Citation: Zhang Shichao, Shen Zeyu, Lu Yingying. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200806. doi: 10.3866/PKU.WHXB202008065 shu

Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries

  • Corresponding author: Lu Yingying, yingyinglu@zju.edu.cn
  • Received Date: 22 August 2020
    Revised Date: 15 September 2020
    Accepted Date: 16 September 2020
    Available Online: 21 September 2020

    Fund Project: the National Key R & D Program of China 2018YFA0209600The project was supported by the National Key R & D Program of China (2018YFA0209600), the National Natural Science Foundation of China (21878268), and the Leading Innovative and Entrepreneur Team Introduction Program ofZhejiang Province (2019R01006)the Leading Innovative and Entrepreneur Team Introduction Program ofZhejiang Province 2019R01006the National Natural Science Foundation of China 21878268

  • Lithium ion batteries have been widely used in the fields of portable energy storage devices and electric vehicles due to their high energy density and high safety, and have a profound impact on modern society. However, the frequent occurrence of battery fire and explosion accidents has caused widespread concern of thermal runaway and thermal safety issues. Many reviews have reported the measures to mitigate thermal runaway of lithium ion batteries. Due to the use of graphite with a smaller capacity as the negative electrode material, the specific energy of lithium ion batteries has approached the theoretical limit, and there is an urgent need to develop more efficient electrode materials to meet the growing demand of the energy storage market. Lithium metal anode has smaller density, higher theoretical capacity and lower potential, which is the ideal anode material for the next generation of high energy density battery system. However, the high reactivity of lithium will cause uncontrollable lithium dendrite growth during the cycle, which may penetrate the separator and cause internal short circuit of the battery, and then cause thermal runaway, fire and even explosion. Therefore, the thermal runaway of lithium metal batteries are more complicated and serious, which hinders the commercial application of batteries. Aiming at the thermal runaway problem of lithium metal batteries, this article first introduces the causes of thermal runaway, which are mainly uncontrollable exothermic reactions caused by internal short circuits. The basic process of thermal runaway is divided into three stages. By analyzing the three characteristic temperatures and heating rate, it is proved that improving the thermal stability of electrolyte and seperator can alleviate thermal runaway. Then we investigated the influence of thermodynamics on the nucleation and growth of lithium dendrites, revealing the dual effects of temperature, and proving that a uniform thermal field is beneficial to obtain uniform lithium deposition and improve battery cycle performance and safety. Secondly, a variety of strategies to improve battery thermal safety are reviewed at the material level. In terms of liquid electrolytes, the development of non-flammable electrolyte systems includes the use of flame-retardant electrolytes and ionic liquid electrolytes with lower flammability. In addition, high-concentration electrolyte and local high-concentration electrolyte can change the solvation structure of lithium ions, and improve safety by reducing the number of free solvent molecules. In terms of separators, high thermal stability separators and thermal response separators with thermal shutdown function have been developed. The flame-retardant separators can release flame retardants to inhibit combustion. In addition, the new intelligent separators have dendrite detection, early warning and elimination functions, which effectively improve the safety and cycle life of the battery. In terms of solid electrolytes, thermally responsive polymer electrolytes have been developed to avoid thermal runaway through the strain function of polymer materials. Finally, further research on the thermal runaway of lithium metal batteries in the future is prospected.
  • 加载中
    1. [1]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    2. [2]

      Dunn, J. B.; Gaines, L.; Kelly, J. C.; James, C.; Gallagher, K. G. Energy Environ. Sci. 2015, 8, 158. doi: 10.1039/c4ee03029j  doi: 10.1039/c4ee03029j

    3. [3]

      Whittingham, M. S. Chem. Rev. 2014, 114, 11414. doi: 10.1021/cr5003003  doi: 10.1021/cr5003003

    4. [4]

      Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. J. Power Sources 2012, 208, 210. doi: 10.1016/j.jpowsour.2012.02.038  doi: 10.1016/j.jpowsour.2012.02.038

    5. [5]

      Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. J. Power Sources 2013, 226, 272. doi: 10.1016/j.jpowsour.2012.10.060  doi: 10.1016/j.jpowsour.2012.10.060

    6. [6]

      Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141  doi: 10.1038/nenergy.2016.141

    7. [7]

      Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Mater. Today 2020, 33, 56. doi: 10.1016/j.mattod.2019.09.018  doi: 10.1016/j.mattod.2019.09.018

    8. [8]

      Gao, X.; Zhou, Y. N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J. B. Joule 2020, 4, 1864. doi: 10.1016/j.joule.2020.06.016  doi: 10.1016/j.joule.2020.06.016

    9. [9]

      Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/s41560-019-0338-x  doi: 10.1038/s41560-019-0338-x

    10. [10]

      Lin, D. C.; Liu, Y. Y.; Cui, Y. Nat. Nanotech. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    11. [11]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    12. [12]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    13. [13]

      Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. Adv. Mater. 2017, 29, 1606823. doi: 10.1002/adma.201606823  doi: 10.1002/adma.201606823

    14. [14]

      Xia, C.; Kwok, C. Y.; Nazar, L. F. Science 2018, 361, 777. doi: 10.1126/science.aas9343  doi: 10.1126/science.aas9343

    15. [15]

      Yue, X. Y.; Ma, C.; Bao, J.; Yang, S. Y.; Chen, D.; Wu, X. J.; Zhou, Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012.  doi: 10.3866/PKU.WHXB202005012

    16. [16]

      Koch, S.; Fill, A.; Birke, K. P. J. Power Sources 2018, 398, 106. doi: 10.1016/j.jpowsour.2018.07.051  doi: 10.1016/j.jpowsour.2018.07.051

    17. [17]

      Xu, G. J.; Huang, L.; Lu, C. L.; Zhou, X. H.; Cui, G. L. Energy Storage Mater. 2020, 31, 72. doi: 10.1016/j.ensm.2020.06.004  doi: 10.1016/j.ensm.2020.06.004

    18. [18]

      Lyu, P. Z.; Liu, X. J.; Qu, J.; Zhao, J. T.; Huo, Y. T.; Qu, Z. G.; Rao, Z. H. Energy Storage Mater. 2020, 31, 195. doi: 10.1016/j.ensm.2020.06.042  doi: 10.1016/j.ensm.2020.06.042

    19. [19]

      Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Joule 2020, 4, 743. doi: 10.1016/j.joule.2020.02.010  doi: 10.1016/j.joule.2020.02.010

    20. [20]

      Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Energy Storage Mater. 2018, 10, 246. doi: 10.1016/j.ensm.2017.05.013  doi: 10.1016/j.ensm.2017.05.013

    21. [21]

      Offer, G.; Patel, Y.; Hales, A.; Diaz, L. B.; Marzook, M. Nature 2020, 582, 485. doi: 10.1038/d41586-020-01813-8  doi: 10.1038/d41586-020-01813-8

    22. [22]

      Jia, Y. K.; Uddin, M.; Li, Y. X.; Xu, J. J. Energy Storage 2020, 31, 101668. doi: 10.1016/j.est.2020.101668  doi: 10.1016/j.est.2020.101668

    23. [23]

      Wang, S. J.; Rafiz, K.; Liu, J. L.; Jin, Y.; Lin, J. Y. S. Sustain Energy Fuels 2020, 4, 2342. doi: 10.1039/d0se00027b  doi: 10.1039/d0se00027b

    24. [24]

      Yuan, L. M.; Dubaniewicz, T.; Zlochower, I.; Thomas, R.; Rayyan, N. Proc. Saf. Environ. Prot. 2020, 144, 186. doi: 10.1016/j.psep.2020.07.028  doi: 10.1016/j.psep.2020.07.028

    25. [25]

      Chen, S. C; Wang, Z. R.; Yan, W. J. Hazard. Mater. 2020, 400, 123169. doi: 10.1016/j.jhazmat.2020.123169  doi: 10.1016/j.jhazmat.2020.123169

    26. [26]

      Liao, Z. H, ; Zhang, S.; Li, K.; Zhang, G. Q.; Habetler, T. G. J. Power Sources 2019, 436, 226879. doi: 10.1016/j.jpowsour.2019.226879  doi: 10.1016/j.jpowsour.2019.226879

    27. [27]

      Orendorff, C. J.; Lambert, T. N.; Chavez, C. A.; Bencomo, M.; Fenton, K. R. Adv. Energy Mater. 2013, 3, 314. doi: 10.1002/aenm.201200292  doi: 10.1002/aenm.201200292

    28. [28]

      Woo, J. J.; Nam, S. H.; Seo, S. J.; Yun, S. H.; Kim, W. B.; Xu, T. W.; Moon, S. H. Electrochem. Commun. 2013, 35, 68. doi: 10.1016/j.elecom.2013.08.005  doi: 10.1016/j.elecom.2013.08.005

    29. [29]

      Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w  doi: 10.1021/cr500003w

    30. [30]

      Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Energy Storage Mater. 2018, 12, 161. doi: 10.1016/j.ensm.2017.12.002  doi: 10.1016/j.ensm.2017.12.002

    31. [31]

      Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. Nat. Energy 2017, 2, 17108. doi: 10.1038/nenergy.2017.108  doi: 10.1038/nenergy.2017.108

    32. [32]

      Geng, Z.; Lu, J. Z.; Li, Q.; Qiu, J. L.; Wang, Y.; Peng, J. Y.; Huang, J.; Li, W. J.; Yu, X. Q.; Li, H. Energy Storage Mater. 2019, 23, 646. doi: 10.1016/j.ensm.2019.03.005  doi: 10.1016/j.ensm.2019.03.005

    33. [33]

      Mandal, B. K.; Padhi, A. K.; Shi, Z.; Chakraborty, S.; Filler, R. J. Power Sources 2006, 161, 1341. doi: 10.1016/j.jpowsour.2006.06.008  doi: 10.1016/j.jpowsour.2006.06.008

    34. [34]

      Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. J. Power Sources 2006, 155, 401. doi: 10.1016/j.jpowsour.2005.12.002  doi: 10.1016/j.jpowsour.2005.12.002

    35. [35]

      Ghazi, Z. A.; Sun, Z. H.; Sun, C. G.; Qi, F. L.; An, B. G.; Li, F.; Cheng, H. M. Small 2019, 15, 1900687. doi: 10.1002/smll.201900687  doi: 10.1002/smll.201900687

    36. [36]

      Han, C. P.; He, Y. B.; Liu, M.; Li, B. H.; Yang, Q. H.; Wong, C. P.; Kang, F. Y. J. Mater. Chem. A 2017, 5, 6368. doi: 10.1039/c7ta00303j  doi: 10.1039/c7ta00303j

    37. [37]

      Gao, Y. L.; Guo, M. Y.; Yuan, K.; Shen, C.; Ren, Z. Y.; Zhang, K.; Zhao, H.; Qiao, F. H.; Gu, J. L.; Qi, Y. Q.; et al. Adv. Energy Mater. 2020, 10, 1903362. doi: 10.1002/aenm.201903362  doi: 10.1002/aenm.201903362

    38. [38]

      Chen, R. S.; Nolan, A. M.; Lu, J. Z.; Wang, J. Y.; Yu, X. Q.; Mo, Y. F.; Chen, L. Q.; Huang, X. J.; Li, H. Joule 2020, 4, 812. doi: 10.1016/j.joule.2020.03.012  doi: 10.1016/j.joule.2020.03.012

    39. [39]

      Feng, X. N.; Zheng, S. Q.; Ren, D. S.; He, X. M.; Wang, L.; Cui, H.; Liu, X.; Jin, C. Y.; Zhang, F. S.; Xu, C. S.; et al. Appl. Energy 2019, 246, 53. doi: 10.1016/j.apenergy.2019.04.009  doi: 10.1016/j.apenergy.2019.04.009

    40. [40]

      Puthusseri, D.; Paramananda, M.; Mukherjee, P. P.; Pol, V. G. J. Electrochem. Soc. 2020, 167, 120513. doi: 10.1149/1945-7111/ababd2  doi: 10.1149/1945-7111/ababd2

    41. [41]

      Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    42. [42]

      Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    43. [43]

      Li, L.; Basu, S.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J.; Shi, Y. F.; Narayanan, S.; Koratkar, N. Science 2018, 359, 1513. doi: 10.1126/science.aap8787  doi: 10.1126/science.aap8787

    44. [44]

      Hundekar, P.; Basu, S.; Pan, J. L.; Bartolucci, S. F.; Narayanan, S.; Yang, Z. Y.; Koratkar, N. Energy Storage Mater. 2019, 20, 291. doi: 10.1016/j.ensm.2019.04.013  doi: 10.1016/j.ensm.2019.04.013

    45. [45]

      Ishikawa, M. J. Electrochem. Soc. 1997, 144, L90. doi: 10.1149/1.1837563  doi: 10.1149/1.1837563

    46. [46]

      Mistry, A.; Fear, C.; Carter, R.; Love, C. T.; Mukherjee, P. P. ACS Energy Lett. 2019, 4, 156. doi: 10.1021/acsenergylett.8b02003  doi: 10.1021/acsenergylett.8b02003

    47. [47]

      Yang, H. J.; Guo, C.; Chen, J. H.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. L. Angew. Chem. Int. Ed. 2019, 58, 791. doi: 10.1002/anie.201811291  doi: 10.1002/anie.201811291

    48. [48]

      Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4, 1012. doi: 10.1021/acsenergylett.9b00433  doi: 10.1021/acsenergylett.9b00433

    49. [49]

      Yan, K.; Wang, J. Y.; Zhao, S. Q.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. X. Angew. Chem. Int. Ed. 2019, 58, 11364. doi: 10.1002/anie.201905251  doi: 10.1002/anie.201905251

    50. [50]

      Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Nat. Energy 2019, 4, 664. doi: 10.1038/s41560-019-0413-3  doi: 10.1038/s41560-019-0413-3

    51. [51]

      Zhu, Y. Y.; Xie, J.; Pei, A.; Liu, B. F.; Wu, Y. C.; Lin, D. C.; Li, J.; Wang, H. S.; Chen, H.; Xu, J. W.; et al. Nat. Commun. 2019, 10, 2067. doi: 10.1038/s41467-019-09924-1  doi: 10.1038/s41467-019-09924-1

    52. [52]

      Golozar, M.; Paolella, A.; Demers, H.; Bessette, S.; Lagacé, M.; Bouchard, P.; Guerfi, A.; Gauvin, R.; Zaghib, K. Commun. Chem. 2019, 2, 131. doi: 10.1038/s42004-019-0234-0  doi: 10.1038/s42004-019-0234-0

    53. [53]

      Vishnugopi, B. S.; Hao, F.; Verma, A.; Mukherjee, P. P. ACS Appl. Mater. Interfaces 2020, 12, 23931. doi: 10.1021/acsami.0c04355  doi: 10.1021/acsami.0c04355

    54. [54]

      Deng, K. R.; Zeng, Q. G.; Wang, D.; Liu, Z.; Wang, G. X.; Qiu, Z. P.; Zhang, Y. F.; Xiao, M.; Meng, Y. Z. Energy Storage Mater. 2020, 32, 425. doi: 10.1016/j.ensm.2020.07.018  doi: 10.1016/j.ensm.2020.07.018

    55. [55]

      Yao, X. L.; Xie, S.; Chen, C. H.; Wang, Q. S.; Sun, J. H.; Li, Y. L.; Lu, S. X. J. Power Sources 2005, 144, 170. doi: 10.1016/j.jpowsour.2004.11.042  doi: 10.1016/j.jpowsour.2004.11.042

    56. [56]

      Yang, H. J.; Li, Q. Y.; Guo, C.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. L. Chem. Commun. 2018, 54, 4132. doi: 10.1039/c7cc09942h  doi: 10.1039/c7cc09942h

    57. [57]

      Dong, Y.; Zhang, N.; Li, C. X.; Zhang, Y. F.; Jia, M.; Wang, Y. Y.; Zhao, Y. R.; Jiao, L. F.; Cheng, F. Y.; Xu, J. Z. ACS Appl. Energy Mater. 2019, 2, 2708. doi: 10.1021/acsaem.9b00027  doi: 10.1021/acsaem.9b00027

    58. [58]

      Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J.; et al. Joule 2018, 2, 1548. doi: 10.1016/j.joule.2018.05.002  doi: 10.1016/j.joule.2018.05.002

    59. [59]

      Yang, G.; Song, Y. D.; Wang, Q.; Zhang, L. B.; Deng, L. J. Mater. Des. 2020, 190, 108563. doi: 10.1016/j.matdes.2020.108563  doi: 10.1016/j.matdes.2020.108563

    60. [60]

      Huie, M. M.; DiLeo, R. A.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S. ACS Appl. Mater. Interfaces 2015, 7, 11724. doi: 10.1021/acsami.5b00496  doi: 10.1021/acsami.5b00496

    61. [61]

      Zheng, J. M.; Gu, M.; Chen, H. H.; Meduri, P.; Engelhard, M. H.; Zhang, J. G.; Liu, J.; Xiao, J. J. Mater. Chem. A 2013, 1, 8464. doi: 10.1039/c3ta11553d  doi: 10.1039/c3ta11553d

    62. [62]

      Lee, S.; Park, K.; Koo, B.; Park, C.; Jang, M.; Lee, H.; Lee, H. Adv. Funct. Mater. 2020, 30, 2003132. doi: 10.1002/adfm.202003132  doi: 10.1002/adfm.202003132

    63. [63]

      Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. Nat. Commun. 2013, 4, 1481. doi: 10.1038/ncomms2513  doi: 10.1038/ncomms2513

    64. [64]

      Amine, R.; Liu, J. Z.; Acznik, I.; Sheng, T.; Lota, K.; Sun, H.; Sun, C. J.; Fic, K.; Zuo, X. B.; Ren, Y.; et al. Adv. Energy Mater. 2020, 10, 2000901. doi: 10.1002/aenm.202000901  doi: 10.1002/aenm.202000901

    65. [65]

      Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2  doi: 10.1038/s41565-018-0183-2

    66. [66]

      Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q.; et al. Nat. Energy 2019, 4, 882. doi: 10.1038/s41560-019-0474-3  doi: 10.1038/s41560-019-0474-3

    67. [67]

      Liu, H. Y.; Xu, J.; Guo, B. H.; He, X. M. Ceram. Int. 2014, 40, 14105. doi: 10.1016/j.ceramint.2014.05.142  doi: 10.1016/j.ceramint.2014.05.142

    68. [68]

      Peng, L. Q.; Shen, X.; Dai, J. H.; Wang, X.; Zeng, J.; Huang, B. Y.; Li, H.; Zhang, P.; Zhao, J. B. J. Electrochem. Soc. 2019, 166, A2111. doi: 10.1149/2.1141910jes  doi: 10.1149/2.1141910jes

    69. [69]

      Jeon, H.; Jin, S. Y.; Park, W. H.; Lee, H.; Kim, H. T.; Ryou, M. H.; Lee, Y. M. Electrochim. Acta 2016, 212, 649. doi: 10.1016/j.electacta.2016.06.172  doi: 10.1016/j.electacta.2016.06.172

    70. [70]

      Deng, N. P.; Kang, W. M.; Liu, Y. B.; Ju, J. G.; Wu, D. Y.; Li, L.; Hassan, B. S.; Cheng, B. W. J. Power Sources 2016, 331, 132. doi: 10.1016/j.jpowsour.2016.09.044  doi: 10.1016/j.jpowsour.2016.09.044

    71. [71]

      Lee, T.; Kim, W. K.; Lee, Y.; Ryou, M. H.; Lee, Y. M. Macromol. Res. 2014, 22, 1190. doi: 10.1007/s13233-014-2163-1  doi: 10.1007/s13233-014-2163-1

    72. [72]

      Lee, T.; Lee, Y.; Ryou, M. H.; Lee, Y. M. RSC Adv. 2015, 5, 39392. doi: 10.1039/C5RA01061F  doi: 10.1039/C5RA01061F

    73. [73]

      Ma, L. B.; Chen, R. P; Hu, Y.; Zhang, W. J.; Zhu, G. Y; Zhao, P. Y.; Chen, T.; Wang, C. X.; Yan, W.; Wang, Y. R.; et al. Energy Storage Mater. 2018, 14, 258. doi: 10.1016/j.ensm.2018.04.016  doi: 10.1016/j.ensm.2018.04.016

    74. [74]

      Song, Q. Q.; Li, A. J.; Shi, L.; Qian, C.; Feric, T. G.; Fu, Y. K.; Zhang, H. R.; Li, Z. Y.; Wang, P. Y.; Li, Z.; et al. Energy Storage Mater. 2019, 22, 48. doi: 10.1016/j.ensm.2019.06.033  doi: 10.1016/j.ensm.2019.06.033

    75. [75]

      Cheng, C. L.; Wan, C. C.; Wang, Y. Y.; Wu, M. S. J. Power Sources 2005, 144, 238. doi: 10.1016/j.jpowsour.2004.12.043  doi: 10.1016/j.jpowsour.2004.12.043

    76. [76]

      Shi, Q.; Ni, L.; Zhang, Y. F.; Feng, X. S.; Chang, Q. H.; Meng, J. Q. J. Mater. Chem. A 2017, 5, 13610. doi: 10.1039/C7TA02552A  doi: 10.1039/C7TA02552A

    77. [77]

      Zhang, X. K.; Li, N.; Hu, Z. M.; Yu, J. R.; Wang, Y.; Zhu, J. J. Membr. Sci. 2019, 581, 355. doi: 10.1016/j.memsci.2019.03.071  doi: 10.1016/j.memsci.2019.03.071

    78. [78]

      He, L. Y.; Qiu, T.; Xie, C. J.; Tuo, X. L. J. Appl. Polym. Sci. 2018, 135, 46697. doi: 10.1002/app.46697  doi: 10.1002/app.46697

    79. [79]

      Pan, R. J.; Xu, X. X.; Sun, R.; Wang, Z. H.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Small 2018, 14, 1704371. doi: 10.1002/smll.201704371  doi: 10.1002/smll.201704371

    80. [80]

      Gitina, R. M.; Oksent'yevich, L. A.; Kuznetsov, A. A.; Danilina, L. I.; Izyumnikov, A. L.; Rogozhkina, Y. D.; Bogachev, Y. S.; Kopylov, V. V.; Novikov, S. N.; Pravednikov, A. N. Polym. Sci. U.S.S.R. 1984, 26, 1184. doi: 10.1016/0032-3950(84)90339-3  doi: 10.1016/0032-3950(84)90339-3

    81. [81]

      Xu, T. W.; Wu, D.; Wu, L. Prog. Polym. Sci. 2008, 33, 894. doi: 10.1016/j.progpolymsci.2008.07.002  doi: 10.1016/j.progpolymsci.2008.07.002

    82. [82]

      Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B. A.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Sci. Adv. 2017, 3, 8. doi: 10.1126/sciadv.1601978  doi: 10.1126/sciadv.1601978

    83. [83]

      Wu, H.; Zhuo, D.; Kong, D. S.; Cui, Y. Nat. Commun. 2014, 5, 5193. doi: 10.1038/ncomms6193  doi: 10.1038/ncomms6193

    84. [84]

      Moon, S.; Tamwattana, O.; Park, H.; Yoon, G.; Seong, W. M.; Lee, M. H.; Park, K. Y.; Meethong, N.; Kang, K. J. Mater. Chem. A 2019, 7, 24807. doi: 10.1039/C9TA08032E  doi: 10.1039/C9TA08032E

    85. [85]

      Liu, K.; Zhuo, D.; Lee, H. W.; Liu, W.; Lin, D. C.; Lu, Y. Y.; Cui, Y. Adv. Mater. 2017, 29, 1603987. doi: 10.1002/adma.201603987  doi: 10.1002/adma.201603987

    86. [86]

      Liu, Y. D.; Liu, Q.; Xin, L.; Liu, Y. Z.; Yang, F.; Stach, E. A.; Xie, J. Nat. Energy 2017, 2, 17083. doi: 10.1038/nenergy.2017.83  doi: 10.1038/nenergy.2017.83

    87. [87]

      Tikekar, M. D.; Archer, L. A.; Koch, D. L. Sci. Adv. 2016, 2, e1600320. doi: 10.1126/sciadv.1600320  doi: 10.1126/sciadv.1600320

    88. [88]

      Zhou, W. D.; Gao, H. C.; Goodenough, J. B. Adv. Energy Mater. 2016, 6, 1501802. doi: 10.1002/aenm.201501802  doi: 10.1002/aenm.201501802

    89. [89]

      Pan, Q. W.; Barbash, D.; Smith, D. M.; Qi, H.; Gleeson, S. E.; Li, C. Y. Adv. Energy Mater. 2017, 7, 1701231. doi: 10.1002/aenm.201701231  doi: 10.1002/aenm.201701231

    90. [90]

      Wu, N.; Shi, Y. R.; Lang, S. Y.; Zhou, J. M.; Liang, J. Y.; Wang, W.; Tan, S. J.; Yin, Y. X.; Wen, R.; Guo, Y. G. Angew. Chem. Int. Ed. 2019, 58, 18146. doi: 10.1002/anie.201910478  doi: 10.1002/anie.201910478

    91. [91]

      Shi, Y.; Ha, H.; Al-Sudani, A.; Ellison, C. J.; Yu, G. H. Adv. Mater. 2016, 28, 7921. doi: 10.1002/adma.201602239  doi: 10.1002/adma.201602239

    92. [92]

      Zhou, J. Q.; Qian, T.; Liu, J.; Wang, M. F.; Zhang, L.; Yan, C. L. Nano Lett. 2019, 19, 3066. doi: 10.1021/acs.nanolett.9b00450  doi: 10.1021/acs.nanolett.9b00450

    93. [93]

      Li, Y. Z.; Huang, W.; Li, Y. B.; Pei, A.; Boyle, D. T.; Cui, Y. Joule 2018, 2, 2167. doi: 10.1016/j.joule.2018.08.004  doi: 10.1016/j.joule.2018.08.004

    94. [94]

      Li, Y. Z.; Li, Y. B.; Pei, A. L.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y.; et al. Science 2017, 358, 506. doi: 10.1126/science.aam6014  doi: 10.1126/science.aam6014

    95. [95]

      Jin, Y.; Zheng, Z. K.; Wei, D. H.; Jiang, X.; Lu, H. F.; Sun, L.; Tao, F. B.; Guo, D. L.; Liu, Y.; Gao, J. F.; et al. Joule 2020, 4, 1714. doi: 10.1016/j.joule.2020.05.016  doi: 10.1016/j.joule.2020.05.016

    96. [96]

      Shen, K.; Wang, Z.; Bi, X. X.; Ying, Y.; Zhang, D.; Jin, C. B.; Hou, G. Y.; Cao, H. Z.; Wu, L. K.; Zheng, G. Q.; et al. Adv. Energy Mater. 2019, 9, 1900260. doi: 10.1002/aenm.201900260  doi: 10.1002/aenm.201900260

    97. [97]

      Chen, Y. X.; Dou, X. Y.; Wang, K.; Han, Y. S. Adv. Energy Mater. 2019, 9, 1900019. doi: 10.1002/aenm.201900019  doi: 10.1002/aenm.201900019

    98. [98]

      Adair, K. R.; Banis, M. N.; Zhao, Y.; Bond, T.; Li, R. Y.; Sun, X. L. Adv. Mater. 2020, 32, 2002550. doi: 10.1002/adma.202002550  doi: 10.1002/adma.202002550

    99. [99]

      Deng, Z.; Huang, Z. Y.; Shen, Y.; Huang, Y. H.; Ding, H.; Luscombe, A.; Johnson, M.; Harlow, J. E.; Gauthier, R.; Dahn, J. R. Joule 2020, 4, 2017. doi: 10.1016/j.joule.2020.07.014  doi: 10.1016/j.joule.2020.07.014

    100. [100]

      Bommier, C.; Chang, W.; Lu, Y. F.; Yeung, J.; Davies, G.; Mohr, R.; Williams, M.; Steingart, D. Cell Rep. Phys. Sci. 2020, 1, 100035. doi: 10.1016/j.xcrp.2020.100035  doi: 10.1016/j.xcrp.2020.100035

    101. [101]

      Deng, Z.; Lin, X.; Huang, Z. Y.; Meng, J. T.; Zhong, Y.; Ma, G. T.; Zhou, Y.; Shen, Y.; Ding, H.; Huang, Y. H. Adv. Energy Mater. 2020, 2000806. doi: 10.1002/aenm.202000806  doi: 10.1002/aenm.202000806

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(86)
  • Abstract views(2501)
  • HTML views(872)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return