Citation: Xuemei Zhou. TiO2-Supported Single-Atom Catalysts for Photocatalytic Reactions[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200806. doi: 10.3866/PKU.WHXB202008064 shu

TiO2-Supported Single-Atom Catalysts for Photocatalytic Reactions


  • Author Bio: Xuemei Zhou, born in January 1988, received her B.S. degree from China Agricultural University in 2010 and M.S. degree from National Center for Nanoscience and Technology, China in 2013. She received her Ph.D. degree in 2018 from Friedrich-Alexander-University Erlangen-Nuremberg, Germany. Then she did postdoctoral work at Indiana University, USA. She joined School of Chemical Engineering, Sichuan University, China in 2020 as a full professor. Her ongoing research focuses on the functionalization of metal oxide for heterogeneous catalysis, aiming on the design of novel and economic catalysts for energy production and value-added chemical synthesis
  • Corresponding author: Xuemei Zhou, xuemeizhou@scu.edu.cn
  • Received Date: 21 August 2020
    Revised Date: 16 September 2020
    Accepted Date: 16 September 2020
    Available Online: 21 September 2020

  • Titania (TiO2) has been among the most widely investigated and used metal oxides over the past years, as it has various functional applications. Extensive research into TiO2 and industrial interest in this material have been triggered by its high abundance, excellent corrosion resistance, and low cost. To improve the activity of TiO2 in heterogeneous catalytic reactions, noble metals are used to accelerate the reactions. However, in the case of nanoparticles supported on TiO2, the active sites are usually limited to the peripheral sites of the noble metal particles or at the interface between the particle and the support. Thus, highly dispersed single metal atoms are desired for the effective utilization of precious noble metals. The study of oxide-supported isolated atoms, the so-called single-atom catalysts (SACs), was pioneered by Zhang's group. The high dispersion of precious noble metals results helps reduce the cost associated with catalyst preparation. Because of the presence of active centers as single atoms, the deactivation of metal atoms during the reaction, e.g., by coking for large agglomerates, is retarded. The unique coordination environment of the noble metal center provides special sites for the reaction, consequently increasing the selectivity of the reaction, including the enantioselectivity and stereoselectivity. Hence, supported SACs can bridge homogenous and heterogeneous reactions in solution as they provide selective reaction sites and are recyclable. Moreover, owing to the high site homogeneity of the isolated metal atoms, SACs are ideal models for establishing the structure-activity relationships. The present review provides an overview of recent works on the synthesis, characterization, and photocatalytic applications of SACs (Pt1, Pd1, Ir1, Rh1, Cu1, Ru1) supported on TiO2. The preparation of single atoms on TiO2 includes the creation of surface defective sites, surface modification, stabilization by high-temperature shockwave treatment, and metal-ligand self-assembly. Conventional characterization methods are categorized as microscopic imaging and spectroscopic methods, such as aberration-corrected scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), extended X-ray absorption fine structure analysis (EXAFS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We attempted to address the critical factors that lead to the stabilization of single-metal atoms on TiO2, and elucidate the mechanism underlying the photocatalytic hydrogen evolution and CO2 reduction. Although many fascinating applications of TiO2-supported SACs in photocatalysis could only be addressed superficially and in a referencing manner, we hope to provide interested readers with guidelines based on the wide literature, and more specifically, to provide a comprehensive overview of TiO2-supported SACs.
  • 加载中
    1. [1]

      Zhou, X.; Schmuki, P. One-Dimensional TiO2 Nanotube-Based Photocatalysts: Enhanced Performance by Site-Selective Decoration. In Surface Science of Photocatalysis, Yu, J., Jaroniec, M., Jiang, C., Eds.; Elsevier, Academic Press: London, UK, 2020. doi:10.1016/B978-0-08-102890-2.00007-5

    2. [2]

      Schlichthrl, G.; Park, N. G.; Frank, A. J. J. Phys. Chem. C 1999, 103, 782. doi:10.1021/jp9831177  doi: 10.1021/jp9831177

    3. [3]

      Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576. doi:10.1021/jp962377q  doi: 10.1021/jp962377q

    4. [4]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi:10.1038/238037a0  doi: 10.1038/238037a0

    5. [5]

      Lu, Y.; Ou, X.; Wang, W.; Fan, J.; Lv, K. Chin. J. Catal. 2020, 41, 209. doi:10.1016/S1872-2067(19)63470-4  doi: 10.1016/S1872-2067(19)63470-4

    6. [6]

      Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515. doi:10.1016/j.surfrep.2008.10.001  doi: 10.1016/j.surfrep.2008.10.001

    7. [7]

      Song, Y. -Y.; Schmidt-Stein, F.; Bauer, S.; Schmuki, P. J. Am. Chem. Soc. 2009, 131, 4230. doi:10.1021/ja810130h  doi: 10.1021/ja810130h

    8. [8]

      Wang, R.; Shi, M.; Xu, F.; Qiu, Y.; Zhang, P.; Shen, K.; Zhao, Q.; Yu, J.; Zhang, Y. Nat. Commun. 2020, 11, 4465. doi:10.1038/s41467-020-18267-1  doi: 10.1038/s41467-020-18267-1

    9. [9]

      Myung, S. -T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S. -J.; Sun, Y. -K.; Scrosati, B. Energy Environ. Sci. 2013, 6, 2609. doi:10.1039/c3ee41960f  doi: 10.1039/c3ee41960f

    10. [10]

      Chen, X.; Low, Y.; Samia, A. C. S.; Burda, C.; Gole, J. L. Adv. Funct. Mater. 2005, 15, 41. doi:10.1002/adfm.200400184  doi: 10.1002/adfm.200400184

    11. [11]

      Kowalski, D.; Kim, D.; Schmuki, P. Nano Today 2013, 8, 235. doi:10.1016/j.nantod.2013.04.010  doi: 10.1016/j.nantod.2013.04.010

    12. [12]

      Ghicov, A.; Schmuki, P. Chem. Commun. 2009, 2791. doi:10.1039/b822726h  doi: 10.1039/b822726h

    13. [13]

      Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170. doi:10.1021/ja00469a029  doi: 10.1021/ja00469a029

    14. [14]

      Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C 2000, 1, 1. doi:10.1016/S1389-5567(00)00002-2  doi: 10.1016/S1389-5567(00)00002-2

    15. [15]

      Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K. -Q.; Al-Deyab, S. S.; Lai, Y. J. Mater. Chem. A 2016, 4, 6772. doi:10.1039/C5TA09323F  doi: 10.1039/C5TA09323F

    16. [16]

      Anitha, V. C.; Banerjee, A. N.; Joo, S. W. J. Mater. Sci. 2015, 50, 7495. doi:10.1007/s10853-015-9303-7  doi: 10.1007/s10853-015-9303-7

    17. [17]

      Gong, C.; Xiang, S.; Zhang, Z.; Sun, L.; Ye, C.; Lin, C. Acta Phys-Chim. Sin. 2019, 35, 616.  doi: 10.3866/PKU.WHXB201805082

    18. [18]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi:10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    19. [19]

      Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. J. Mater. Chem. A 2015, 3, 2485. doi:10.1039/C4TA04461D  doi: 10.1039/C4TA04461D

    20. [20]

      Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi:10.1002/adma.201400288  doi: 10.1002/adma.201400288

    21. [21]

      Sekizawa, K.; Maeda, K.; Domen, K.; Koike, K.; Ishitani, O. J. Am. Chem. Soc. 2013, 135, 4596. doi:10.1021/ja311541a  doi: 10.1021/ja311541a

    22. [22]

      Sasaki, Y.; Iwase, A.; Kato, H.; Kudo, A. J. Catal. 2008, 259, 133. doi:10.1016/j.jcat.2008.07.017  doi: 10.1016/j.jcat.2008.07.017

    23. [23]

      Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi:10.1002/adma.201807660  doi: 10.1002/adma.201807660

    24. [24]

      Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. Adv. Mater. 2019, 31, 1802981. doi:10.1002/adma.201802981  doi: 10.1002/adma.201802981

    25. [25]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    26. [26]

      Sun, S.; Zhang, X.; Liu, X.; Pan, L.; Zhang, X.; Zou, J. Acta Phys. -Chim. Sin. 2020, 36, 1905007.  doi: 10.3866/PKU.WHXB201905007

    27. [27]

      Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114, 9919. doi:10.1021/cr5001892  doi: 10.1021/cr5001892

    28. [28]

      Zhou, X.; Liu, G.; Yu, J.; Fan, W. J. Mater. Chem. 2012, 22, 21337. doi:10.1039/c2jm31902k  doi: 10.1039/c2jm31902k

    29. [29]

      Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Science 2015, 350, 189. doi:10.1126/science.aac6368  doi: 10.1126/science.aac6368

    30. [30]

      Bumajdad, A.; Madkour, M. Phys. Chem. Chem. Phys. 2014, 16, 7146. doi:10.1039/c3cp54411g  doi: 10.1039/c3cp54411g

    31. [31]

      Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nat. Mater. 2011, 3, 489. doi:10.1038/nchem.1048  doi: 10.1038/nchem.1048

    32. [32]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi:10.1038/NCHEM.1095  doi: 10.1038/NCHEM.1095

    33. [33]

      Samantaray, M. K.; D'Elia, V.; Pump, E.; Falivene, L.; Harb, M.; Ould Chikh, S.; Cavallo, L.; Basset, J. -M. Chem. Rev. 2020, 120, 734. doi:10.1021/acs.chemrev.9b00238  doi: 10.1021/acs.chemrev.9b00238

    34. [34]

      Cheng, N.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T. -K.; Liu, L. -M.; et al. Nat. Commun. 2016, 7, 13638. doi:10.1038/ncomms13638  doi: 10.1038/ncomms13638

    35. [35]

      Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Joule 2018, 2, 1242. doi:10.1016/j.joule.2018.06.019  doi: 10.1016/j.joule.2018.06.019

    36. [36]

      Liu, L.; Corma, A. Chem. Rev. 2018, 118, 4981. doi:10.1021/acs.chemrev.7b00776  doi: 10.1021/acs.chemrev.7b00776

    37. [37]

      Wang, A.; Li, J.; Zhang, T. Nat. Rev. Chem. 2018, 2, 65. doi:10.1038/s41570-018-0010-1  doi: 10.1038/s41570-018-0010-1

    38. [38]

      Gates, B. C.; Flytzani-Stephanopoulos, M.; Dixon, D. A.; Katz, A. Catal. Sci. Technol. 2017, 7, 4259. doi:10.1039/C7CY00881C  doi: 10.1039/C7CY00881C

    39. [39]

      An, B.; Zeng, L.; Jia, M.; Li, Z.; Lin, Z.; Song, Y.; Zhou, Y.; Cheng, J.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2017, 139, 17747. doi:10.1021/jacs.7b10922  doi: 10.1021/jacs.7b10922

    40. [40]

      Rimoldi, M.; Nakamura, A.; Vermeulen, N. A.; Henkelis, J. J.; Blackburn, A. K.; Hupp, J. T.; Stoddart, J. F.; Farha, O. K. Chem. Sci. 2016, 7, 4980. doi:10.1039/c6sc01376g  doi: 10.1039/c6sc01376g

    41. [41]

      Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X.; Yaghi, O. M.; Behm, R. J. J. Am. Chem. Soc. 2019, 141, 5201. doi:10.1021/jacs.8b11386  doi: 10.1021/jacs.8b11386

    42. [42]

      Zhao, W.; Li, G.; Tang, Z. Nano Today 2019, 27, 178. doi:10.1016/j.nantod.2019.05.007  doi: 10.1016/j.nantod.2019.05.007

    43. [43]

      Marcinkowski, M. D.; Darby, M. T.; Liu, J.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Nat. Chem. 2018, 10, 325. doi:10.1038/nchem.2915  doi: 10.1038/nchem.2915

    44. [44]

      Lucci, F. R.; Liu, J.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Nat. Commun. 2015, 6, 8550. doi:10.1038/ncomms9550  doi: 10.1038/ncomms9550

    45. [45]

      Darby, M. T.; Stamatakis, M.; Michaelides, A.; Sykes, E. C. H. J. Phys. Chem. Lett. 2018, 9, 5636. doi:10.1021/acs.jpclett.8b01888  doi: 10.1021/acs.jpclett.8b01888

    46. [46]

      Kistler, J. D.; Chotigkrai, N.; Xu, P.; Enderle, B.; Praserthdam, P.; Chen, C. -Y.; Browning, N. D.; Gates, B. C. Angew. Chem. Int. Ed. 2014, 53, 8904. doi:10.1002/anie.201403353  doi: 10.1002/anie.201403353

    47. [47]

      Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Science 2014, 346, 1498. doi:10.1126/science.1260526  doi: 10.1126/science.1260526

    48. [48]

      Xu, H.; Xu, C. -Q.; Cheng, D.; Li, J. Catal. Sci. Technol. 2017, 7, 5860. doi:10.1039/C7CY00464H  doi: 10.1039/C7CY00464H

    49. [49]

      Han, C. W.; Iddir, H.; Uzun, A.; Curtiss, L. A.; Browning, N. D.; Gates, B. C.; Ortalan, V. J. Phys. Chem. Lett. 2015, 6, 4675. doi:10.1021/acs.jpclett.5b01884  doi: 10.1021/acs.jpclett.5b01884

    50. [50]

      Chen, L.; Sterbinsky, G. E.; Tait, S. L. J. Catal. 2018, 365, 303. doi:10.1016/j.jcat.2018.07.004  doi: 10.1016/j.jcat.2018.07.004

    51. [51]

      Guo, T.; Tang, N.; Lin, F.; Shang, Q.; Chen, S.; Qi, H.; Pan, X.; Wu, C.; Xu, G.; Zhang, J.; et al. ChemSusChem. 2020, 13, 3115. doi:10.1002/cssc.202000536  doi: 10.1002/cssc.202000536

    52. [52]

      Gates, B. C. Trends in Chem. 2019, 1, 99. doi:10.1016/j.trechm.2019.01.004  doi: 10.1016/j.trechm.2019.01.004

    53. [53]

      Sykes, E. C. H. Nat. Mater. 2019, 18, 663. doi:10.1038/s41563-019-0400-x  doi: 10.1038/s41563-019-0400-x

    54. [54]

      DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G.; et al. Nat. Mater. 2019, 18, 746. doi:10.1038/s41563-019-0349-9  doi: 10.1038/s41563-019-0349-9

    55. [55]

      Chen, Y.; Ji, S.; Sun, W.; Chen, W.; Dong, J.; Wen, J.; Zhang, J.; Li, Z.; Zheng, L.; Chen, C.; et al. J. Am. Chem. Soc. 2018, 140, 7407. doi:10.1021/jacs.8b03121  doi: 10.1021/jacs.8b03121

    56. [56]

      Tang, Y.; Asokan, C.; Xu, M.; Graham, G. W.; Pan, X.; Christopher, P.; Li, J.; Sautet, P. Nat. Commun. 2019, 10, 4488. doi:10.1038/s41467-019-12461-6  doi: 10.1038/s41467-019-12461-6

    57. [57]

      Tian, S.; Gong, W.; Chen, W.; Lin, N.; Zhu, Y.; Feng, Q.; Xu, Q.; Fu, Q.; Chen, C.; Luo, J.; et al. ACS Catal. 2019, 9, 5223. doi:10.1021/acscatal.9b00322  doi: 10.1021/acscatal.9b00322

    58. [58]

      Wan, J.; Chen, W.; Jia, C.; Zheng, L.; Dong, J.; Zheng, X.; Wang, Y.; Yan, W.; Chen, C.; Peng, Q.; et al. Adv. Mater. 2018, 30, 1705369. doi:10.1002/adma.201705369  doi: 10.1002/adma.201705369

    59. [59]

      Szanyi, J.; Nelson, N. C.; Chen, L.; Motta, D.; Kovarik, L. Angew. Chem. Int. Ed. 2020, in press. doi:10.1002/anie.202007576

    60. [60]

      Yang, B.; Lin, X.; Gao, H. -J.; Nilius, N.; Freund, H. -J. J. Phys. Chem. C 2010, 114, 8997. doi:10.1021/jp100757y  doi: 10.1021/jp100757y

    61. [61]

      Boucher, M. B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M. D.; Lawton, T. J.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Phys. Chem. Chem. Phys. 2013, 15, 12187. doi:10.1039/C3CP51538A  doi: 10.1039/C3CP51538A

    62. [62]

      Marcinkowski, M. D.; Liu, J.; Murphy, C. J.; Liriano, M. L.; Wasio, N. A.; Lucci, F. R.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. ACS Catal. 2016, 7, 413. doi:10.1021/acscatal.6b02772  doi: 10.1021/acscatal.6b02772

    63. [63]

      Henderson, M. A.; Lyubinetsky, I. Chem. Rev. 2013, 113, 4428. doi:10.1021/cr300315m  doi: 10.1021/cr300315m

    64. [64]

      Hoffman, A. S.; Sokaras, D.; Zhang, S.; Debefve, L. M.; Fang, C.-Y.; Gallo, A.; Kroll, T.; Dixon, D. A.; Bare, S. R.; Gates, B. C. Chem.: Eur. J. 2017, 23, 14760. doi:10.1002/chem.201701459

    65. [65]

      Thang, H. V.; Pacchioni, G.; DeRita, L.; Christopher, P. J. Catal. 2018, 367, 104. doi:10.1016/j.jcat.2018.08.025  doi: 10.1016/j.jcat.2018.08.025

    66. [66]

      Matsubu, J. C.; Yang, V. N.; Christopher, P. J. Am. Chem. Soc. 2015, 137, 3076. doi:10.1021/ja5128133  doi: 10.1021/ja5128133

    67. [67]

      DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X.; Christopher, P. J. Am. Chem. Soc. 2017, 139, 14150. doi:10.1021/jacs.7b07093  doi: 10.1021/jacs.7b07093

    68. [68]

      Hadjiivanov, K. I. J. Chem. Soc. Faraday Trans. 1998, 94, 1901. doi:10.1039/A801892H  doi: 10.1039/A801892H

    69. [69]

      Kalhara Gunasooriya, G. T. K.; Saeys, M. ACS Catal. 2018, 8, 3770. doi:10.1021/acscatal.8b00214  doi: 10.1021/acscatal.8b00214

    70. [70]

      Jones, J.; Xiong, H.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. Science 2016, 353, 150. doi:10.1126/science.aaf8800  doi: 10.1126/science.aaf8800

    71. [71]

      Fujiwara, K.; Pratsinis, S. E. Appl. Catal. B. 2018, 226, 127. doi:10.1016/j.apcatb.2017.12.042  doi: 10.1016/j.apcatb.2017.12.042

    72. [72]

      Kwak, J. H.; Hu, J.; Mei, D.; Yi, C. -W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Science 2009, 325, 1670. doi:10.1126/science.1176745  doi: 10.1126/science.1176745

    73. [73]

      Liu, X.; Zhu, G.; Wang, X.; Yuan, X.; Lin, T.; Huang, F. Adv. Energy Mater. 2016, 6, 1600452. doi:10.1002/aenm.201600452  doi: 10.1002/aenm.201600452

    74. [74]

      Zhou, X.; Liu, N.; Schmuki, P. ACS Catal. 2017, 7, 3210. doi:10.1021/acscatal.6b03709  doi: 10.1021/acscatal.6b03709

    75. [75]

      Hejazi, S.; Mohajernia, S.; Osuagwu, B.; Zoppellaro, G.; Andryskova, P.; Tomanec, O.; Kment, S.; Zbořil, R.; Schmuki, P. Adv. Mater. 2020, 32, 1908505. doi:10.1002/adma.201908505  doi: 10.1002/adma.201908505

    76. [76]

      Lee, B. -H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. -S.; Kim, J. H.; Cho, S. -P.; et al. Nat. Mater. 2019, 18, 620. doi:10.1038/s41563-019-0344-1  doi: 10.1038/s41563-019-0344-1

    77. [77]

      Luo, Z.; Wang, Z.; Li, J.; Yang, K.; Zhou, G. Phys. Chem. Chem. Phys. 2020, 22, 11392. doi:10.1039/D0CP00929F  doi: 10.1039/D0CP00929F

    78. [78]

      Jiao, L.; Regalbuto, J. R. J. Catal. 2008, 260, 329. doi:10.1016/j.jcat.2008.09.022  doi: 10.1016/j.jcat.2008.09.022

    79. [79]

      Oudenhuijzen, M. K.; Kooyman, P. J.; Tappel, B.; van Bokhoven, J. A.; Koningsberger, D. C. J. Catal. 2002, 205, 135. doi:10.1006/jcat.2001.3433  doi: 10.1006/jcat.2001.3433

    80. [80]

      Wei, T.; Zhu, Y.; Wu, Y.; An, X.; Liu, L. -M. Langmuir 2019, 35, 391. doi:10.1021/acs.langmuir.8b03488  doi: 10.1021/acs.langmuir.8b03488

    81. [81]

      Chen, Y.; Ji, S.; Sun, W.; Lei, Y.; Wang, Q.; Li, A.; Chen, W.; Zhou, G.; Zhang, Z.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 1295. doi:10.1002/anie.201912439  doi: 10.1002/anie.201912439

    82. [82]

      Lang, R.; Xi, W.; Liu, J. -C.; Cui, Y. -T.; Li, T.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L.; et al. Nat. Commun. 2019, 10, 234. doi:10.1038/s41467-018-08136-3  doi: 10.1038/s41467-018-08136-3

    83. [83]

      Carrillo, C.; Johns, T. R.; Xiong, H.; DeLaRiva, A.; Challa, S. R.; Goeke, R. S.; Artyushkova, K.; Li, W.; Kim, C. H.; Datye, A. K. J. Phys. Chem. Lett. 2014, 5, 2089. doi:10.1021/jz5009483  doi: 10.1021/jz5009483

    84. [84]

      Kunwar, D.; Zhou, S.; DeLaRiva, A.; Peterson, E. J.; Xiong, H.; Pereira-Hernández, X. I.; Purdy, S. C.; ter Veen, R.; Brongersma, H. H.; Miller, J. T.; et al. ACS Catal. 2019, 9, 3978. doi:10.1021/acscatal.8b04885  doi: 10.1021/acscatal.8b04885

    85. [85]

      Pereira-Hernández, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y.; et al. Nat. Commun. 2019, 10, 1358. doi:10.1038/s41467-019-09308-5  doi: 10.1038/s41467-019-09308-5

    86. [86]

      Nie, L.; Mei, D.; Xiong, H.; Peng, B.; Ren, Z.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L.; et al. Science 2017, 358, 1419. doi:10.1126/science.aao2109  doi: 10.1126/science.aao2109

    87. [87]

      Yao, Y.; Huang, Z.; Xie, P.; Wu, L.; Ma, L.; Li, T.; Pang, Z.; Jiao, M.; Liang, Z.; Gao, J.; et al. Nat. Nanotechnol. 2019, 14, 851. doi:10.1038/s41565-019-0518-7  doi: 10.1038/s41565-019-0518-7

    88. [88]

      Datye, A. K. Nat. Nanotechnol. 2019, 14, 817. doi:10.1038/s41565-019-0513-z  doi: 10.1038/s41565-019-0513-z

    89. [89]

      Shao, X.; Yang, X.; Xu, J.; Liu, S.; Miao, S.; Liu, X.; Su, X.; Duan, H.; Huang, Y.; Zhang, T. Chem 2019, 5, 693. doi:10.1016/j.chempr.2018.12.014  doi: 10.1016/j.chempr.2018.12.014

    90. [90]

      Ji, P.; Song, Y.; Drake, T.; Veroneau, S. S.; Lin, Z.; Pan, X.; Lin, W. J. Am. Chem. Soc. 2018, 140, 433. doi:10.1021/jacs.7b11241  doi: 10.1021/jacs.7b11241

    91. [91]

      Yang, D.; Momeni, M. R.; Demir, H.; Pahls, D. R.; Rimoldi, M.; Wang, T. C.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gates, B. C.; et al. Faraday Discuss. 2017, 201, 195. doi:10.1039/C7FD00031F  doi: 10.1039/C7FD00031F

    92. [92]

      Ji, P.; Manna, K.; Lin, Z.; Urban, A.; Greene, F. X.; Lan, G.; Lin, W. J. Am. Chem. Soc. 2016, 138, 12234. doi:10.1021/jacs.6b06759  doi: 10.1021/jacs.6b06759

    93. [93]

      Klet, R. C.; Tussupbayev, S.; Borycz, J.; Gallagher, J. R.; Stalzer, M. M.; Miller, J. T.; Gagliardi, L.; Hupp, J. T.; Marks, T. J.; Cramer, C. J. J. Am. Chem. Soc. 2015, 137, 15680. doi:10.1021/jacs.5b11350  doi: 10.1021/jacs.5b11350

    94. [94]

      Cao, S.; Yang, M.; Elnabawy, A. O.; Trimpalis, A.; Li, S.; Wang, C.; Göltl, F.; Chen, Z.; Liu, J.; Shan, J.; et al. Nat. Chem. 2019, 11, 1098. doi:10.1038/s41557-019-0345-3  doi: 10.1038/s41557-019-0345-3

    95. [95]

      Jeantelot, G.; Qureshi, M.; Harb, M.; Ould-Chikh, S.; Anjum, D. H.; Abou-Hamad, E.; Aguilar-Tapia, A.; Hazemann, J.-L.; Takanabe, K.; Basset, J. -M. Phys. Chem. Chem. Phys. 2019, 21, 24429. doi:10.1039/C9CP04470A  doi: 10.1039/C9CP04470A

    96. [96]

      Skomski, D.; Tempas, C. D.; Smith, K. A.; Tait, S. L. J. Am. Chem. Soc. 2014, 136, 9862. doi:10.1021/ja504850f  doi: 10.1021/ja504850f

    97. [97]

      Skomski, D.; Tempas, C. D.; Bukowski, G. S.; Smith, K. A.; Tait, S. L. J. Chem. Phys. 2015, 142, 101913. doi:10.1063/1.4906894  doi: 10.1063/1.4906894

    98. [98]

      Le, D.; Rahman, T. S. Faraday Discuss. 2017, 204, 83. doi:10.1039/c7fd00097a  doi: 10.1039/c7fd00097a

    99. [99]

      Zhou, X.; Chen, L.; Sterbinsky, G. E.; Mukherjee, D.; Unocic, R. R.; Tait, S. L. Catal. Sci. Technol. 2020, 10, 3353. doi:10.1039/C9CY02594D  doi: 10.1039/C9CY02594D

    100. [100]

      Serna, P.; Gates, B. C. Acc. Chem. Res. 2014, 47, 2612. doi:10.1021/ar500170k  doi: 10.1021/ar500170k

    101. [101]

      Piernavieja-Hermida, M.; Lu, Z.; White, A.; Low, K.-B.; Wu, T.; Elam, J. W.; Wu, Z.; Lei, Y. Nanoscale 2016, 8, 15348. doi:10.1039/C6NR04403D  doi: 10.1039/C6NR04403D

    102. [102]

      Cheng, N.; Sun, X. Chin. J. Catal. 2017, 38, 1508. doi:10.1016/S1872-2067(17)62903-6  doi: 10.1016/S1872-2067(17)62903-6

    103. [103]

      Wei, H.; Huang, K.; Wang, D.; Zhang, R.; Ge, B.; Ma, J.; Wen, B.; Zhang, S.; Li, Q.; Lei, M.; et al. Nat. Commun. 2017, 8, 1490. doi:10.1038/s41467-017-01521-4  doi: 10.1038/s41467-017-01521-4

    104. [104]

      Trofimovaite, R.; Parlett, C. M. A.; Kumar, S.; Frattini, L.; Isaacs, M. A.; Wilson, K.; Olivi, L.; Coulson, B.; Debgupta, J.; Douthwaite, R. E.; et al. Appl. Catal. B 2018, 232, 501. doi:10.1016/j.apcatb.2018.03.078  doi: 10.1016/j.apcatb.2018.03.078

    105. [105]

      Liu, J. ACS Catal. 2017, 7, 34. doi:10.1021/acscatal.6b01534  doi: 10.1021/acscatal.6b01534

    106. [106]

      Li, X.; Huang, Y.; Liu, B. Chem 2019, 5, 2733. doi:10.1016/j.chempr.2019.10.004  doi: 10.1016/j.chempr.2019.10.004

    107. [107]

      Yang, X. -F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740. doi:10.1021/ar300361m  doi: 10.1021/ar300361m

    108. [108]

      Thomas, J. M.; Raja, R.; Lewis, D. W. Angew. Chem. Int. Ed. 2005, 44, 6456. doi:10.1002/anie.200462473  doi: 10.1002/anie.200462473

    109. [109]

      Wang, B.; Cai, H.; Shen, S. Small Methods 2019, 3, 1800447. doi:10.1002/smtd.201800447  doi: 10.1002/smtd.201800447

    110. [110]

      Gao, C.; Low, J.; Long, R.; Kong, T.; Zhu, J.; Xiong, Y. Chem. Rev. 2020, doi:10.1021/acs.chemrev.9b00840  doi: 10.1021/acs.chemrev.9b00840

    111. [111]

      Wang, Q.; Zhang, D.; Chen, Y.; Fu, W. -F.; Lv, X. -J. ACS Sustain. Chem. Eng. 2019, 7, 6430. doi:10.1021/acssuschemeng.8b06273  doi: 10.1021/acssuschemeng.8b06273

    112. [112]

      Parkinson, G. S. Catal. Lett. 2019, 149, 1137. doi:10.1007/s10562-019-02709-7  doi: 10.1007/s10562-019-02709-7

    113. [113]

      Pan, J.; Shen, S.; Zhou, W.; Tang, J.; Ding, H.; Wang, J.; Chen, L.; Au, C. -T.; Yin, S. -F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    114. [114]

      Zhang, W.; Zhang, H.; Xu, J.; Zhuang, H.; Long, J. Chin. J. Catal. 2019, 40, 320. doi:10.1039/C9SC00126C  doi: 10.1039/C9SC00126C

    115. [115]

      Wang, P.; Xu, S.; Chen, F.; Yu, H. Chin. J. Catal. 2019, 40, 343. doi:10.1016/S1872-2067(18)63157-2  doi: 10.1016/S1872-2067(18)63157-2

    116. [116]

      Huang, G.; Liu, X.; Shi, S.; Li, S.; Xiao, Z.; Zhen, W.; Liu, S.; Wong, P. K. Chin. J. Catal. 2020, 41, 50. doi:10.1016/S1872-2067(19)63424-8  doi: 10.1016/S1872-2067(19)63424-8

    117. [117]

      Zhou, X.; Liu, N.; Schmidt, J.; Kahnt, A.; Osvet, A.; Romeis, S.; Zolnhofer, E. M.; Marthala, V. R. R.; Guldi, D. M.; Peukert, W.; et al. Adv. Mater. 2017, 29, 1604747. doi:10.1002/adma.201604747  doi: 10.1002/adma.201604747

    118. [118]

      Xia, Y.; Yu, J. Chem 2020, 6, 1039. doi:10.1016/j.chempr.2020.02.015  doi: 10.1016/j.chempr.2020.02.015

    119. [119]

      Chang, X.; Wang, T.; Gong, J. Energy & Environ. Sci. 2016, 9, 2177. doi:10.1039/C6EE00383D  doi: 10.1039/C6EE00383D

    120. [120]

      Shtyka, O.; Ciesielski, R.; Kedziora, A.; Maniukiewicz, W.; Dubkov, S.; Gromov, D.; Maniecki, T. Top. Catal. 2020, 63, 113. doi:10.1007/s11244-020-01241-y  doi: 10.1007/s11244-020-01241-y

    121. [121]

      White, J. L.; Baruch, M. F.; Pander, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; et al. Chem. Rev. 2015, 115, 1288. doi:10.1021/acs.chemrev.5b00370  doi: 10.1021/acs.chemrev.5b00370

    122. [122]

      Liu, L.; Li, Y. Aerosol Air Qual. Res. 2014, 14, 453. doi:10.4209/aaqr.2013.06.0186  doi: 10.4209/aaqr.2013.06.0186

    123. [123]

      Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Chem. Rev. 2014, 114, 9987. doi:10.1021/cr500008u  doi: 10.1021/cr500008u

    124. [124]

      Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194. doi:10.1002/advs.201700194  doi: 10.1002/advs.201700194

    125. [125]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Wu, J.; Yu, J. Nat.Commun. 2020, 11, 4613. doi:10.1021/acs.jpcc.8b06172  doi: 10.1021/acs.jpcc.8b06172

    126. [126]

      Di, J.; Chen, C.; Yang, S.-Z.; Chen, S.; Duan, M.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z.; et al. Nat. Commun. 2019, 10, 2840. doi:10.1038/s41467-019-10392-w  doi: 10.1038/s41467-019-10392-w

    127. [127]

      Ji, S.; Qu, Y.; Wang, T.; Chen, Y.; Wang, G.; Li, X.; Dong, J.; Chen, Q.; Zhang, W.; Zhang, Z.; et al. Angew. Chem. Int. Ed. 2020, 59, 10651. doi:10.1002/anie.202003623  doi: 10.1002/anie.202003623

    128. [128]

      Su, X.; Yang, X. -F.; Huang, Y.; Liu, B.; Zhang, T. Acc. Chem. Res. 2019, 52, 656. doi:10.1021/acs.accounts.8b00478  doi: 10.1021/acs.accounts.8b00478

    129. [129]

      Liu, L.; Zhao, C.; Li, Y. J. Phys. Chem. C 2012, 116, 7904. doi:10.1021/jp300932b  doi: 10.1021/jp300932b

    130. [130]

      Song, H.; Meng, X.; Wang, Z. -J.; Wang, Z.; Chen, H.; Weng, Y.; Ichihara, F.; Oshikiri, M.; Kako, T.; Ye, J. ACS Catal. 2018, 8, 7556. doi:10.1021/acscatal.8b01787  doi: 10.1021/acscatal.8b01787

    131. [131]

      Li, W.; He, D.; Hu, G.; Li, X.; Banerjee, G.; Li, J.; Lee, S. H.; Dong, Q.; Gao, T.; Brudvig, G. W.; et al. ACS Cent. Sci. 2018, 4, 631. doi:10.1021/acscentsci.8b00130  doi: 10.1021/acscentsci.8b00130

    132. [132]

      Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. J. Am. Chem. Soc. 2017, 139, 17694. doi:10.1021/jacs.7b11010  doi: 10.1021/jacs.7b11010

    133. [133]

      Shan, J.; Li, M.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Nature 2017, 551, 605. doi:10.1038/nature24640  doi: 10.1038/nature24640

    134. [134]

      Dong, S.; Li, B.; Cui, X.; Tan, S.; Wang, B. J. Phys. Chem. Lett. 2019, 10, 4683. doi:10.1021/acs.jpclett.9b01527  doi: 10.1021/acs.jpclett.9b01527

    135. [135]

      Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. ACS Catal. 2019, 9, 2521. doi:10.1021/acscatal.8b04937  doi: 10.1021/acscatal.8b04937

    136. [136]

      Yang, D.; Xu, P.; Guan, E.; Browning, N. D.; Gates, B. C. J. Catal. 2016, 338, 12. doi:10.1016/j.jcat.2016.02.023  doi: 10.1016/j.jcat.2016.02.023

    137. [137]

      Wang, H.; Liu, J.-X.; Allard, L. F.; Lee, S.; Liu, J.; Li, H.; Wang, J.; Wang, J.; Oh, S. H.; Li, W.; et al. Nat. Commun. 2019, 10, 3808. doi:10.1038/s41467-019-11856-9  doi: 10.1038/s41467-019-11856-9

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    3. [3]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    4. [4]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    5. [5]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    6. [6]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    7. [7]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    8. [8]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    9. [9]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    10. [10]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    11. [11]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    12. [12]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    13. [13]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    14. [14]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    15. [15]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    17. [17]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    20. [20]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

Metrics
  • PDF Downloads(101)
  • Abstract views(1183)
  • HTML views(546)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return