Effects of Solvent Coordination on Perovskite Crystallization
- Corresponding author: Zhong Haizheng, hzzhong@bit.edu.cn
Citation: Xin Zhang, Han Dengbao, Chen Xiaomei, Chen Yu, Chang Shuai, Zhong Haizheng. Effects of Solvent Coordination on Perovskite Crystallization[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200805. doi: 10.3866/PKU.WHXB202008055
Stranks, S. D.; Snaith, H. J. Nat. Nanotechnol. 2015, 10, 391. doi: 10.1038/nnano.2015.90
doi: 10.1038/nnano.2015.90
Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715
doi: 10.1021/acs.chemrev.5b00715
Ha, S. T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. Chem. Sci. 2017, 8, 2522. doi: 10.1039/C6SC04474C
doi: 10.1039/C6SC04474C
Ding, L. M.; Cheng, Y. B.; Tang, J. Acta Phys. -Chim. Sin. 2018, 34, 449.
doi: 10.3866/PKU.WHXB201710121
Hintermayr, V. A.; Richter, A. F.; Ehrat, F.; Döblinger, M.; Vanderlinden, W.; Sichert, J. A.; Tong, Y.; Polavarapu, L.; Feldmann, J.; Urban, A. S. Adv. Mater. 2016, 28, 9478. doi: 10.1002/adma.201602897
doi: 10.1002/adma.201602897
Zhu, Z. Y.; Yang, Q. Q.; Gao, L. F.; Zhang, L.; Shi, A. Y.; Sun, C. L.; Wang, Q.; Zhang, H. L. J. Phys. Chem. Lett. 2017, 8, 1610. doi: 10.1021/acs.jpclett.7b00431
doi: 10.1021/acs.jpclett.7b00431
Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S. Polavarapu, L. Angew. Chem. Int. Ed. 2016, 55, 13887. doi: 10.1002/anie.201605909
doi: 10.1002/anie.201605909
Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Chem. Lett. 2012, 41, 397. doi: 10.1246/cl.2012.397
doi: 10.1246/cl.2012.397
Niu, Y. W.; Zhang, F.; Bai, Z.; Dong, Y.; Yang, J.; Liu, R.; Zou, B.; Li, J.; Zhong, H. Z. Adv. Opt. Mater. 2015, 3, 112. doi: 10.1002/adom.201400403
doi: 10.1002/adom.201400403
Chang, S.; Bai, Z.; Zhong, H. Z. Adv. Opt. Mater. 2018, 6, 1800380. doi: 10.1002/adom.201800380
doi: 10.1002/adom.201800380
Sahli, F.; Werner, J.; Kamino, B. A. Nat. Mater. 2018, 17, 820. doi: 10.1038/s41563-018-0115-4
doi: 10.1038/s41563-018-0115-4
Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; et al. Nat. Nanotechnol. 2016, 11, 872. doi: 10.1038/nnano.2016.110
doi: 10.1038/nnano.2016.110
Xiao, J.; Zhang, H. L.; Acta Phys. -Chim. Sin. 2016, 32, 1894.
doi: 10.3866/PKU.WHXB201605034
Han, D.; Imran, M.; Zhang, M.; Chang, S.; Wu, X. G.; Zhang, X.; Tang, J. L.; Wang, M.; Ali, S.; Li, X., et al. ACS Nano 2018, 12, 8808. doi: 10.1021/acsnano.8b05172
doi: 10.1021/acsnano.8b05172
Ji, H.; Xu, H.; Jiang, F.; Bai, Z. L.; Zhong, H. Z. International Conference on Display Technology 2019, 50, 411. doi: 10.1002/sdtp.13513
doi: 10.1002/sdtp.13513
Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y, et al. Nature 2018, 562, 249. doi: 10.1038/s41586-018-0576-2
doi: 10.1038/s41586-018-0576-2
Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Nature 2018, 562, 245. doi: 10.1038/s41586-018-0575-3
doi: 10.1038/s41586-018-0575-3
Shen, Y.; Cheng, L. P.; Li, Y. Q.; Li, W.; Chen, J. D.; Lee, S. T.; Tang, J. X. Adv. Mater. 2019, 31, 1901517. doi: 10.1002/adma.201901517
doi: 10.1002/adma.201901517
Wang, L.; Dai, G.; Deng, L.; Zhong, H. Z. Sci. China Mater. 2020, 63, 1382. doi: 10.1007/s40843-020-1336-6
doi: 10.1007/s40843-020-1336-6
Wei, H.; Fang, Y.; Mulligan, P.; Chuirazzi, W.; Fang, H. H.; Wang, C.; Ecker, B. R.; Gao, Y.; Loi, M. A.; Cao, L.; et al. Nat. Photonics 2016, 10, 333. doi: 10.1038/nphoton.2016.41
doi: 10.1038/nphoton.2016.41
Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G. J.; Azimi, H.; Brabec, C. J.; Stangl, J.; Kovalenko, M. V. Nat. Photonics 2015, 9, 444. doi: 10.1038/nphoton.2015.82
doi: 10.1038/nphoton.2015.82
Pan, W.; Wu, H.; Luo, J.; Deng, Z.; Ge, C.; Chen, C.; Jiang, X.; Yin, W. J.; Niu, G.; Zhu, L.; et al. Nat. Photonics 2017, 11, 726. doi: 10.1038/s41566-017-0012-4
doi: 10.1038/s41566-017-0012-4
Zhu, W.; Ma, W.; Su, Y.; Chen, Z.; Chen, X.; Ma, Y.; Bai, L.; Xiao, W.; Liu, T.; Zhu, H.; et al. Light-Sci. Appl. 2020, 9, 112. doi: 10.1038/s41377-020-00353-0
doi: 10.1038/s41377-020-00353-0
Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I. Chem. Soc. Rev. 2019, 48, 2011. doi: 10.1039/C8CS00656C
doi: 10.1039/C8CS00656C
Cao, X.; Zhi, L.; Jia, Y.; Li, Y.; Zhao, K.; Cui, X.; Ci, L.; Zhuang, D.; Wei, J. ACS Appl. Mater. Interfaces 2019, 11, 7639. doi: 10.1021/acsami.8b16315
doi: 10.1021/acsami.8b16315
Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2, 16099. doi: 10.1038/natrevmats.2016.99
doi: 10.1038/natrevmats.2016.99
Cho, H.; Kim, Y. H.; Wolf, C.; Lee, H. D.; Lee, T. W. Adv. Mater. 2018, 30, 1704587. doi: 10.1002/adma.201704587
doi: 10.1002/adma.201704587
Sugimoto, T. Adv. Colloid Interface Sci. 1987, 28, 65. doi: 10.1016/0001-8686(87)80009-X
doi: 10.1016/0001-8686(87)80009-X
Zhang, F.; Chen, C.; Kershaw, S. V.; Xiao, C.; Han, J.; Zou, B.; Wu, X.; Chang, S.; Dong, Y.; Rogach, A. L.; et al. Chem Nano Mater 2017, 3, 303. doi: 10.1021/acsami.8b05664
doi: 10.1021/acsami.8b05664
Saidaminov, M. I.; Abdelhady, A. L.; Maculan, G.; Bakr, O. M. Chem. Commun. 2015, 51, 176581. doi: 10.1039/C5CC06916E
doi: 10.1039/C5CC06916E
Dang, Y.; Liu, Y.; Sun, Y.; Yuan, D.; Liu, X.; Lu, W.; Liu, G.; Xia, H.; Tao, X. CrystEngComm 2015, 17, 665. doi: 10.1039/C4CE02106A
doi: 10.1039/C4CE02106A
Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J. J. Am. Chem. Soc. 2015, 137, 4460. doi: 10.1021/jacs.5b00321
doi: 10.1021/jacs.5b00321
Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Energy Environ. Sci. 2014, 7, 2934. doi: 10.1039/C4EE01624F
doi: 10.1039/C4EE01624F
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272
doi: 10.1126/science.aaa9272
Lee, J. W.; Kim, H. S.; Park, N. G. Acc. Chem. Res. 2016, 49, 311. doi: 10.1021/acs.accounts.5b00440
doi: 10.1021/acs.accounts.5b00440
Stamplecoskie K. G.; Manser, J. S.; Kamat, P. V. Energy Environ. Sci. 2015, 8, 208. doi: 10.1039/C4EE02988G
doi: 10.1039/C4EE02988G
Jo, Y.; Oh, K. S.; Kim, M.; Kim, K. H.; Lee, H.; Lee, C. W.; Kim, D. S. Adv. Mater. Interfaces 2016, 3, 1500768. doi: 10.1002/admi.201500768
doi: 10.1002/admi.201500768
Li, B.; Binks, D.; Cao, G.; Tian, J. Small 2019, 15, 1903613. doi: 10.1002/smll.201903613
doi: 10.1002/smll.201903613
Hamill, J. C.; Schwartz, J.; Loo, Y. L. ACS Energy Lett. 2018, 3, 92. doi: 10.1021/acsenergylett.7b01057
doi: 10.1021/acsenergylett.7b01057
Fang, Y.; Dong, Q.; Shao, Y.; Yuan, Y.; Huang, J. Nat. Photonics 2015, 9, 679. doi: 10.1038/nphoton.2015.156
doi: 10.1038/nphoton.2015.156
Liu, Y.; Yang, Z.; Liu, S. Adv. Sci. 2018, 5, 1700471. doi: 10.1002/advs.201700471
doi: 10.1002/advs.201700471
Ding, J.; Yan, Q. F. Sci. China Mater. 2017, 60, 1063. doi: 10.1007/s40843-017-9039-8
doi: 10.1007/s40843-017-9039-8
Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. Science 2015, 347, 519. doi: 10.1126/science.aaa2725
doi: 10.1126/science.aaa2725
Lu, Q. R.; Li, J.; Lian, Z. P.; Zhao, H. Y.; Dong, G. F.; Li, Q.; Wang, L. D.; Yan, Q. F. Acta Phys. -Chim. Sin. 2017, 33, 249.
doi: 10.3866/PKU.WHXB201610142
Chen, X.; Zhang, F.; Ge, Y.; Shi, L.; Huang, S.; Tang, J.; Lv, Z.; Zhang, L.; Zou, B.; Zhong, H. Adv. Funct. Mater. 2018, 28, 1706567. doi: 10.1002/adfm.201706567
doi: 10.1002/adfm.201706567
Wang, Y. L.; Chang, S.; Chen, X. M.; Ren, Y. D.; Shi, L. F.; Liu, Y. H.; Zhong, H. Z. Chin. J. Chem. 2019, 37, 616. doi: 10.1002/cjoc.201900071
doi: 10.1002/cjoc.201900071
Lian, Z.; Yan, Q.; Gao, T.; Ding, J.; Lv, Q.; Ning, C.; Li, Q.; Sun, J. L. J. Am. Chem. Soc. 2016, 138, 9409. doi: 10.1021/jacs.6b05683
doi: 10.1021/jacs.6b05683
Han, Q.; Bae, S. H.; Sun, P.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G. Adv. Mater. 2016, 28, 2253. doi: 10.1021/jacs.6b05683
doi: 10.1021/jacs.6b05683
Nayak, P. K.; Moore, D. T.; Wenger, B.; Nayak, S.; Haghighirad, A. A.; Fineberg, A.; Noel, N. K.; Reid, O. G.; Rumbles, G.; Kukura, P; et al. Nat. Commun. 2016, 7, 13303. doi: 10.1038/ncomms13303
doi: 10.1038/ncomms13303
Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. ACS Nano 2015, 9, 4533. doi: 10.1021/acsnano.5b01154
doi: 10.1021/acsnano.5b01154
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692. doi: 10.1021/nl5048779
doi: 10.1021/nl5048779
Zhang, F.; Huang, S.; Wang, P.; Chen, X.; Zhao, S.; Dong, Y.; Zhong, H. Chem. Mater. 2017, 29, 3793. doi: 10.1021/acs.chemmater.7b01100
doi: 10.1021/acs.chemmater.7b01100
Liu, M.; Zhao, J.; Luo, Z.; Sun, Z.; Pan, N.; Ding, H.; Wang, X. Chem. Mater. 2018, 30, 5846. doi: 10.1021/acs.chemmater.8b00537
doi: 10.1021/acs.chemmater.8b00537
Li, L.; Chen, Y.; Liu, Z.; Chen, Q.; Wang, X.; Zhou, H. Adv. Mater. 2016, 28, 9862. doi: 10.1002/adma.201603021
doi: 10.1002/adma.201603021
Wharf, I.; Gramstad, T.; Makhija, R.; Onyszchuk, M. Can. J. Chem. 1976, 54, 3430. doi: 10.1139/v76-493
doi: 10.1139/v76-493
Miyamae, H.; Numahata, Y.; Nagata, M. Chem. Lett. 1980, 9, 663. doi: 10.1246/cl.1980.663
doi: 10.1246/cl.1980.663
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014
doi: 10.1038/nmat4014
Rong, Y.; Tang, Z.; Zhao, Y.; Zhong, X.; Venkatesan, S.; Graham, H.; Patton, M.; Jing, Y.; Guloy, A. M.; Yao, Y. Nanoscale 2015, 7 (24), 10595. doi: 10.1039/C5NR02866C
doi: 10.1039/C5NR02866C
Lee, J. W.; Dai, Z.; Lee, C.; Lee, H. M.; Han, T. H.; De Marco, N.; Lin, O.; Choi, C. S.; Dunn, B.; Koh, J. J. Am. Chem. Soc. 2018, 140, 6317. doi: 10.1021/jacs.8b01037
doi: 10.1021/jacs.8b01037
Zhang, X.; Han, D.; Wang, C.; Muhammad, I.; Zhang, F.; Shmshad, A.; Xue, X.; Ji, W.; Chang, S.; Zhong, H. Adv. Opt. Mater. 2019, 7, 1900774. doi: 10.1002/adom.201900774
doi: 10.1002/adom.201900774
Chao, L.; Niu, T.; Gu, H.; Yang, Y.; Wei, Q.; Xia, Y.; Hui, W.; Zuo, S.; Zhu, Z.; Pei, C., et al. Research 2020, 2616345. doi: 10.34133/2020/2616345
doi: 10.34133/2020/2616345
Chao, L.; Xia, Y.; Li, B.; Xing, G.; Chen, Y.; Huang, W. Chem 2019, 5, 995. doi: 10.1016/j.chempr.2019.02.025
doi: 10.1016/j.chempr.2019.02.025
Lin, Y. H.; Sakai, N.; Da, P.; Wu, J.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J.; Oliver, R. D. J.; Lim, J., et al. Science 2020, 369, 96. doi: 10.1126/science.aba1628
doi: 10.1126/science.aba1628
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Yan Xiao , Shuling Li , Yifan Li , Jianing Fan , Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Hongsheng Tang , Yonghe Zhang , Dexiang Wang , Xiaohui Ning , Tianlong Zhang , Yan Li , Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024