Citation: Wang Jiaxin, Shen Weili, Hu Jinning, Chen Jun, Li Xiaoming, Zeng Haibo. Mechanisms and Applications of Laser Action on Lead Halide Perovskites[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200805. doi: 10.3866/PKU.WHXB202008051 shu

Mechanisms and Applications of Laser Action on Lead Halide Perovskites

  • Corresponding author: Chen Jun, chenjun@njust.edu.cn Zeng Haibo, zeng.haibo@njust.edu.cn
  • Received Date: 19 August 2020
    Revised Date: 10 September 2020
    Accepted Date: 11 September 2020
    Available Online: 16 September 2020

    Fund Project: The project was supported by the Natural Science Foundation of Jiangsu Province (BK20181296), the National Natural Science Foundation of China (11502116), and the Fundamental Research Funds for the Central Universities (30919011253)the Fundamental Research Funds for the Central Universities 30919011253the Natural Science Foundation of Jiangsu Province BK20181296the National Natural Science Foundation of China 11502116

  • In recent years, lead-halide perovskites, one of the most competitive material types in the field of semiconductors, has attracted widespread attention because of its easy preparation, low cost, and high performance. Lead-halide perovskites are a type of material with an ABX3 structure, in which A is an organic or inorganic monovalent cation, B is a divalent cation, and X is a halogen ion. Among them, the B-site ion and X-site ion form an octahedron, with the B-site ion occupying the center and the X-site ion located at the apex of the octahedron. This type of octahedron can undergo lattice changes such as rotation or tilt through the replacement of different halogen anions, which affects the material band gap. The octahedron is located in the center of a cube, which is composed of A-site ions. These structures constitute the basic unit of the perovskite. Compared with the widely used Ⅱ-Ⅵ or Ⅲ-Ⅴ semiconductor nanocrystalline materials, perovskite nanocrystals have great application potential owing to their superior optoelectronic performance. However, their stability problem restricts further development, making them unable to compete in commercial applications. Studies on the stability of perovskite materials began in 2009. It was discovered through experiments that perovskite materials would undergo irreversible degradation under the action of liquid polar solvents, which confirmed that humidity and air are important factors in perovskite degradation. With further research, the problem of illumination has also come to the surface. It was found through experiment that, when oxygen and humidity were excluded, the light condition could also have a certain negative impact on perovskite materials, and subsequently perform a certain repair effect. Research in this area can lay a foundation for the preparation of high-stability perovskite materials and devices, adjust the structure and performance of perovskite by lighting technology (especially laser irradiation), and expand its comprehensive application in the field of optoelectronics. This article focuses on the changes in perovskites under laser irradiation and the related applications. First, it reviews the unstable changes and micro-mechanisms that laser-irradiation induces in lead-halide perovskites, including accelerated degradation, repair of defects, segregation, phase transitions, and changes in the grain size. Second, based on these mechanisms, it explains how researchers have recently used laser-irradiation technology to control the performance of perovskite films and devices. In addition, it also introduces the application of the laser direct writing process in the fields of perovskite patterning and photoelectric detection. Finally, this paper summarizes the changes induced by the laser-irradiation illumination and applications of laser-irradiated lead-halide perovskites.
  • 加载中
    1. [1]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    2. [2]

      Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167  doi: 10.1126/science.1243167

    3. [3]

      Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. J. Mater. Chem. A 2016, 4, 3970. doi: 10.1039/c5ta09011c  doi: 10.1039/c5ta09011c

    4. [4]

      Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. J. Phys. Chem. Lett. 2015, 6, 4360. doi: 10.1021/acs.jpclett.5b02011  doi: 10.1021/acs.jpclett.5b02011

    5. [5]

      Xiao, Z.; Kerner, R. A.; Zhao, L.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Nat. Photon. 2017, 11, 108. doi: 10.1038/nphoton.2016.269  doi: 10.1038/nphoton.2016.269

    6. [6]

      Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. Science 2015, 350, 1222. doi: 10.1126/science.aad1818  doi: 10.1126/science.aad1818

    7. [7]

      Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715  doi: 10.1021/acs.chemrev.5b00715

    8. [8]

      Galasso, F. S. Structure, Properties and Preparation of Perovskite-Type Compounds; International Series of Monographs in Solid State Physics: Elsevier, Pergamon, 2013; pp. 1–209.

    9. [9]

      Grätzel, M. Nat. Mater. 2014, 13, 838. doi: 10.1038/nmat4065  doi: 10.1038/nmat4065

    10. [10]

      Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. Acta Phys. -Chim. Sin. 2020, 36, 1907012.  doi: 10.3866/PKU.WHXB201907012

    11. [11]

      Chen, R.; Wang, W.; Bu, T. L.; Ku, Z. L.; Zhong, J.; Peng, Y.; Xiao, S. Q.; You, W.; Huang, F. Z.; Cheng, Y. B.; Fu, Z. Y. Acta Phys. -Chim. Sin. 2019, 35, 401.  doi: 10.3866/PKU.WHXB201803131

    12. [12]

      Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. Adv. Funct. Mater. 2016, 26, 2435. doi: 10.1002/adfm.201600109  doi: 10.1002/adfm.201600109

    13. [13]

      Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun.2013, 4, 1. doi: 10.1038/ncomms3885  doi: 10.1038/ncomms3885

    14. [14]

      Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A 2015, 3, 8970. doi: 10.1039/c4ta04994b  doi: 10.1039/c4ta04994b

    15. [15]

      Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/c5ee03874j  doi: 10.1039/c5ee03874j

    16. [16]

      Ge, Y.; Mou, X. L.; Lu, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039.  doi: 10.3866/PKU.WHXB201905039

    17. [17]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    18. [18]

      Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. J. Am. Chem. Soc. 2015, 137, 1530. doi: 10.1021/ja511132a  doi: 10.1021/ja511132a

    19. [19]

      Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Kadowaki, H.; Murata, D.; Chikamatsu, M.; Fujiwara, H. J. Appl. Phys. 2016, 119, 115501. doi: 10.1063/1.4943638  doi: 10.1063/1.4943638

    20. [20]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764. doi: 10.1021/nl400349b  doi: 10.1021/nl400349b

    21. [21]

      Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. Angew. Chem. Int. Ed. 2015, 54, 8208. doi: 10.1002/ange.201503153  doi: 10.1002/ange.201503153

    22. [22]

      Berhe, T. A.; Su, W. N.; Chen, C. H.; Pan, C. J.; Cheng, J. H.; Chen, H. M.; Tsai, M. C.; Chen, L. Y.; Dubale, A. A.; Hwang, B. J. Energy Environ. Sci. 2016, 9, 323. doi: 10.1039/c5ee02733k  doi: 10.1039/c5ee02733k

    23. [23]

      Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 1. doi: 10.1038/ncomms15218  doi: 10.1038/ncomms15218

    24. [24]

      Nickel, N. H.; Lang, F.; Brus, V. V.; Shargaieva, O.; Rappich, J. Adv. Electron. Mater. 2017, 3, 1700158. doi: 10.1002/aelm.201700158  doi: 10.1002/aelm.201700158

    25. [25]

      Li, Y.; Xu, X.; Wang, C.; Ecker, B.; Yang, J.; Huang, J.; Gao, Y. J. Phys. Chem. C 2017, 121, 3904. doi: 10.1021/acs.jpcc.6b11853  doi: 10.1021/acs.jpcc.6b11853

    26. [26]

      Huang, F.; Jiang, L.; Pascoe, A. R.; Yan, Y.; Bach, U.; Spiccia, L.; Cheng, Y. B. Nano Energy 2016, 27, 509. doi: 10.1016/j.nanoen.2016.07.033  doi: 10.1016/j.nanoen.2016.07.033

    27. [27]

      Zhang, Y.; Zhu, H.; Zheng, J.; Chai, G.; Song, Z.; Chen, Y.; Liu, Y.; He, S.; Shi, Y.; Tang, Y. J. Phys. Chem. C 2019, 123, 4502. doi: 10.1021/acs.jpcc.8b11353  doi: 10.1021/acs.jpcc.8b11353

    28. [28]

      Merdasa, A.; Bag, M.; Tian, Y.; Källman, E.; Dobrovolsky, A.; Scheblykin, I. G. J. Phys. Chem. C 2016, 120, 10711. doi: 10.1021/acs.jpcc.6b03512  doi: 10.1021/acs.jpcc.6b03512

    29. [29]

      dos Reis, R.; Yang, H.; Ophus, C.; Ercius, P.; Bizarri, G.; Perrodin, D.; Shalapska, T.; Bourret, E.; Ciston, J.; Dahmen, U. Appl. Phys. Lett. 2018, 112, 071901. doi: 10.1063/1.5017537  doi: 10.1063/1.5017537

    30. [30]

      Jeon, T.; Jin, H. M.; Lee, S. H.; Lee, J. M.; Park, H. I.; Kim, M. K.; Lee, K. J.; Shin, B.; Kim, S. O. ACS Nano 2016, 10, 7907. doi: 10.1021/acsnano.6b03815  doi: 10.1021/acsnano.6b03815

    31. [31]

      Chen, J.; Wu, Y.; Li, X.; Cao, F.; Gu, Y.; Liu, K.; Liu, X.; Dong, Y.; Ji, J.; Zeng, H. Adv. Mater. Technol. 2017, 2, 1700132. doi: 10.1002/admt.201700132  doi: 10.1002/admt.201700132

    32. [32]

      Wang, J. F.; Lin, D. X.; Yuan, Y. B. Acta Phys. Sin. 2019, 68, 158801.  doi: 10.7498/aps.68.20190853

    33. [33]

      Abdelmageed, G.; Jewell, L.; Hellier, K.; Seymour, L.; Luo, B.; Bridges, F.; Zhang, J. Z.; Carter, S. Appl. Phys. Lett. 2016, 109, 233905. doi: 10.1063/1.4967840  doi: 10.1063/1.4967840

    34. [34]

      Tang, X.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H.; Chen, S.; Kahmann, S.; Osvet, A. J. Mater. Chem. A 2016, 4, 15896. doi: 10.1039/c6ta06497c  doi: 10.1039/c6ta06497c

    35. [35]

      Yin, W. J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903. doi: 10.1063/1.4864778  doi: 10.1063/1.4864778

    36. [36]

      Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. J. Am. Chem. Soc. 2014, 136, 11610. doi: 10.1021/ja506624n  doi: 10.1021/ja506624n

    37. [37]

      Mosconi, E.; Meggiolaro, D.; Snaith, H. J.; Stranks, S. D.; De Angelis, F. Energy Environ. Sci. 2016, 9, 3180. doi: 10.1039/c6ee01504b  doi: 10.1039/c6ee01504b

    38. [38]

      DeQuilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Nat. Commun. 2016, 7, 1. doi: 10.1038/ncomms11683  doi: 10.1038/ncomms11683

    39. [39]

      Li, F.; Zhu, W.; Bao, C.; Yu, T.; Wang, Y.; Zhou, X.; Zou, Z. Chem. Commun. 2016, 52, 5394. doi: 10.1039/c6cc00753h  doi: 10.1039/c6cc00753h

    40. [40]

      Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Chem. Sci. 2015, 6, 613. doi: 10.1039/c4sc03141e  doi: 10.1039/c4sc03141e

    41. [41]

      Samu, G. F.; Janaky, C.; Kamat, P. V. ACS Energy Lett. 2017, 2, 1860. doi: 10.1021/acsenergylett.7b00589  doi: 10.1021/acsenergylett.7b00589

    42. [42]

      Draguta, S.; Sharia, O.; Yoon, S. J.; Brennan, M. C.; Morozov, Y. V.; Manser, J. S.; Kamat, P. V.; Schneider, W. F.; Kuno, M. Nat. Commun. 2017, 8, 1. doi: 10.1038/s41467-017-00284-2  doi: 10.1038/s41467-017-00284-2

    43. [43]

      Gualdrón-Reyes, A. S. F.; Yoon, S. J.; Barea, E. M.; Agouram, S.; Muñoz-Sanjosé, V.; Meléndez, A. N. M.; Niño-Gómez, M. E.; Mora-Seró, I. N. ACS Energy Lett. 2018, 4, 54. doi: 10.1021/acsenergylett.8b02207  doi: 10.1021/acsenergylett.8b02207

    44. [44]

      Tang, X.; van den Berg, M.; Gu, E.; Horneber, A.; Matt, G. J.; Osvet, A.; Meixner, A. J.; Zhang, D.; Brabec, C. J. Nano Lett. 2018, 18, 2172. doi: 10.1021/acs.nanolett.8b00505  doi: 10.1021/acs.nanolett.8b00505

    45. [45]

      Bischak, C. G.; Hetherington, C. L.; Wu, H.; Aloni, S.; Ogletree, D. F.; Limmer, D. T.; Ginsberg, N. S. Nano Lett. 2017, 17, 1028. doi: 10.1021/acs.nanolett.6b04453  doi: 10.1021/acs.nanolett.6b04453

    46. [46]

      Chen, W.; Mao, W.; Bach, U.; Jia, B.; Wen, X. Small Methods 2019, 3, 1900273. doi: 10.1002/smtd.201900273  doi: 10.1002/smtd.201900273

    47. [47]

      Zhao, Y. C.; Zhou, W. K.; Zhou, X.; Liu, K. H.; Yu, D. P.; Zhao, Q. Light Sci. Appl. 2017, 6, e16243. doi: 10.1038/lsa.2016.243  doi: 10.1038/lsa.2016.243

    48. [48]

      Zhang, H.; Fu, X.; Tang, Y.; Wang, H.; Zhang, C.; William, W. Y.; Wang, X.; Zhang, Y.; Xiao, M. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-09047-7  doi: 10.1038/s41467-019-09047-7

    49. [49]

      Zhou, Y.; You, L.; Wang, S.; Ku, Z.; Fan, H.; Schmidt, D.; Rusydi, A.; Chang, L.; Wang, L.; Ren, P. Nat. Commun. 2016, 7, 1. doi: 10.1038/ncomms11193  doi: 10.1038/ncomms11193

    50. [50]

      Wei, T. C.; Wang, H. P.; Li, T. Y.; Lin, C. H.; Hsieh, Y. H.; Chu, Y. H.; He, J. H. Adv. Mater. 2017, 29, 1701789. doi: 10.1002/adma.201701789  doi: 10.1002/adma.201701789

    51. [51]

      Kirschner, M. S.; Diroll, B. T.; Guo, P.; Harvey, S. M.; Helweh, W.; Flanders, N. C.; Brumberg, A.; Watkins, N. E.; Leonard, A. A.; Evans, A. M. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-08362-3  doi: 10.1038/s41467-019-08362-3

    52. [52]

      Kim, S. J.; Byun, J.; Jeon, T.; Jin, H. M.; Hong, H. R.; Kim, S. O. ACS Appl. Mater. Interfaces 2018, 10, 2490. doi: 10.1021/acsami.7b15470  doi: 10.1021/acsami.7b15470

    53. [53]

      Esparza, D.; Sidhik, S.; López-Luke, T.; Rivas, J. M.; De la Rosa, E. Mater. Res. Express. 2019, 4, 5041 doi: 10.1088/2053-1591/aafbce  doi: 10.1088/2053-1591/aafbce

    54. [54]

      Dong, Y.; Hu, H.; Xu, X.; Gu, Y.; Chueh, C. C.; Cai, B.; Yu, D.; Shen, Y.; Zou, Y.; Zeng, H. J. Phys. Chem. Lett. 2019, 10, 4149. doi: 10.1021/acs.jpclett.9b01673  doi: 10.1021/acs.jpclett.9b01673

    55. [55]

      Liang, Y.; Yao, Y.; Zhang, X.; Hsu, W. L.; Gong, Y.; Shin, J.; Wachsman, E. D.; Dagenais, M.; Takeuchi, I. AIP Adv. 2016, 6, 015001. doi: 10.1063/1.4939621  doi: 10.1063/1.4939621

    56. [56]

      Miyadera, T.; Sugita, T.; Tampo, H.; Matsubara, K.; Chikamatsu, M. ACS Appl. Mater. Interfaces 2016, 8, 26013. doi: 10.1021/acsami.6b07837  doi: 10.1021/acsami.6b07837

    57. [57]

      Bansode, U.; Ogale, S. J. Appl. Phys. 2017, 121, 133107. doi: 10.1063/1.4979865  doi: 10.1063/1.4979865

    58. [58]

      Kawashima, K.; Okamoto, Y.; Annayev, O.; Toyokura, N.; Takahashi, R.; Lippmaa, M.; Itaka, K.; Suzuki, Y.; Matsuki, N.; Koinuma, H. Sci. Technol. Adv. Mater. 2017, 18, 307. doi: 10.1080/14686996.2017.1314172  doi: 10.1080/14686996.2017.1314172

    59. [59]

      Dunlap-Shohl, W. A.; Barraza, E. T.; Barrette, A.; Dovletgeldi, S.; Findik, G.; Dirkes, D. J.; Liu, C.; Jana, M. K.; Blum, V.; You, W. Mater. Horizons 2019, 6, 1707. doi: 10.1039/C9MH00366E  doi: 10.1039/C9MH00366E

    60. [60]

      Wang, H.; Wu, Y.; Ma, M.; Dong, S.; Li, Q.; Du, J.; Zhang, H.; Xu, Q. ACS Appl. Energy Mater. 2019, 2, 2305. doi: 10.1021/acsaem.9b00130  doi: 10.1021/acsaem.9b00130

    61. [61]

      Chou, S. S.; Swartzentruber, B. S.; Janish, M. T.; Meyer, K. C.; Biedermann, L. B.; Okur, S.; Burckel, D. B.; Carter, C. B.; Kaehr, B. J. Phys. Chem. Lett. 2016, 7, 3736. doi: 10.1021/acs.jpclett.6b01557  doi: 10.1021/acs.jpclett.6b01557

    62. [62]

      Konidakis, I.; Maksudov, T.; Serpetzoglou, E.; Kakavelakis, G.; Kymakis, E.; Stratakis, E. ACS Appl. Energy Mater. 2018, 1, 5101. doi: 10.1021/acsaem.8b01152  doi: 10.1021/acsaem.8b01152

    63. [63]

      Yuyama, K. I.; Islam, M. J.; Takahashi, K.; Nakamura, T.; Biju, V. Angew. Chem. Int. Ed. 2018, 130, 13612. doi: 10.1002/ange.201806079  doi: 10.1002/ange.201806079

    64. [64]

      Islam, M. J.; Yuyama, K. I.; Takahashi, K.; Nakamura, T.; Konishi, K.; Biju, V. NPG Asia Mater. 2019, 11, 1. doi: 10.1038/s41427-019-0131-0  doi: 10.1038/s41427-019-0131-0

    65. [65]

      Nie, W.; Blancon, J. C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y.; Katan, C.; Even, J. Nat. Commun. 2016, 7, 1. doi: 10.1038/ncomms11574  doi: 10.1038/ncomms11574

    66. [66]

      Khenkin, M. V.; KM, A.; Visoly-Fisher, I.; Kolusheva, S.; Galagan, Y.; Di Giacomo, F.; Vukovic, O.; Patil, B. R.; Sherafatipour, G.; Turkovic, V. ACS Appl. Energy Mater. 2018, 1, 799. doi: 10.1021/acsaem.7b00256  doi: 10.1021/acsaem.7b00256

    67. [67]

      Tiguntseva, E.; Saraeva, I.; Kudryashov, S.; Ushakova, E.; Komissarenko, F.; Ishteev, A.; Tsypkin, A.; Haroldson, R.; Milichko, V.; Zuev, D. J. Phys. Conf. Ser. 2017, 917, 062002. doi: 10.1088/1742-6596/917/6/062002  doi: 10.1088/1742-6596/917/6/062002

    68. [68]

      Shan, X.; Wang, S.; Dong, W.; Pan, N.; Shao, J.; Wang, X.; Tao, R.; Deng, Z.; Hu, L.; Kong, F. Solar RRL 2019, 3, 1900020. doi: 10.1002/solr.201900020  doi: 10.1002/solr.201900020

    69. [69]

      Malyukov, S.; Sayenko, A.; Klunnikova, Y. 2018 International Russian Automation Conference (RusAutoCon), IEEE: 2018; pp. 1–4. doi: 10.1109/RUSAUTOCON.2018.8501763

    70. [70]

      Wilkes, G. C.; Deng, X.; Choi, J. J.; Gupta, M. C. ACS Appl. Mater. Interfaces 2018, 10, 41312. doi: 10.1021/acsami.8b13740  doi: 10.1021/acsami.8b13740

    71. [71]

      You, P.; Li, G.; Tang, G.; Cao, J.; Yan, F. Energy Environ. Sci. 2020, 13, 1187. doi: 10.1039/C9EE02324K  doi: 10.1039/C9EE02324K

    72. [72]

      Hu, Y.; Zhang, W.; Ye, Y.; Zhao, Z.; Liu, C. ACS Appl. Nano Mater. 2019, 3, 850. doi: 10.1021/acsanm.9b02362  doi: 10.1021/acsanm.9b02362

    73. [73]

      Wu, W. K.; Wang, C. M.; Chan, M. C.; Lien, J. Y.; Su, Y. M.; Sarma, M.; Yang, Z. P.; Su, H. C.; Wong, K. T.; Wang, S. L. ChemPlusChem 2018, 83, 239. doi: 10.1002/cplu.201700422  doi: 10.1002/cplu.201700422

    74. [74]

      Cheng, Z. Y.; Wang, Z.; Xing, R. B.; Han, Y. C.; Lin, J. Chem. Phys. Lett. 2003, 376, 481. doi: 10.1016/S0009-2614(03)01017-0  doi: 10.1016/S0009-2614(03)01017-0

    75. [75]

      Wang, G.; Li, D.; Cheng, H. C.; Li, Y.; Chen, C. Y.; Yin, A.; Zhao, Z.; Lin, Z.; Wu, H.; He, Q. Sci. Adv. 2015, 1, e1500613. doi: 10.1126/sciadv.1500613  doi: 10.1126/sciadv.1500613

    76. [76]

      Feng, J.; Yan, X.; Zhang, Y.; Wang, X.; Wu, Y.; Su, B.; Fu, H.; Jiang, L. Adv. Mater. 2016, 28, 3732. doi: 10.1002/adma.201505952  doi: 10.1002/adma.201505952

    77. [77]

      Chen, R. J.; Yan, X. L.; Ge, W. W.; Yuan, Y. J.; Wang, M.; Sun, M. Z.; Xing, Y. M.; Zhang, P.; Fu, C. Y.; Shuai, P. Nucl. Instrum. Methods Phys. Res. A 2018, 915, 111. doi: 10.1016/j.nima.2018.07.059  doi: 10.1016/j.nima.2018.07.059

    78. [78]

      Zarzar, L. D.; Swartzentruber, B. S.; Harper, J. C.; Dunphy, D. R.; Brinker, C. J.; Aizenberg, J.; Kaehr, B. J. Am. Chem. Soc. 2012, 134, 4007. doi: 10.1021/ja211602t  doi: 10.1021/ja211602t

    79. [79]

      Shamsi, J.; Abdelhady, A.; Accornero, S.; Arciniegas, M. P.; Goldoni, L.; Kandada, A. R. S.; Petrozza, A.; Manna, L. ACS Energy Lett. 2016, 1, 1042. doi: 10.1021/acsenergylett.6b00521  doi: 10.1021/acsenergylett.6b00521

    80. [80]

      Chou, S. S.; De, M.; Luo, J.; Rotello, V. M.; Huang, J.; Dravid, V. P. J. Am. Chem. Soc. 2012, 134, 16725. doi: 10.1021/ ja306767y  doi: 10.1021/ja306767y

    81. [81]

      Arciniegas, M. P.; Castelli, A.; Piazza, S.; Dogan, S.; Ceseracciu, L.; Krahne, R.; Duocastella, M. Adv. Funct. Mater. 2017, 27, 1701613.1. doi: 10.1002/adfm.201701613  doi: 10.1002/adfm.201701613

    82. [82]

      Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Nat. Mater. 2015, 14, 636. doi: 10.1038/nmat4271  doi: 10.1038/nmat4271

    83. [83]

      Fischer, K. A.; Müller, K.; Rundquist, A.; Sarmiento, T.; Piggott, A. Y.; Kelaita, Y.; Dory, C.; et, al. Nat. Photon. 2016, 10, 163. doi: 10.1038/nphoton.2015.276  doi: 10.1038/nphoton.2015.276

    84. [84]

      Xu, Y. Solution-processed Metal Halide Perovskites for Nuclear Radiation Detection. In nanoGe Fall Meeting, Berlin: Germany, July 16, 2019. doi: 10.29363/nanoge.ngfm.2019.001

    85. [85]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272  doi: 10.1126/science.aaa9272

    86. [86]

      Binek, A.; Hanusch, F. C.; Docampo, P.; Bein, T. J. Phys. Chem. Lett. 2015, 6, 1249. doi: 10.1021/acs.jpclett.5b00380  doi: 10.1021/acs.jpclett.5b00380

    87. [87]

      Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J. Angew. Chem. Int. Ed. 2014, 53, 3151. doi: 10.1002/anie.201309361  doi: 10.1002/anie.201309361

    88. [88]

      Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982. doi: 10.1039/C3EE43822H  doi: 10.1039/C3EE43822H

    89. [89]

      Han, Q. F.; Bae, S. H.; Sun, P. Y.; Hsieh, Y. T.; Michael, Y. Adv. Mater. 2016, 28, 2253. doi: 10.1002/adma.201505002  doi: 10.1002/adma.201505002

    90. [90]

      Steele, J. A.; Yuan, H.; Tan, C. Y. X.; Keshavarz, M.; Hofkens, J. ACS Nano 2017, 11, 8072. doi: 10.1021/acsnano.7b02777  doi: 10.1021/acsnano.7b02777

    91. [91]

      Zhou, C.; Cao, G.; Gan, Z.; Ou, Q.; Chen, W.; Bao, Q.; Jia, B.; Wen, X. ACS Appl. Mater. Interfaces 2019, 11, 26017. doi: 10.1021/acsami.9b07708  doi: 10.1021/acsami.9b07708

    92. [92]

      Wei, D.; Wang, C.; Wang, H.; Hu, X.; Wei, D.; Fang, X.; Zhang, Y.; Wu, D.; Hu, Y.; Li, J.; Zhu, S.; Xiao, M. J. Nat. Photon. 2018, 12, 596. doi: 10.1038/s41566-018-0240-2  doi: 10.1038/s41566-018-0240-2

    93. [93]

      Tan, D.; Sharafudeen, K. N.; Yue, Y.; Qiu, J. Prog. Mater. Sci. 2016, 76, 154. doi: 10.1016/j.pmatsci.2015.09.002  doi: 10.1016/j.pmatsci.2015.09.002

    94. [94]

      Chen, D.; Yuan, S.; Chen, X.; Li, J.; Mao, Q.; Li, X.; Zhong, J. J. Mater. Chem. C 2018, 6, 6832. doi: 10.1039/C8TC02407C  doi: 10.1039/C8TC02407C

    95. [95]

      Xiongjian H, Qianyi G, Shiliang K, Tianchang O, Qinpeng C, Xiaofeng L, Zhiguo X, Zhongmin Yang, Qinyuan Z, Jianrong Q, Guoping D. ACS Nano 2020, 14, 3150. doi: 10.1021/acsnano.9b08314  doi: 10.1021/acsnano.9b08314

    96. [96]

      Huang, X; Shiliang K, Tianchang O, Qinpeng C, Xiaofeng L, Zhiguo X, Zhongmin Yang, Qinyuan Z, Jianrong Q, Guoping D. ACS Nano 2020, 14, 3150. doi: 10.1021/acsnano.9b08314  doi: 10.1021/acsnano.9b08314

    97. [97]

      Fernandez, T. T.; Sakakura, M.; Eaton, S. M.; Sotillo, B.; Siegel, J.; Solis, J.; Shimotsuma, Y.; Miura, K. Prog. Mater. Sci. 2017, 94, 68. doi: 10.1016/j.pmatsci.2017.12.002  doi: 10.1016/j.pmatsci.2017.12.002

    98. [98]

      Shimizu, M.; Sakakura, M.; Ohnishi, M.; Shimotsuma, Y.; Nakaya, T.; Miura, K.; Hirao, K. J. Appl. Phys. 2010, 108, 073533. doi: 10.1063/1.3483238  doi: 10.1063/1.3483238

    99. [99]

      Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Prog. Mater. Sci. 2018, 97, 38. doi: 10.1016/j.pmatsci.2018.02.006  doi: 10.1016/j.pmatsci.2018.02.006

    100. [100]

      Huang, X.; Guo, Q.; Yang, D.; Xiao, X.; Dong, G. Nat. Photon. 2020, 14, 1. doi: 10.1038/s41566-019-0538-8  doi: 10.1038/s41566-019-0538-8

    101. [101]

      Adinolfi, V.; Ouellette, O.; Saidaminov, M. I.; Walters, G.; Abdelhady, A. L.; Bakr, O. M.; Sargent, E. H. Adv. Mater. 2016, 28, 7264. doi: 10.1002/adma.201601196  doi: 10.1002/adma.201601196

    102. [102]

      Yue, Y.; Yang, Z.; Liu, N.; Liu, W.; Zhang, H.; Ma, Y.; Yang, C.; Su, J.; Li, L.; Long, F. ACS Nano 2016, 10, 11249. doi: 10.1021/acsnano.6b06326  doi: 10.1021/acsnano.6b06326

    103. [103]

      Hou, F.; Jin, F.; Chu, B.; Su, Z.; Gao, Y.; Zhao, H.; Cheng, P.; Tang, J.; Li, W. Sol. Energy Mater. Sol. Cells 2016, 157, 989. doi: 10.1016/j.solmat.2016.08.024  doi: 10.1016/j.solmat.2016.08.024

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(17)
  • Abstract views(632)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return