Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells
- Corresponding author: Yin Yuan, yinyuan8008@126.com Yin Wan-Jian, wjyin@suda.edu.cn
Citation: Yin Yuan, Guo Zhendong, Chen Gaoyuan, Zhang Huifeng, Yin Wan-Jian. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200804. doi: 10.3866/PKU.WHXB202008048
Weber, D. Z. Naturforsch. B 1978, 33b, 1443. doi: 10.1515/znb-1978-0809
doi: 10.1515/znb-1978-0809
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r
doi: 10.1021/ja809598r
www.nrel.gov/pv/assets/pdfs/. (accessed 2019
Li, X.; Bi, D.; Yi, C.; Decoppet, J. D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Science 2016, 353, 58. doi: 10.1126/science.aaf8060
doi: 10.1126/science.aaf8060
Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 2015, 347, 967. doi: 10.1126/science.aaa5760
doi: 10.1126/science.aaa5760
Kulkarni, A.; Jena, A. K.; Chen, H. W.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Solar Energy 2019, 136, 379. doi: 10.1016/j.solener.2016.07.019
doi: 10.1016/j.solener.2016.07.019
Lim, J.; Hörantner, M. T.; Sakai, N.; Ball, J. M.; Mahesh, S.; Noel, N. K.; Lin, Y. H.; McMeekin, D. P.; Johnston, M. B.; Wenger, B.; Snaith, H. J. Energy Environ. Sci. 2019, 12, 169. doi: 10.1039/c8ee03395a
doi: 10.1039/c8ee03395a
Herz, L. M. ACS Energy Lett. 2017, 2, 1539. doi: 10.1021/acsenergylett.7b00276
doi: 10.1021/acsenergylett.7b00276
Wang, T.; Daiber, B.; Frost, J. M.; Mann, S. A.; Garnett, E. C.; Walsh, A.; Ehrler, B. Energy Environ. Sci. 2017, 10, 509. doi: 10.1039/C6EE03474H
doi: 10.1039/C6EE03474H
Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Hagfeldt, A. Sci. Adv. 2016, 2, e1501170. doi: 10.1126/sciadv.1501170
doi: 10.1126/sciadv.1501170
Yin, W. J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903. doi: 10.1063/1.4864778
doi: 10.1063/1.4864778
Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M.; Berry, J. J.; van Hest, M. F. A. M.; Zhu, K. Nat. Rev. Mater. 2018, 3, 18017. doi: 10.1038/natrevmats.2018.17
doi: 10.1038/natrevmats.2018.17
Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Science 2018, 361, eaat8235. doi: 10.1126/science.aat8235
doi: 10.1126/science.aat8235
Li, Z.; Zhao, Y.; Xi, W.; Sun, Y.; Zhao, Z.; Li, Y.; Zhou, H.; Qi, C. Joule 2018, 2, 1559. doi: 10.1016/j.joule.2018.05.001
doi: 10.1016/j.joule.2018.05.001
Seok, S. I.; Grätzel, M.; Park, N. G. Small 2018, 14, 1704177. doi: 10.1002/smll.201704177
doi: 10.1002/smll.201704177
Pazos Outón, L. M.; Xiao, T. P.; Yablonovitch, E. J. Phys. Chem. Lett. 2018, 9, 1703. doi: 10.1021/acs.jpclett.7b03054
doi: 10.1021/acs.jpclett.7b03054
Albrecht, S.; Michael, S.; Correa, B. J. P.; Felix, L.; Lukas, K.; Mathias, M.; Ludmilla, S.; Antonio, A.; Jorg, R.; Lars, K.; et al. Energy Environ. Sci. 2016, 9, 81. doi: 10.1039/c5ee02965a
doi: 10.1039/c5ee02965a
Jérémie, W.; Arnaud, W.; Esteban, R.; Soo-Jin, M.; Davide, S.; Michael, R.; Robby, P.; Rolf, B.; Xavier, N.; De, W. S.; et al. Appl. Phys. Lett. 2016, 109, 233902. doi: 10.1063/1.4971361
doi: 10.1063/1.4971361
Sahli, F.; Werner, J.; Kamino, B. A.; Braeuninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Leon, J. J. D.; Sacchetto, D. Nat. Mater. 2018, 17, 820. doi: 10.1038/s41563-018-0115-4
doi: 10.1038/s41563-018-0115-4
Tress, W.; Marinova, N.; Inganas, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M. Adv. Energy Mater. 2015, 5, 1400812. doi: 10.1002/aenm.201400812
doi: 10.1002/aenm.201400812
Agiorgousis, M. L.; Sun, Y. Y.; Zeng, H.; Zhang, S. J. Am. Chem. Soc. 2014, 136, 14570. doi: 10.1021/ja5079305
doi: 10.1021/ja5079305
Kim, J.; Lee, S. H.; Lee, J. H.; Hong, K. H. J. Phys. Chem. Lett. 2014, 5, 1312. doi: 10.1021/jz500370k
doi: 10.1021/jz500370k
Agiorgousis, M. L.; Sun, Y.; Zeng, H.; Zhang, S. J. Am. Chem. Soc. 2014, 136, 14570. doi: 10.1021/ja5079305
doi: 10.1021/ja5079305
Walsh, A.; Scanlon, D. O.; Chen, S.; Gong, X. G.; Wei, S. H. Angew. Chem. Int. Ed. 2015, 54, 1791. doi: 10.1002/anie.201409740
doi: 10.1002/anie.201409740
Eames, C.; Frost, J. M.; Barnes, P. R. F.; Regan, B. C. O.; Walsh, A.; Islam, M. S. Nat. Commun. 2015, 6, 7497. doi: 10.1038/ncomms8497
doi: 10.1038/ncomms8497
Buin, A.; Pietsch, P.; Xu, J.; Voznyy, O.; Ip, A. H.; Comin, R.; Sargent, E. H. Nano Lett. 2014, 14, 6281. doi: 10.1021/nl502612m
doi: 10.1021/nl502612m
Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; et al. Nat. Commun. 2015, 6, 7081. doi: 10.1038/ncomms8081
doi: 10.1038/ncomms8081
Buin, A.; Comin, R.; Xu, J.; Ip, A. H.; Sargent, E. H. Chem. Mater. 2015, 27, 4405. doi: 10.1038/ncomms8081
doi: 10.1038/ncomms8081
Steirer, K. X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J. J. ACS Energy Lett. 2016, 1, 360. doi: 10.1021/acsenergylett.6b00196
doi: 10.1021/acsenergylett.6b00196
Domanski, K.; Correa-Baena, J. P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. ACS Nano 2016, 10, 6306. doi: 10.1021/acsnano.6b02613
doi: 10.1021/acsnano.6b02613
Wu, X.; Trinh, M. T.; Niesner, D.; Zhu, H.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. J. Am. Chem. Soc. 2015, 137, 2089. doi: 10.1021/ja512833n
doi: 10.1021/ja512833n
Long, R.; Liu, J.; Prezhdo, O. V. J. Am. Chem. Soc. 2016, 138, 3884. doi: 10.1021/jacs.6b00645
doi: 10.1021/jacs.6b00645
Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Energy Environ. Sci. 2015, 8, 995. doi: 10.1039/c4ee03664f
doi: 10.1039/c4ee03664f
Chen, B.; Yang, M.; Priya, S.; Zhu, K. J. Phys. Chem. Lett. 2016, 7, 905. doi: 10.1021/acs.jpclett.6b00215
doi: 10.1021/acs.jpclett.6b00215
Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; Angelis, F. D. Energy Environ. Sci. 2015, 8, 2118. doi: 10.1039/c5ee01265a
doi: 10.1039/c5ee01265a
Yuan, Y.; Huang, J. Acc. Chem. Res. 2016, 49, 286. doi: 10.1021/acs.accounts.5b00420
doi: 10.1021/acs.accounts.5b00420
Stranks, S. D. ACS Energy Lett. 2017, 2, 1515. doi: 10.17863/CAM.12818
doi: 10.17863/CAM.12818
Du; M. H. J. Mater. Chem. A 2014, 2, 9091. doi: 10.1039/c4ta01198h
doi: 10.1039/c4ta01198h
Brandt, R. E.; Stevanovic, V.; Ginley, D. S.; Buonassisi, T. Mrs Commun. 2015, 5, 265. doi: 10.1557/mrc.2015.26
doi: 10.1557/mrc.2015.26
Walsh, A.; Zunger, A. Nat. Mater. 2017, 16, 964. doi: 10.1038/nmat4973
doi: 10.1038/nmat4973
Chu, W.; Zheng, Q.; Prezhdo, O. V.; Zhao, J.; Saidi, W. A. Sci. Adv. 2020, 6, eaaw7453. doi: 10.1126/sciadv.aaw7453
doi: 10.1126/sciadv.aaw7453
Kim, S.; Walsh, A. Comment on "Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination", arXiv: 2003.05394vl[cond-mat.mtrl-sci] 11 Mar 2020.
Miyata, K.; Meggiolaro, D.; Trinh, M. T.; Joshi, P. P.; Mosconi, E.; Jones, S. C.; Angelis, F. D.; Zhu, X. Y. Sci. Adv. 2017, 3, e1701217. doi: 10.1126/sciadv.1701217
doi: 10.1126/sciadv.1701217
Neukirch, A. J.; Nie, W.; Blancon, J. C.; Appavoo, K.; Tsai, H.; Sfeir, M. Y.; Katan, C.; Pedesseau, L.; Even, J.; Crochet, J. J.; et al. Nano Lett. 2016, 16, 3809. doi: 10.1021/acs.nanolett.6b01218
doi: 10.1021/acs.nanolett.6b01218
Ambrosio, F.; Wiktor, J.; Angelis, F. D.; Pasquarello, A. Energy Environ. Sci. 2018, 11, 101. doi: 10.1039/c7ee01981e
doi: 10.1039/c7ee01981e
Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nature Photon. 2014, 8, 506. doi: 10.1038/nphoton.2014.134
doi: 10.1038/nphoton.2014.134
Wang, R.; Xue, J. J.; Wang, K. L.; Wang, Z. K.; Luo, Y. Q.; Fenning, D.; Xu, G. W.; Nuryyeva, S.; Huang, T. Y.; Zhao, Y. P.; et al. Science 2019, 366, 1509. doi: 10.1126/science.aay9698
doi: 10.1126/science.aay9698
Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J. Chem. Soc. Rev. 2019, 48, 3842. doi: 10.1039/C8CS00853A
doi: 10.1039/C8CS00853A
Wu, W. Q.; Yang, Z.; Rudd, P. N.; Shao, Y.; Dai, X.; Wei, H.; Zhao, J.; Fang, Y.; Wang, Q.; Liu, Y.; et al. Sci. Adv. 2019, 5, eaav8925. doi: 10.1126/sciadv.aav8925
doi: 10.1126/sciadv.aav8925
Guo, P.; Ye, Q.; Yang, X.; Zhang, J.; Xu, F.; Shchukin, D.; Wei, B.; Wang, H. J. Mater. Chem. A 2019, 7, 2497. doi: 10.1039/C8TA11524A
doi: 10.1039/C8TA11524A
Li, J. L.; Yang, J.; Wu, T.; Wei, S. H. J. Mater. Chem. C 2019, 7, 4230. doi: 10.1039/C8TC06222F
doi: 10.1039/C8TC06222F
Klug, M. T.; Osherov, A.; Haghighirad, A. A.; Stranks, S. D.; Brown, P. R.; Bai, S.; Wang, J. T. W.; Dang, X.; Bulovic, V. Energy Environ. Sci. 2017, 10, 236. doi: 10.1039/c6ee03201j
doi: 10.1039/c6ee03201j
Ming, W.; Yang, D.; Li, T.; Zhang, L.; Du, M. H. Adv. Sci. 2017, 5, 1700662. doi: 10.1002/advs.201700662
doi: 10.1002/advs.201700662
Wang, J.; Li, W.; Yin, W. J. Adv. Mater. 2020, 32, 1906115. doi: 10.1002/adma.201906115
doi: 10.1002/adma.201906115
Wang, R.; Xue, J.; Wang, K. L.; Wang, Z. K.; Yang, Y. Science 2019, 366, 1509. doi: 10.1126/science.aay9698
doi: 10.1126/science.aay9698
Ni, Z. Y.; Bao, C. X.; Liu, Y.; Jiang, Q.; Wu, W. Q.; Chen, S. S.; Dai, X. Z.; Chen, B.; Hartweg, B.; Yu, Z. S.; Holman, Z.; Huang, J. S. Science 2020, 367, 1352. doi: 10.1126/science.aba0893
doi: 10.1126/science.aba0893
Son, D.; Kim, S.; Seo, J.; Lee, S.; Shin, H.; Lee, D.; Park, N. J. Am. Chem. Soc. 2018, 140, 1358. doi: 10.1021/jacs.7b10430
doi: 10.1021/jacs.7b10430
Lin, Y.; Chen, B.; Fang, Y.; Zhao, J.; Bao, C.; Yu, Z.; Deng, Y.; Rudd, P. N.; Yan, Y.; Yuan, Y. Nat. Commun. 2018, 9, 4981. doi: 10.1038/s41467-018-07438-w
doi: 10.1038/s41467-018-07438-w
Birkhold, S. T.; Precht, J. T.; Liu, H.; Giridharagopal, R.; Eperon, G. E.; Schmidt-Mende, L.; Li, X.; Ginger, D. S. Acs Energy Lett. 2018, 3, 1279. doi: 10.1021/acsenergylett.8b00505
doi: 10.1021/acsenergylett.8b00505
Gao, F.; Zhao, Y.; Zhang, X. W.; You, J. B. Adv. Energy Mater. 2019, 1902650. doi: 10.1002/aenm.201902650
doi: 10.1002/aenm.201902650
Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J. Nature 2018, 555, 497. doi: 10.1038/nature25989
doi: 10.1038/nature25989
Bi, C.; Zheng, X.; Chen, B.; Wei, H.; Huang, J. ACS Energy Lett. 2017, 2, 1400. doi: 10.1021/acsenergylett.7b00356
doi: 10.1021/acsenergylett.7b00356
Jung, M.; Shin, T. J.; Seo, J.; Kim, G.; Seok, S. I. Energy Environ. Sci. 2018, 11, 2188. doi: 10.1039.C8EE00995C
Fu, Y.; Wu, T.; Wang, J.; Zhai, J.; Shearer, M. J.; Zhao, Y.; Hamers, R. J.; Kan, E.; Deng, K.; Zhu, X. Y.; Jin, S. Nano Lett. 2017, 17, 4405. doi: 10.1021/acs.nanolett.7b01500
doi: 10.1021/acs.nanolett.7b01500
Son, D. Y.; Lee, J. W.; Choi, Y. J.; Jang, I. H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N. G. Nat. Energy 2016, 1, 16081. doi: 10.1080/01411599908224497
doi: 10.1080/01411599908224497
Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nat. Commun. 2014, 5, 5784. doi: 10.1038/ncomms6784
doi: 10.1038/ncomms6784
Aberle, A. G. Sol. Energy Mater. Sol. Cells 2001, 65, 239. doi: 10.1016/S0927-0248(00)00099-4
doi: 10.1016/S0927-0248(00)00099-4
Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Grätzel, M. Nat. Commun. 2017, 8, 15684. doi: 10.1038/ncomms15684
doi: 10.1038/ncomms15684
Lee, D. S.; Yun, J. S.; Kim, J.; Soufiani, A. M.; Chen, S.; Cho, Y.; Deng, X.; Seidel, J.; Lim, S.; Huang, S. ACS Energy Lett. 2018, 3, 647. doi: acsenergylett.8b00121
Wang, Z.; Lin, Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J. Nat. Energy 2017, 6, 17135. doi: 10.1038/nenergy.2017.135
doi: 10.1038/nenergy.2017.135
Lin, Y.; Bai, Y.; Fang, Y.; Chen, Z.; Yang, S.; Zheng, X.; Tang, S.; Liu, Y.; Zhao, J.; Hwang, I. J. Phys. Chem. Lett. 2018, 9, 654. doi: 10.1021/acs.jpclett.7b02679
doi: 10.1021/acs.jpclett.7b02679
Jokar, E.; Chien, C. H.; Fathi, A.; Rameez, M.; Chang, Y. H.; Diau, E. W. G. Energy Environ. Sci. 2018, 11, 2353. doi: 10.1039/C8EE00956B
doi: 10.1039/C8EE00956B
Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Nat. Photonics 2019, 13, 460. doi: 10.1038/s41566-019-0398-2
doi: 10.1038/s41566-019-0398-2
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604
doi: 10.1126/science.1228604
Li, Q.; Zhao, Y.; Fu, R.; Zhou, W.; Zhao, Y.; Liu, X.; Yu, D.; Zhao, Q. Adv. Mater. 2018, 30, 1803095. doi: 10.1002/adma.201803095
doi: 10.1002/adma.201803095
Xie, F.; Chen, C. C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L. Energy Environ. Sci. 2017, 10, 1942. doi: 10.1039/C7EE01675A
doi: 10.1039/C7EE01675A
Uribe, J. I.; Ciro, J.; Montoya, J. F.; Osorio, J.; Jaramillo, F. ACS Appl. Energy Mater. 2018, 1, 1047. doi: 10.1021/acsaem.7b00194
doi: 10.1021/acsaem.7b00194
Chen, B.; Yu, Z.; Liu, K.; Zheng, X.; Liu, Y.; Shi, J.; Spronk, D.; Rudd, P. N.; Holman, Z.; Huang, J. Joule 2019, 3, 177. doi: 10.1016/j.joule.2018.10.003
doi: 10.1016/j.joule.2018.10.003
Chen, Q.; Zhou, H.; Fang, Y.; Stieg, A. Z.; Song, T. B.; Wang, H. H.; Xu, X.; Liu, Y.; Lu, S.; You, J. Nat. Commun. 2015, 6, 7269. doi: 10.1038/ncomms8269
doi: 10.1038/ncomms8269
Nan, G. J.; Zhang, X.; Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Stranks, S. D.; Lu, G.; D. Beljonne. Adv. Energy Mater. 2018, 8, 1702754. doi: 10.1002/aenm.201702754
doi: 10.1002/aenm.201702754
Li, N.; Tao, S.; Chen, Y.; Niu, X.; Zhou, H. Nat. Energy 2019, 4, 408. doi: 10.1038/s41560-019-0382-6
doi: 10.1038/s41560-019-0382-6
Li, X.; Chen, C. C.; Cai, M.; Hua, X.; Xie, F.; Liu, X.; Hua, J.; Long, Y. T.; Tian, H.; Han, L. Adv. Energy Mater. 2018, 8, 1800715.1. doi: 10.1002/aenm.201800715
doi: 10.1002/aenm.201800715
Yang, S.; Dai J.; Yu, Z. H.; Shao, Y. C.; Xun, Z. J. Am. Chem. Soc. 2019, 141, 5781. doi: 10.1021/jacs.8b13091
doi: 10.1021/jacs.8b13091
Yin, W. J.; Wu, Y.; Wei, S. H.; Noufi, R.; Yan, Y. Adv. Energy Mater. 2014, 4, 1. doi: 10.1002/aenm.201300712
doi: 10.1002/aenm.201300712
Ke, W.; Xiao, C.; Wang, C.; Saparov, B.; Duan, H. S.; Zhao, D.; Xiao, Z.; Schulz, P.; Harvey, S. P.; Liao, W.; et al. Adv. Mater. 2016, 28, 5214. doi: 10.1002/adma.201600594
doi: 10.1002/adma.201600594
Xu, J.; Buin, A.; H. Ip, A.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; et al. Nat. Commun. 2015, 6, 7081. doi: 10.1038/ncomms8081
doi: 10.1038/ncomms8081
Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano 2014, 8, 9815. doi: 10.1021/nn5036
doi: 10.1021/nn5036
Huang, Y.; Sun, Q. D.; Xu, W.; He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.
doi: 10.3866/PKU.WHXB201705042
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Songtao Cai , Liuying Wu , Yuan Li , Soham Samanta , Jinying Wang , Bing Liu , Feihu Wu , Kaitao Lai , Yingchao Liu , Junle Qu , Zhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599