Citation: Yin Yuan, Guo Zhendong, Chen Gaoyuan, Zhang Huifeng, Yin Wan-Jian. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200804. doi: 10.3866/PKU.WHXB202008048 shu

Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells



  • Author Bio: Yuan Yin received her BS (2011) and PhD degrees in department of applied physics from Baoji University of Arts and Sciences and Xi'an Jiaotong University. She now works at College of Physics and Optoelectronic Technology in Baoji University of Arts and Sciences. Her research focuses on computational study of solar energy materials and defect physics in semiconductors



    Wan-Jian Yin is a professor in Soochow Institute for Energy and Materials InnovationS (SIEMIS) in Soochow University, China. He received his BS (2004) and PhD (2009) from Fudan University, China. He worked at the National Renewable Energy Laboratory (NREL) and University of Toledo, USA from 2009 to 2015. His research interests include computational study of solar energy materials, defect physics in semiconductors and machine-learning on material design
  • Corresponding author: Yin Yuan, yinyuan8008@126.com Yin Wan-Jian, wjyin@suda.edu.cn
  • Received Date: 17 August 2020
    Revised Date: 7 September 2020
    Accepted Date: 9 September 2020
    Available Online: 14 September 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (11674237, 11974257, 51602211), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China (20180507)the National Natural Science Foundation of China 51602211the National Natural Science Foundation of China 11674237the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China 20180507the National Natural Science Foundation of China 11974257

  • In less than a decade, metal halide perovskites (MHPs) have been demonstrated as promising solar cell materials because the photoelectric conversion efficiency (PCE) of the representative material CH3NH3PbI3 rapidly increased from 3.8% in 2009 to 25.2% in 2009. However, defects play crucial roles in the rapid development of perovskite solar cells (PSCs) because they can influence the photovoltaic parameters of PSCs, such as the open circuit voltage, short-circuit current density, fill factor, and PCE. Among a series of superior optoelectronic properties, defect tolerance, i.e., the dominate defects are shallow and do not act as strong nonradiative recombination centers, is considered to be a unique property of MHPs, which is responsible for its surprisingly high PCE. Currently, the growth of PCE has gradually slowed, which is due to low concentrations of deep detrimental defects that can influence the performances of PSCs. To further improve the PCE and stability of PSCs, it is necessary to eliminate the impact of these minor detrimental defects in perovskites, including point defects, grain boundaries (GBs), surfaces, and interfaces, because nonradiative recombination centers seriously affect device performance, such as carrier generation and transport. Owing to its defect tolerance, most intrinsic point defects, such as VI and VMA, form shallow level traps in CH3NH3PbI3. The structural and electronic characteristics of the charged point defect VI- are similar to those of the unknown donor center in a tetrahedral semiconductor. It is a harmful defect caused by a large atomic displacement and can be passivated to strengthen chemical bonds and prevent atom migration by the addition of Br atoms. Owing to the ionic nature of MHPs and high ion migration speed, there are a large number of deep detrimental defects that can migrate to the interfaces under an electric field and influence the performance of PSCs. In addition, the ionic nature of MHPs results in surface/interface dangling bonds terminated with cations or anions; thus, deep defects can be passivated through Coulomb interactions between charged ions and passivators. Hence, the de-active deep-level traps resulting from charged defects can be passivated via coordinate bonding or ionic bonding. Usually, surface-terminated anions or cations can be passivated by corresponding cations or anions through ionic bonding, and Lewis acids or bases can be passivated through coordinated bonding. In this review, we not only briefly summarize recent research progress in defect tolerance, including the soft phonon mode and polaron effect, but also strategies for defect passivation, including ionic bonding with cations or anions and coordinated bonding with Lewis acids or bases.
  • 加载中
    1. [1]

      Weber, D. Z. Naturforsch. B 1978, 33b, 1443. doi: 10.1515/znb-1978-0809  doi: 10.1515/znb-1978-0809

    2. [2]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    3. [3]

      www.nrel.gov/pv/assets/pdfs/. (accessed 2019

    4. [4]

      Li, X.; Bi, D.; Yi, C.; Decoppet, J. D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Science 2016, 353, 58. doi: 10.1126/science.aaf8060  doi: 10.1126/science.aaf8060

    5. [5]

      Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 2015, 347, 967. doi: 10.1126/science.aaa5760  doi: 10.1126/science.aaa5760

    6. [6]

      Kulkarni, A.; Jena, A. K.; Chen, H. W.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Solar Energy 2019, 136, 379. doi: 10.1016/j.solener.2016.07.019  doi: 10.1016/j.solener.2016.07.019

    7. [7]

      Lim, J.; Hörantner, M. T.; Sakai, N.; Ball, J. M.; Mahesh, S.; Noel, N. K.; Lin, Y. H.; McMeekin, D. P.; Johnston, M. B.; Wenger, B.; Snaith, H. J. Energy Environ. Sci. 2019, 12, 169. doi: 10.1039/c8ee03395a  doi: 10.1039/c8ee03395a

    8. [8]

      Herz, L. M. ACS Energy Lett. 2017, 2, 1539. doi: 10.1021/acsenergylett.7b00276  doi: 10.1021/acsenergylett.7b00276

    9. [9]

      Wang, T.; Daiber, B.; Frost, J. M.; Mann, S. A.; Garnett, E. C.; Walsh, A.; Ehrler, B. Energy Environ. Sci. 2017, 10, 509. doi: 10.1039/C6EE03474H  doi: 10.1039/C6EE03474H

    10. [10]

      Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Hagfeldt, A. Sci. Adv. 2016, 2, e1501170. doi: 10.1126/sciadv.1501170  doi: 10.1126/sciadv.1501170

    11. [11]

      Yin, W. J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903. doi: 10.1063/1.4864778  doi: 10.1063/1.4864778

    12. [12]

      Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M.; Berry, J. J.; van Hest, M. F. A. M.; Zhu, K. Nat. Rev. Mater. 2018, 3, 18017. doi: 10.1038/natrevmats.2018.17  doi: 10.1038/natrevmats.2018.17

    13. [13]

      Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Science 2018, 361, eaat8235. doi: 10.1126/science.aat8235  doi: 10.1126/science.aat8235

    14. [14]

      Li, Z.; Zhao, Y.; Xi, W.; Sun, Y.; Zhao, Z.; Li, Y.; Zhou, H.; Qi, C. Joule 2018, 2, 1559. doi: 10.1016/j.joule.2018.05.001  doi: 10.1016/j.joule.2018.05.001

    15. [15]

      Seok, S. I.; Grätzel, M.; Park, N. G. Small 2018, 14, 1704177. doi: 10.1002/smll.201704177  doi: 10.1002/smll.201704177

    16. [16]

      Pazos Outón, L. M.; Xiao, T. P.; Yablonovitch, E. J. Phys. Chem. Lett. 2018, 9, 1703. doi: 10.1021/acs.jpclett.7b03054  doi: 10.1021/acs.jpclett.7b03054

    17. [17]

      Albrecht, S.; Michael, S.; Correa, B. J. P.; Felix, L.; Lukas, K.; Mathias, M.; Ludmilla, S.; Antonio, A.; Jorg, R.; Lars, K.; et al. Energy Environ. Sci. 2016, 9, 81. doi: 10.1039/c5ee02965a  doi: 10.1039/c5ee02965a

    18. [18]

      Jérémie, W.; Arnaud, W.; Esteban, R.; Soo-Jin, M.; Davide, S.; Michael, R.; Robby, P.; Rolf, B.; Xavier, N.; De, W. S.; et al. Appl. Phys. Lett. 2016, 109, 233902. doi: 10.1063/1.4971361  doi: 10.1063/1.4971361

    19. [19]

      Sahli, F.; Werner, J.; Kamino, B. A.; Braeuninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Leon, J. J. D.; Sacchetto, D. Nat. Mater. 2018, 17, 820. doi: 10.1038/s41563-018-0115-4  doi: 10.1038/s41563-018-0115-4

    20. [20]

      Tress, W.; Marinova, N.; Inganas, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M. Adv. Energy Mater. 2015, 5, 1400812. doi: 10.1002/aenm.201400812  doi: 10.1002/aenm.201400812

    21. [21]

      Agiorgousis, M. L.; Sun, Y. Y.; Zeng, H.; Zhang, S. J. Am. Chem. Soc. 2014, 136, 14570. doi: 10.1021/ja5079305  doi: 10.1021/ja5079305

    22. [22]

      Kim, J.; Lee, S. H.; Lee, J. H.; Hong, K. H. J. Phys. Chem. Lett. 2014, 5, 1312. doi: 10.1021/jz500370k  doi: 10.1021/jz500370k

    23. [23]

      Agiorgousis, M. L.; Sun, Y.; Zeng, H.; Zhang, S. J. Am. Chem. Soc. 2014, 136, 14570. doi: 10.1021/ja5079305  doi: 10.1021/ja5079305

    24. [24]

      Walsh, A.; Scanlon, D. O.; Chen, S.; Gong, X. G.; Wei, S. H. Angew. Chem. Int. Ed. 2015, 54, 1791. doi: 10.1002/anie.201409740  doi: 10.1002/anie.201409740

    25. [25]

      Eames, C.; Frost, J. M.; Barnes, P. R. F.; Regan, B. C. O.; Walsh, A.; Islam, M. S. Nat. Commun. 2015, 6, 7497. doi: 10.1038/ncomms8497  doi: 10.1038/ncomms8497

    26. [26]

      Buin, A.; Pietsch, P.; Xu, J.; Voznyy, O.; Ip, A. H.; Comin, R.; Sargent, E. H. Nano Lett. 2014, 14, 6281. doi: 10.1021/nl502612m  doi: 10.1021/nl502612m

    27. [27]

      Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; et al. Nat. Commun. 2015, 6, 7081. doi: 10.1038/ncomms8081  doi: 10.1038/ncomms8081

    28. [28]

      Buin, A.; Comin, R.; Xu, J.; Ip, A. H.; Sargent, E. H. Chem. Mater. 2015, 27, 4405. doi: 10.1038/ncomms8081  doi: 10.1038/ncomms8081

    29. [29]

      Steirer, K. X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J. J. ACS Energy Lett. 2016, 1, 360. doi: 10.1021/acsenergylett.6b00196  doi: 10.1021/acsenergylett.6b00196

    30. [30]

      Domanski, K.; Correa-Baena, J. P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. ACS Nano 2016, 10, 6306. doi: 10.1021/acsnano.6b02613  doi: 10.1021/acsnano.6b02613

    31. [31]

      Wu, X.; Trinh, M. T.; Niesner, D.; Zhu, H.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. J. Am. Chem. Soc. 2015, 137, 2089. doi: 10.1021/ja512833n  doi: 10.1021/ja512833n

    32. [32]

      Long, R.; Liu, J.; Prezhdo, O. V. J. Am. Chem. Soc. 2016, 138, 3884. doi: 10.1021/jacs.6b00645  doi: 10.1021/jacs.6b00645

    33. [33]

      Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Energy Environ. Sci. 2015, 8, 995. doi: 10.1039/c4ee03664f  doi: 10.1039/c4ee03664f

    34. [34]

      Chen, B.; Yang, M.; Priya, S.; Zhu, K. J. Phys. Chem. Lett. 2016, 7, 905. doi: 10.1021/acs.jpclett.6b00215  doi: 10.1021/acs.jpclett.6b00215

    35. [35]

      Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; Angelis, F. D. Energy Environ. Sci. 2015, 8, 2118. doi: 10.1039/c5ee01265a  doi: 10.1039/c5ee01265a

    36. [36]

      Yuan, Y.; Huang, J. Acc. Chem. Res. 2016, 49, 286. doi: 10.1021/acs.accounts.5b00420  doi: 10.1021/acs.accounts.5b00420

    37. [37]

      Stranks, S. D. ACS Energy Lett. 2017, 2, 1515. doi: 10.17863/CAM.12818  doi: 10.17863/CAM.12818

    38. [38]

      Du; M. H. J. Mater. Chem. A 2014, 2, 9091. doi: 10.1039/c4ta01198h  doi: 10.1039/c4ta01198h

    39. [39]

      Brandt, R. E.; Stevanovic, V.; Ginley, D. S.; Buonassisi, T. Mrs Commun. 2015, 5, 265. doi: 10.1557/mrc.2015.26  doi: 10.1557/mrc.2015.26

    40. [40]

      Walsh, A.; Zunger, A. Nat. Mater. 2017, 16, 964. doi: 10.1038/nmat4973  doi: 10.1038/nmat4973

    41. [41]

      Chu, W.; Zheng, Q.; Prezhdo, O. V.; Zhao, J.; Saidi, W. A. Sci. Adv. 2020, 6, eaaw7453. doi: 10.1126/sciadv.aaw7453  doi: 10.1126/sciadv.aaw7453

    42. [42]

      Kim, S.; Walsh, A. Comment on "Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination", arXiv: 2003.05394vl[cond-mat.mtrl-sci] 11 Mar 2020.

    43. [43]

      Miyata, K.; Meggiolaro, D.; Trinh, M. T.; Joshi, P. P.; Mosconi, E.; Jones, S. C.; Angelis, F. D.; Zhu, X. Y. Sci. Adv. 2017, 3, e1701217. doi: 10.1126/sciadv.1701217  doi: 10.1126/sciadv.1701217

    44. [44]

      Neukirch, A. J.; Nie, W.; Blancon, J. C.; Appavoo, K.; Tsai, H.; Sfeir, M. Y.; Katan, C.; Pedesseau, L.; Even, J.; Crochet, J. J.; et al. Nano Lett. 2016, 16, 3809. doi: 10.1021/acs.nanolett.6b01218  doi: 10.1021/acs.nanolett.6b01218

    45. [45]

      Ambrosio, F.; Wiktor, J.; Angelis, F. D.; Pasquarello, A. Energy Environ. Sci. 2018, 11, 101. doi: 10.1039/c7ee01981e  doi: 10.1039/c7ee01981e

    46. [46]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nature Photon. 2014, 8, 506. doi: 10.1038/nphoton.2014.134  doi: 10.1038/nphoton.2014.134

    47. [47]

      Wang, R.; Xue, J. J.; Wang, K. L.; Wang, Z. K.; Luo, Y. Q.; Fenning, D.; Xu, G. W.; Nuryyeva, S.; Huang, T. Y.; Zhao, Y. P.; et al. Science 2019, 366, 1509. doi: 10.1126/science.aay9698  doi: 10.1126/science.aay9698

    48. [48]

      Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J. Chem. Soc. Rev. 2019, 48, 3842. doi: 10.1039/C8CS00853A  doi: 10.1039/C8CS00853A

    49. [49]

      Wu, W. Q.; Yang, Z.; Rudd, P. N.; Shao, Y.; Dai, X.; Wei, H.; Zhao, J.; Fang, Y.; Wang, Q.; Liu, Y.; et al. Sci. Adv. 2019, 5, eaav8925. doi: 10.1126/sciadv.aav8925  doi: 10.1126/sciadv.aav8925

    50. [50]

      Guo, P.; Ye, Q.; Yang, X.; Zhang, J.; Xu, F.; Shchukin, D.; Wei, B.; Wang, H. J. Mater. Chem. A 2019, 7, 2497. doi: 10.1039/C8TA11524A  doi: 10.1039/C8TA11524A

    51. [51]

      Li, J. L.; Yang, J.; Wu, T.; Wei, S. H. J. Mater. Chem. C 2019, 7, 4230. doi: 10.1039/C8TC06222F  doi: 10.1039/C8TC06222F

    52. [52]

      Klug, M. T.; Osherov, A.; Haghighirad, A. A.; Stranks, S. D.; Brown, P. R.; Bai, S.; Wang, J. T. W.; Dang, X.; Bulovic, V. Energy Environ. Sci. 2017, 10, 236. doi: 10.1039/c6ee03201j  doi: 10.1039/c6ee03201j

    53. [53]

      Ming, W.; Yang, D.; Li, T.; Zhang, L.; Du, M. H. Adv. Sci. 2017, 5, 1700662. doi: 10.1002/advs.201700662  doi: 10.1002/advs.201700662

    54. [54]

      Wang, J.; Li, W.; Yin, W. J. Adv. Mater. 2020, 32, 1906115. doi: 10.1002/adma.201906115  doi: 10.1002/adma.201906115

    55. [55]

      Wang, R.; Xue, J.; Wang, K. L.; Wang, Z. K.; Yang, Y. Science 2019, 366, 1509. doi: 10.1126/science.aay9698  doi: 10.1126/science.aay9698

    56. [56]

      Ni, Z. Y.; Bao, C. X.; Liu, Y.; Jiang, Q.; Wu, W. Q.; Chen, S. S.; Dai, X. Z.; Chen, B.; Hartweg, B.; Yu, Z. S.; Holman, Z.; Huang, J. S. Science 2020, 367, 1352. doi: 10.1126/science.aba0893  doi: 10.1126/science.aba0893

    57. [57]

      Son, D.; Kim, S.; Seo, J.; Lee, S.; Shin, H.; Lee, D.; Park, N. J. Am. Chem. Soc. 2018, 140, 1358. doi: 10.1021/jacs.7b10430  doi: 10.1021/jacs.7b10430

    58. [58]

      Lin, Y.; Chen, B.; Fang, Y.; Zhao, J.; Bao, C.; Yu, Z.; Deng, Y.; Rudd, P. N.; Yan, Y.; Yuan, Y. Nat. Commun. 2018, 9, 4981. doi: 10.1038/s41467-018-07438-w  doi: 10.1038/s41467-018-07438-w

    59. [59]

      Birkhold, S. T.; Precht, J. T.; Liu, H.; Giridharagopal, R.; Eperon, G. E.; Schmidt-Mende, L.; Li, X.; Ginger, D. S. Acs Energy Lett. 2018, 3, 1279. doi: 10.1021/acsenergylett.8b00505  doi: 10.1021/acsenergylett.8b00505

    60. [60]

      Gao, F.; Zhao, Y.; Zhang, X. W.; You, J. B. Adv. Energy Mater. 2019, 1902650. doi: 10.1002/aenm.201902650  doi: 10.1002/aenm.201902650

    61. [61]

      Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J. Nature 2018, 555, 497. doi: 10.1038/nature25989  doi: 10.1038/nature25989

    62. [62]

      Bi, C.; Zheng, X.; Chen, B.; Wei, H.; Huang, J. ACS Energy Lett. 2017, 2, 1400. doi: 10.1021/acsenergylett.7b00356  doi: 10.1021/acsenergylett.7b00356

    63. [63]

      Jung, M.; Shin, T. J.; Seo, J.; Kim, G.; Seok, S. I. Energy Environ. Sci. 2018, 11, 2188. doi: 10.1039.C8EE00995C

    64. [64]

      Fu, Y.; Wu, T.; Wang, J.; Zhai, J.; Shearer, M. J.; Zhao, Y.; Hamers, R. J.; Kan, E.; Deng, K.; Zhu, X. Y.; Jin, S. Nano Lett. 2017, 17, 4405. doi: 10.1021/acs.nanolett.7b01500  doi: 10.1021/acs.nanolett.7b01500

    65. [65]

      Son, D. Y.; Lee, J. W.; Choi, Y. J.; Jang, I. H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N. G. Nat. Energy 2016, 1, 16081. doi: 10.1080/01411599908224497  doi: 10.1080/01411599908224497

    66. [66]

      Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nat. Commun. 2014, 5, 5784. doi: 10.1038/ncomms6784  doi: 10.1038/ncomms6784

    67. [67]

      Aberle, A. G. Sol. Energy Mater. Sol. Cells 2001, 65, 239. doi: 10.1016/S0927-0248(00)00099-4  doi: 10.1016/S0927-0248(00)00099-4

    68. [68]

      Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Grätzel, M. Nat. Commun. 2017, 8, 15684. doi: 10.1038/ncomms15684  doi: 10.1038/ncomms15684

    69. [69]

      Lee, D. S.; Yun, J. S.; Kim, J.; Soufiani, A. M.; Chen, S.; Cho, Y.; Deng, X.; Seidel, J.; Lim, S.; Huang, S. ACS Energy Lett. 2018, 3, 647. doi: acsenergylett.8b00121

    70. [70]

      Wang, Z.; Lin, Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J. Nat. Energy 2017, 6, 17135. doi: 10.1038/nenergy.2017.135  doi: 10.1038/nenergy.2017.135

    71. [71]

      Lin, Y.; Bai, Y.; Fang, Y.; Chen, Z.; Yang, S.; Zheng, X.; Tang, S.; Liu, Y.; Zhao, J.; Hwang, I. J. Phys. Chem. Lett. 2018, 9, 654. doi: 10.1021/acs.jpclett.7b02679  doi: 10.1021/acs.jpclett.7b02679

    72. [72]

      Jokar, E.; Chien, C. H.; Fathi, A.; Rameez, M.; Chang, Y. H.; Diau, E. W. G. Energy Environ. Sci. 2018, 11, 2353. doi: 10.1039/C8EE00956B  doi: 10.1039/C8EE00956B

    73. [73]

      Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Nat. Photonics 2019, 13, 460. doi: 10.1038/s41566-019-0398-2  doi: 10.1038/s41566-019-0398-2

    74. [74]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604  doi: 10.1126/science.1228604

    75. [75]

      Li, Q.; Zhao, Y.; Fu, R.; Zhou, W.; Zhao, Y.; Liu, X.; Yu, D.; Zhao, Q. Adv. Mater. 2018, 30, 1803095. doi: 10.1002/adma.201803095  doi: 10.1002/adma.201803095

    76. [76]

      Xie, F.; Chen, C. C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L. Energy Environ. Sci. 2017, 10, 1942. doi: 10.1039/C7EE01675A  doi: 10.1039/C7EE01675A

    77. [77]

      Uribe, J. I.; Ciro, J.; Montoya, J. F.; Osorio, J.; Jaramillo, F. ACS Appl. Energy Mater. 2018, 1, 1047. doi: 10.1021/acsaem.7b00194  doi: 10.1021/acsaem.7b00194

    78. [78]

      Chen, B.; Yu, Z.; Liu, K.; Zheng, X.; Liu, Y.; Shi, J.; Spronk, D.; Rudd, P. N.; Holman, Z.; Huang, J. Joule 2019, 3, 177. doi: 10.1016/j.joule.2018.10.003  doi: 10.1016/j.joule.2018.10.003

    79. [79]

      Chen, Q.; Zhou, H.; Fang, Y.; Stieg, A. Z.; Song, T. B.; Wang, H. H.; Xu, X.; Liu, Y.; Lu, S.; You, J. Nat. Commun. 2015, 6, 7269. doi: 10.1038/ncomms8269  doi: 10.1038/ncomms8269

    80. [80]

      Nan, G. J.; Zhang, X.; Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Stranks, S. D.; Lu, G.; D. Beljonne. Adv. Energy Mater. 2018, 8, 1702754. doi: 10.1002/aenm.201702754  doi: 10.1002/aenm.201702754

    81. [81]

      Li, N.; Tao, S.; Chen, Y.; Niu, X.; Zhou, H. Nat. Energy 2019, 4, 408. doi: 10.1038/s41560-019-0382-6  doi: 10.1038/s41560-019-0382-6

    82. [82]

      Li, X.; Chen, C. C.; Cai, M.; Hua, X.; Xie, F.; Liu, X.; Hua, J.; Long, Y. T.; Tian, H.; Han, L. Adv. Energy Mater. 2018, 8, 1800715.1. doi: 10.1002/aenm.201800715  doi: 10.1002/aenm.201800715

    83. [83]

      Yang, S.; Dai J.; Yu, Z. H.; Shao, Y. C.; Xun, Z. J. Am. Chem. Soc. 2019, 141, 5781. doi: 10.1021/jacs.8b13091  doi: 10.1021/jacs.8b13091

    84. [84]

      Yin, W. J.; Wu, Y.; Wei, S. H.; Noufi, R.; Yan, Y. Adv. Energy Mater. 2014, 4, 1. doi: 10.1002/aenm.201300712  doi: 10.1002/aenm.201300712

    85. [85]

      Ke, W.; Xiao, C.; Wang, C.; Saparov, B.; Duan, H. S.; Zhao, D.; Xiao, Z.; Schulz, P.; Harvey, S. P.; Liao, W.; et al. Adv. Mater. 2016, 28, 5214. doi: 10.1002/adma.201600594  doi: 10.1002/adma.201600594

    86. [86]

      Xu, J.; Buin, A.; H. Ip, A.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; et al. Nat. Commun. 2015, 6, 7081. doi: 10.1038/ncomms8081  doi: 10.1038/ncomms8081

    87. [87]

      Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano 2014, 8, 9815. doi: 10.1021/nn5036  doi: 10.1021/nn5036

    88. [88]

      Huang, Y.; Sun, Q. D.; Xu, W.; He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.  doi: 10.3866/PKU.WHXB201705042

  • 加载中
    1. [1]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    4. [4]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    5. [5]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    6. [6]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    8. [8]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    9. [9]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    10. [10]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    11. [11]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    12. [12]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    13. [13]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    14. [14]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    15. [15]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    16. [16]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    17. [17]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    18. [18]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    19. [19]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    20. [20]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

Metrics
  • PDF Downloads(50)
  • Abstract views(786)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return