Citation: Xin Zhang, Han Dengbao, Chen Xiaomei, Chen Yu, Chang Shuai, Zhong Haizheng. Effects of Solvent Coordination on Perovskite Crystallization[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200805. doi: 10.3866/PKU.WHXB202008055 shu

Effects of Solvent Coordination on Perovskite Crystallization

  • Corresponding author: Zhong Haizheng, hzzhong@bit.edu.cn
  • Received Date: 19 August 2020
    Revised Date: 14 September 2020
    Accepted Date: 15 September 2020
    Available Online: 17 September 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China/Research Grants Council Joint Research Scheme (51761165021)the National Natural Science Foundation of China/Research Grants Council Joint Research Scheme 51761165021

  • Halide perovskites are ionic semiconductors with outstanding features, such as high defect tolerance, long carrier diffusion length, strong photoluminescence, narrow emission line width, solution processability, and low cost of fabrication. These advantages render them promising candidates for photovoltaics, lasers, displays, and photodetectors. Theoretical and experimental studies have demonstrated that the optical properties of perovskite materials can be strongly affected by their crystal size and dimension. Owing to their ionic nature and low formation energy, perovskites can be synthesized via precipitation. This process typically involves in situ transformation of the precursors with solvent evaporation and/or solvent mixing. It is well known that the physical/chemical properties of solvents play a vital role in determining the size and dimension of the resultant products. Therefore, elucidating the effects of the solvent on perovskite crystallization is crucial for improving the performance of perovskite-based devices. Moreover, the coordination effects between perovskite precursors and solvents are a dominant parameter that influence the crystallization process because the dissolution of perovskite precursors is strongly correlated with the coordination between the perovskite precursors and solvents. Herein, this minireview summarizes recent research advances in comprehending the perovskite precursor-solvent interactions with a focus on the coordination effects. In particular, we have endeavored to discuss the influence of coordination effects on the formation of polycrystalline thin films, quantum dots, and single crystals. It was found that the formation of perovskite-solvent intermediates in coordinated solvents retard the nucleation and growth of perovskite crystals; this proves beneficial for the fabrication of high-quality micrometer-sized perovskite polycrystalline films. Meanwhile, the preformed intermediates contribute to undesired impurities and defects in single crystals and quantum dots. These insights are exceedingly helpful for the crystallization control of perovskites, thus enabling better device performance and enhanced stability. Finally, the minireview discusses the challenges facing perovskite crystallization, along with a short perspective for future studies.
  • 加载中
    1. [1]

      Stranks, S. D.; Snaith, H. J. Nat. Nanotechnol. 2015, 10, 391. doi: 10.1038/nnano.2015.90  doi: 10.1038/nnano.2015.90

    2. [2]

      Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715  doi: 10.1021/acs.chemrev.5b00715

    3. [3]

      Ha, S. T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. Chem. Sci. 2017, 8, 2522. doi: 10.1039/C6SC04474C  doi: 10.1039/C6SC04474C

    4. [4]

      Ding, L. M.; Cheng, Y. B.; Tang, J. Acta Phys. -Chim. Sin. 2018, 34, 449.  doi: 10.3866/PKU.WHXB201710121

    5. [5]

      Hintermayr, V. A.; Richter, A. F.; Ehrat, F.; Döblinger, M.; Vanderlinden, W.; Sichert, J. A.; Tong, Y.; Polavarapu, L.; Feldmann, J.; Urban, A. S. Adv. Mater. 2016, 28, 9478. doi: 10.1002/adma.201602897  doi: 10.1002/adma.201602897

    6. [6]

      Zhu, Z. Y.; Yang, Q. Q.; Gao, L. F.; Zhang, L.; Shi, A. Y.; Sun, C. L.; Wang, Q.; Zhang, H. L. J. Phys. Chem. Lett. 2017, 8, 1610. doi: 10.1021/acs.jpclett.7b00431  doi: 10.1021/acs.jpclett.7b00431

    7. [7]

      Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S. Polavarapu, L. Angew. Chem. Int. Ed. 2016, 55, 13887. doi: 10.1002/anie.201605909  doi: 10.1002/anie.201605909

    8. [8]

      Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Chem. Lett. 2012, 41, 397. doi: 10.1246/cl.2012.397  doi: 10.1246/cl.2012.397

    9. [9]

      Niu, Y. W.; Zhang, F.; Bai, Z.; Dong, Y.; Yang, J.; Liu, R.; Zou, B.; Li, J.; Zhong, H. Z. Adv. Opt. Mater. 2015, 3, 112. doi: 10.1002/adom.201400403  doi: 10.1002/adom.201400403

    10. [10]

      Chang, S.; Bai, Z.; Zhong, H. Z. Adv. Opt. Mater. 2018, 6, 1800380. doi: 10.1002/adom.201800380  doi: 10.1002/adom.201800380

    11. [11]

      Sahli, F.; Werner, J.; Kamino, B. A. Nat. Mater. 2018, 17, 820. doi: 10.1038/s41563-018-0115-4  doi: 10.1038/s41563-018-0115-4

    12. [12]

      Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; et al. Nat. Nanotechnol. 2016, 11, 872. doi: 10.1038/nnano.2016.110  doi: 10.1038/nnano.2016.110

    13. [13]

      Xiao, J.; Zhang, H. L.; Acta Phys. -Chim. Sin. 2016, 32, 1894.  doi: 10.3866/PKU.WHXB201605034

    14. [14]

      Han, D.; Imran, M.; Zhang, M.; Chang, S.; Wu, X. G.; Zhang, X.; Tang, J. L.; Wang, M.; Ali, S.; Li, X., et al. ACS Nano 2018, 12, 8808. doi: 10.1021/acsnano.8b05172  doi: 10.1021/acsnano.8b05172

    15. [15]

      Ji, H.; Xu, H.; Jiang, F.; Bai, Z. L.; Zhong, H. Z. International Conference on Display Technology 2019, 50, 411. doi: 10.1002/sdtp.13513  doi: 10.1002/sdtp.13513

    16. [16]

      Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y, et al. Nature 2018, 562, 249. doi: 10.1038/s41586-018-0576-2  doi: 10.1038/s41586-018-0576-2

    17. [17]

      Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Nature 2018, 562, 245. doi: 10.1038/s41586-018-0575-3  doi: 10.1038/s41586-018-0575-3

    18. [18]

      Shen, Y.; Cheng, L. P.; Li, Y. Q.; Li, W.; Chen, J. D.; Lee, S. T.; Tang, J. X. Adv. Mater. 2019, 31, 1901517. doi: 10.1002/adma.201901517  doi: 10.1002/adma.201901517

    19. [19]

      Wang, L.; Dai, G.; Deng, L.; Zhong, H. Z. Sci. China Mater. 2020, 63, 1382. doi: 10.1007/s40843-020-1336-6  doi: 10.1007/s40843-020-1336-6

    20. [20]

      Wei, H.; Fang, Y.; Mulligan, P.; Chuirazzi, W.; Fang, H. H.; Wang, C.; Ecker, B. R.; Gao, Y.; Loi, M. A.; Cao, L.; et al. Nat. Photonics 2016, 10, 333. doi: 10.1038/nphoton.2016.41  doi: 10.1038/nphoton.2016.41

    21. [21]

      Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G. J.; Azimi, H.; Brabec, C. J.; Stangl, J.; Kovalenko, M. V. Nat. Photonics 2015, 9, 444. doi: 10.1038/nphoton.2015.82  doi: 10.1038/nphoton.2015.82

    22. [22]

      Pan, W.; Wu, H.; Luo, J.; Deng, Z.; Ge, C.; Chen, C.; Jiang, X.; Yin, W. J.; Niu, G.; Zhu, L.; et al. Nat. Photonics 2017, 11, 726. doi: 10.1038/s41566-017-0012-4  doi: 10.1038/s41566-017-0012-4

    23. [23]

      Zhu, W.; Ma, W.; Su, Y.; Chen, Z.; Chen, X.; Ma, Y.; Bai, L.; Xiao, W.; Liu, T.; Zhu, H.; et al. Light-Sci. Appl. 2020, 9, 112. doi: 10.1038/s41377-020-00353-0  doi: 10.1038/s41377-020-00353-0

    24. [24]

      Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I. Chem. Soc. Rev. 2019, 48, 2011. doi: 10.1039/C8CS00656C  doi: 10.1039/C8CS00656C

    25. [25]

      Cao, X.; Zhi, L.; Jia, Y.; Li, Y.; Zhao, K.; Cui, X.; Ci, L.; Zhuang, D.; Wei, J. ACS Appl. Mater. Interfaces 2019, 11, 7639. doi: 10.1021/acsami.8b16315  doi: 10.1021/acsami.8b16315

    26. [26]

      Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2, 16099. doi: 10.1038/natrevmats.2016.99  doi: 10.1038/natrevmats.2016.99

    27. [27]

      Cho, H.; Kim, Y. H.; Wolf, C.; Lee, H. D.; Lee, T. W. Adv. Mater. 2018, 30, 1704587. doi: 10.1002/adma.201704587  doi: 10.1002/adma.201704587

    28. [28]

      Sugimoto, T. Adv. Colloid Interface Sci. 1987, 28, 65. doi: 10.1016/0001-8686(87)80009-X  doi: 10.1016/0001-8686(87)80009-X

    29. [29]

      Zhang, F.; Chen, C.; Kershaw, S. V.; Xiao, C.; Han, J.; Zou, B.; Wu, X.; Chang, S.; Dong, Y.; Rogach, A. L.; et al. Chem Nano Mater 2017, 3, 303. doi: 10.1021/acsami.8b05664  doi: 10.1021/acsami.8b05664

    30. [30]

      Saidaminov, M. I.; Abdelhady, A. L.; Maculan, G.; Bakr, O. M. Chem. Commun. 2015, 51, 176581. doi: 10.1039/C5CC06916E  doi: 10.1039/C5CC06916E

    31. [31]

      Dang, Y.; Liu, Y.; Sun, Y.; Yuan, D.; Liu, X.; Lu, W.; Liu, G.; Xia, H.; Tao, X. CrystEngComm 2015, 17, 665. doi: 10.1039/C4CE02106A  doi: 10.1039/C4CE02106A

    32. [32]

      Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J. J. Am. Chem. Soc. 2015, 137, 4460. doi: 10.1021/jacs.5b00321  doi: 10.1021/jacs.5b00321

    33. [33]

      Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Energy Environ. Sci. 2014, 7, 2934. doi: 10.1039/C4EE01624F  doi: 10.1039/C4EE01624F

    34. [34]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272  doi: 10.1126/science.aaa9272

    35. [35]

      Lee, J. W.; Kim, H. S.; Park, N. G. Acc. Chem. Res. 2016, 49, 311. doi: 10.1021/acs.accounts.5b00440  doi: 10.1021/acs.accounts.5b00440

    36. [36]

      Stamplecoskie K. G.; Manser, J. S.; Kamat, P. V. Energy Environ. Sci. 2015, 8, 208. doi: 10.1039/C4EE02988G  doi: 10.1039/C4EE02988G

    37. [37]

      Jo, Y.; Oh, K. S.; Kim, M.; Kim, K. H.; Lee, H.; Lee, C. W.; Kim, D. S. Adv. Mater. Interfaces 2016, 3, 1500768. doi: 10.1002/admi.201500768  doi: 10.1002/admi.201500768

    38. [38]

      Li, B.; Binks, D.; Cao, G.; Tian, J. Small 2019, 15, 1903613. doi: 10.1002/smll.201903613  doi: 10.1002/smll.201903613

    39. [39]

      Hamill, J. C.; Schwartz, J.; Loo, Y. L. ACS Energy Lett. 2018, 3, 92. doi: 10.1021/acsenergylett.7b01057  doi: 10.1021/acsenergylett.7b01057

    40. [40]

      Fang, Y.; Dong, Q.; Shao, Y.; Yuan, Y.; Huang, J. Nat. Photonics 2015, 9, 679. doi: 10.1038/nphoton.2015.156  doi: 10.1038/nphoton.2015.156

    41. [41]

      Liu, Y.; Yang, Z.; Liu, S. Adv. Sci. 2018, 5, 1700471. doi: 10.1002/advs.201700471  doi: 10.1002/advs.201700471

    42. [42]

      Ding, J.; Yan, Q. F. Sci. China Mater. 2017, 60, 1063. doi: 10.1007/s40843-017-9039-8  doi: 10.1007/s40843-017-9039-8

    43. [43]

      Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. Science 2015, 347, 519. doi: 10.1126/science.aaa2725  doi: 10.1126/science.aaa2725

    44. [44]

      Lu, Q. R.; Li, J.; Lian, Z. P.; Zhao, H. Y.; Dong, G. F.; Li, Q.; Wang, L. D.; Yan, Q. F. Acta Phys. -Chim. Sin. 2017, 33, 249.  doi: 10.3866/PKU.WHXB201610142

    45. [45]

      Chen, X.; Zhang, F.; Ge, Y.; Shi, L.; Huang, S.; Tang, J.; Lv, Z.; Zhang, L.; Zou, B.; Zhong, H. Adv. Funct. Mater. 2018, 28, 1706567. doi: 10.1002/adfm.201706567  doi: 10.1002/adfm.201706567

    46. [46]

      Wang, Y. L.; Chang, S.; Chen, X. M.; Ren, Y. D.; Shi, L. F.; Liu, Y. H.; Zhong, H. Z. Chin. J. Chem. 2019, 37, 616. doi: 10.1002/cjoc.201900071  doi: 10.1002/cjoc.201900071

    47. [47]

      Lian, Z.; Yan, Q.; Gao, T.; Ding, J.; Lv, Q.; Ning, C.; Li, Q.; Sun, J. L. J. Am. Chem. Soc. 2016, 138, 9409. doi: 10.1021/jacs.6b05683  doi: 10.1021/jacs.6b05683

    48. [48]

      Han, Q.; Bae, S. H.; Sun, P.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G. Adv. Mater. 2016, 28, 2253. doi: 10.1021/jacs.6b05683  doi: 10.1021/jacs.6b05683

    49. [49]

      Nayak, P. K.; Moore, D. T.; Wenger, B.; Nayak, S.; Haghighirad, A. A.; Fineberg, A.; Noel, N. K.; Reid, O. G.; Rumbles, G.; Kukura, P; et al. Nat. Commun. 2016, 7, 13303. doi: 10.1038/ncomms13303  doi: 10.1038/ncomms13303

    50. [50]

      Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. ACS Nano 2015, 9, 4533. doi: 10.1021/acsnano.5b01154  doi: 10.1021/acsnano.5b01154

    51. [51]

      Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692. doi: 10.1021/nl5048779  doi: 10.1021/nl5048779

    52. [52]

      Zhang, F.; Huang, S.; Wang, P.; Chen, X.; Zhao, S.; Dong, Y.; Zhong, H. Chem. Mater. 2017, 29, 3793. doi: 10.1021/acs.chemmater.7b01100  doi: 10.1021/acs.chemmater.7b01100

    53. [53]

      Liu, M.; Zhao, J.; Luo, Z.; Sun, Z.; Pan, N.; Ding, H.; Wang, X. Chem. Mater. 2018, 30, 5846. doi: 10.1021/acs.chemmater.8b00537  doi: 10.1021/acs.chemmater.8b00537

    54. [54]

      Li, L.; Chen, Y.; Liu, Z.; Chen, Q.; Wang, X.; Zhou, H. Adv. Mater. 2016, 28, 9862. doi: 10.1002/adma.201603021  doi: 10.1002/adma.201603021

    55. [55]

      Wharf, I.; Gramstad, T.; Makhija, R.; Onyszchuk, M. Can. J. Chem. 1976, 54, 3430. doi: 10.1139/v76-493  doi: 10.1139/v76-493

    56. [56]

      Miyamae, H.; Numahata, Y.; Nagata, M. Chem. Lett. 1980, 9, 663. doi: 10.1246/cl.1980.663  doi: 10.1246/cl.1980.663

    57. [57]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    58. [58]

      Rong, Y.; Tang, Z.; Zhao, Y.; Zhong, X.; Venkatesan, S.; Graham, H.; Patton, M.; Jing, Y.; Guloy, A. M.; Yao, Y. Nanoscale 2015, 7 (24), 10595. doi: 10.1039/C5NR02866C  doi: 10.1039/C5NR02866C

    59. [59]

      Lee, J. W.; Dai, Z.; Lee, C.; Lee, H. M.; Han, T. H.; De Marco, N.; Lin, O.; Choi, C. S.; Dunn, B.; Koh, J. J. Am. Chem. Soc. 2018, 140, 6317. doi: 10.1021/jacs.8b01037  doi: 10.1021/jacs.8b01037

    60. [60]

      Zhang, X.; Han, D.; Wang, C.; Muhammad, I.; Zhang, F.; Shmshad, A.; Xue, X.; Ji, W.; Chang, S.; Zhong, H. Adv. Opt. Mater. 2019, 7, 1900774. doi: 10.1002/adom.201900774  doi: 10.1002/adom.201900774

    61. [61]

      Chao, L.; Niu, T.; Gu, H.; Yang, Y.; Wei, Q.; Xia, Y.; Hui, W.; Zuo, S.; Zhu, Z.; Pei, C., et al. Research 2020, 2616345. doi: 10.34133/2020/2616345  doi: 10.34133/2020/2616345

    62. [62]

      Chao, L.; Xia, Y.; Li, B.; Xing, G.; Chen, Y.; Huang, W. Chem 2019, 5, 995. doi: 10.1016/j.chempr.2019.02.025  doi: 10.1016/j.chempr.2019.02.025

    63. [63]

      Lin, Y. H.; Sakai, N.; Da, P.; Wu, J.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J.; Oliver, R. D. J.; Lim, J., et al. Science 2020, 369, 96. doi: 10.1126/science.aba1628  doi: 10.1126/science.aba1628

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    5. [5]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    6. [6]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    17. [17]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    18. [18]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    19. [19]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    20. [20]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

Metrics
  • PDF Downloads(37)
  • Abstract views(966)
  • HTML views(308)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return