2016.06.172
doi: 10.1016/j.electacta.2016.06.172
Deng, N. P.; Kang, W. M.; Liu, Y. B.; Ju, J. G.; Wu, D. Y.; Li, L.; Hassan, B. S.; Cheng, B. W. J. Power Sources 2016, 331, 132. doi: 10.1016/j.jpowsour.2016.09.044
doi: 10.1016/j.jpowsour.2016.09.044
Lee, T.; Kim, W. K.; Lee, Y.; Ryou, M. H.; Lee, Y. M. Macromol. Res. 2014, 22, 1190. doi: 10.1007/s13233-014-2163-1
doi: 10.1007/s13233-014-2163-1
Lee, T.; Lee, Y.; Ryou, M. H.; Lee, Y. M. RSC Adv. 2015, 5, 39392. doi: 10.1039/C5RA01061F
doi: 10.1039/C5RA01061F
Ma, L. B.; Chen, R. P; Hu, Y.; Zhang, W. J.; Zhu, G. Y; Zhao, P. Y.; Chen, T.; Wang, C. X.; Yan, W.; Wang, Y. R.; et al. Energy Storage Mater. 2018, 14, 258. doi: 10.1016/j.ensm.2018.04.016
doi: 10.1016/j.ensm.2018.04.016
Song, Q. Q.; Li, A. J.; Shi, L.; Qian, C.; Feric, T. G.; Fu, Y. K.; Zhang, H. R.; Li, Z. Y.; Wang, P. Y.; Li, Z.; et al. Energy Storage Mater. 2019, 22, 48. doi: 10.1016/j.ensm.2019.06.033
doi: 10.1016/j.ensm.2019.06.033
Cheng, C. L.; Wan, C. C.; Wang, Y. Y.; Wu, M. S. J. Power Sources 2005, 144, 238. doi: 10.1016/j.jpowsour.2004.12.043
doi: 10.1016/j.jpowsour.2004.12.043
Shi, Q.; Ni, L.; Zhang, Y. F.; Feng, X. S.; Chang, Q. H.; Meng, J. Q. J. Mater. Chem. A 2017, 5, 13610. doi: 10.1039/C7TA02552A
doi: 10.1039/C7TA02552A
Zhang, X. K.; Li, N.; Hu, Z. M.; Yu, J. R.; Wang, Y.; Zhu, J. J. Membr. Sci. 2019, 581, 355. doi: 10.1016/j.memsci.2019.03.071
doi: 10.1016/j.memsci.2019.03.071
He, L. Y.; Qiu, T.; Xie, C. J.; Tuo, X. L. J. Appl. Polym. Sci. 2018, 135, 46697. doi: 10.1002/app.46697
doi: 10.1002/app.46697
Pan, R. J.; Xu, X. X.; Sun, R.; Wang, Z. H.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Small 2018, 14, 1704371. doi: 10.1002/smll.201704371
doi: 10.1002/smll.201704371
Gitina, R. M.; Oksent'yevich, L. A.; Kuznetsov, A. A.; Danilina, L. I.; Izyumnikov, A. L.; Rogozhkina, Y. D.; Bogachev, Y. S.; Kopylov, V. V.; Novikov, S. N.; Pravednikov, A. N. Polym. Sci. U.S.S.R. 1984, 26, 1184. doi: 10.1016/0032-3950(84)90339-3
doi: 10.1016/0032-3950(84)90339-3
Xu, T. W.; Wu, D.; Wu, L. Prog. Polym. Sci. 2008, 33, 894. doi: 10.1016/j.progpolymsci.2008.07.002
doi: 10.1016/j.progpolymsci.2008.07.002
Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B. A.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Sci. Adv. 2017, 3, 8. doi: 10.1126/sciadv.1601978
doi: 10.1126/sciadv.1601978
Wu, H.; Zhuo, D.; Kong, D. S.; Cui, Y. Nat. Commun. 2014, 5, 5193. doi: 10.1038/ncomms6193
doi: 10.1038/ncomms6193
Moon, S.; Tamwattana, O.; Park, H.; Yoon, G.; Seong, W. M.; Lee, M. H.; Park, K. Y.; Meethong, N.; Kang, K. J. Mater. Chem. A 2019, 7, 24807. doi: 10.1039/C9TA08032E
doi: 10.1039/C9TA08032E
Liu, K.; Zhuo, D.; Lee, H. W.; Liu, W.; Lin, D. C.; Lu, Y. Y.; Cui, Y. Adv. Mater. 2017, 29, 1603987. doi: 10.1002/adma.201603987
doi: 10.1002/adma.201603987
Liu, Y. D.; Liu, Q.; Xin, L.; Liu, Y. Z.; Yang, F.; Stach, E. A.; Xie, J. Nat. Energy 2017, 2, 17083. doi: 10.1038/nenergy.2017.83
doi: 10.1038/nenergy.2017.83
Tikekar, M. D.; Archer, L. A.; Koch, D. L. Sci. Adv. 2016, 2, e1600320. doi: 10.1126/sciadv.1600320
doi: 10.1126/sciadv.1600320
Zhou, W. D.; Gao, H. C.; Goodenough, J. B. Adv. Energy Mater. 2016, 6, 1501802. doi: 10.1002/aenm.201501802
doi: 10.1002/aenm.201501802
Pan, Q. W.; Barbash, D.; Smith, D. M.; Qi, H.; Gleeson, S. E.; Li, C. Y. Adv. Energy Mater. 2017, 7, 1701231. doi: 10.1002/aenm.201701231
doi: 10.1002/aenm.201701231
Wu, N.; Shi, Y. R.; Lang, S. Y.; Zhou, J. M.; Liang, J. Y.; Wang, W.; Tan, S. J.; Yin, Y. X.; Wen, R.; Guo, Y. G. Angew. Chem. Int. Ed. 2019, 58, 18146. doi: 10.1002/anie.201910478
doi: 10.1002/anie.201910478
Shi, Y.; Ha, H.; Al-Sudani, A.; Ellison, C. J.; Yu, G. H. Adv. Mater. 2016, 28, 7921. doi: 10.1002/adma.201602239
doi: 10.1002/adma.201602239
Zhou, J. Q.; Qian, T.; Liu, J.; Wang, M. F.; Zhang, L.; Yan, C. L. Nano Lett. 2019, 19, 3066. doi: 10.1021/acs.nanolett.9b00450
doi: 10.1021/acs.nanolett.9b00450
Li, Y. Z.; Huang, W.; Li, Y. B.; Pei, A.; Boyle, D. T.; Cui, Y. Joule 2018, 2, 2167. doi: 10.1016/j.joule.2018.08.004
doi: 10.1016/j.joule.2018.08.004
Li, Y. Z.; Li, Y. B.; Pei, A. L.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y.; et al. Science 2017, 358, 506. doi: 10.1126/science.aam6014
doi: 10.1126/science.aam6014
Jin, Y.; Zheng, Z. K.; Wei, D. H.; Jiang, X.; Lu, H. F.; Sun, L.; Tao, F. B.; Guo, D. L.; Liu, Y.; Gao, J. F.; et al. Joule 2020, 4, 1714. doi: 10.1016/j.joule.2020.05.016
doi: 10.1016/j.joule.2020.05.016
Shen, K.; Wang, Z.; Bi, X. X.; Ying, Y.; Zhang, D.; Jin, C. B.; Hou, G. Y.; Cao, H. Z.; Wu, L. K.; Zheng, G. Q.; et al. Adv. Energy Mater. 2019, 9, 1900260. doi: 10.1002/aenm.201900260
doi: 10.1002/aenm.201900260
Chen, Y. X.; Dou, X. Y.; Wang, K.; Han, Y. S. Adv. Energy Mater. 2019, 9, 1900019. doi: 10.1002/aenm.201900019
doi: 10.1002/aenm.201900019
Adair, K. R.; Banis, M. N.; Zhao, Y.; Bond, T.; Li, R. Y.; Sun, X. L. Adv. Mater. 2020, 32, 2002550. doi: 10.1002/adma.202002550
doi: 10.1002/adma.202002550
Deng, Z.; Huang, Z. Y.; Shen, Y.; Huang, Y. H.; Ding, H.; Luscombe, A.; Johnson, M.; Harlow, J. E.; Gauthier, R.; Dahn, J. R. Joule 2020, 4, 2017. doi: 10.1016/j.joule.2020.07.014
doi: 10.1016/j.joule.2020.07.014
Bommier, C.; Chang, W.; Lu, Y. F.; Yeung, J.; Davies, G.; Mohr, R.; Williams, M.; Steingart, D. Cell Rep. Phys. Sci. 2020, 1, 100035. doi: 10.1016/j.xcrp.2020.100035
doi: 10.1016/j.xcrp.2020.100035
Deng, Z.; Lin, X.; Huang, Z. Y.; Meng, J. T.; Zhong, Y.; Ma, G. T.; Zhou, Y.; Shen, Y.; Ding, H.; Huang, Y. H. Adv. Energy Mater. 2020, 2000806. doi: 10.1002/aenm.202000806
doi: 10.1002/aenm.202000806
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030