Research Progress on High Concentration Electrolytes for Li Metal Batteries
- Corresponding author: Qian Jiangfeng, jfqian@whu.edu.cn
Citation: Wu Chen, Zhou Ying, Zhu Xiaolong, Zhan Minzhi, Yang Hanxi, Qian Jiangfeng. Research Progress on High Concentration Electrolytes for Li Metal Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200804. doi: 10.3866/PKU.WHXB202008044
Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v
doi: 10.1021/cr100290v
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115
doi: 10.1021/acs.chemrev.7b00115
Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k
doi: 10.1039/c3ee40795k
Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Mater. Today 2020, 33, 56. doi: 10.1016/j.mattod.2019.09.018
doi: 10.1016/j.mattod.2019.09.018
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/NMAT3191
doi: 10.1038/NMAT3191
Zhang, Y. T.; Liu, Z. J.; Wang, J. W.; Wang, L.; Peng, Z. Q. Acta Phys. -Chim. Sin. 2017, 33, 486.
doi: 10.3866/PKU.WHXB201611181
Zhang, X.; Wang, A.; Liu, X.; Luo, J. Acc. Chem. Res. 2019, 52, 3223. doi: 10.1021/acs.accounts.9b00437
doi: 10.1021/acs.accounts.9b00437
Cheng, X. B.; Zhang, Q. Prog. Chem. 2018, 30, 51.
doi: 10.7536/PC170704
Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513
doi: 10.1002/anie.201801513
Jie, Y.; Ren, X.; Cao, R.; Cai, W.; Jiao, S. Adv. Funct. Mater. 2020, 30, 1910777. doi: 10.1002/adfm.201910777
doi: 10.1002/adfm.201910777
Wang, C.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y.; et al. Chem. Rev. 2020, 120, 4257. doi: 10.1021/acs.chemrev.9b00427
doi: 10.1021/acs.chemrev.9b00427
Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.
doi: 10.3866/PKU.WHXB201904085
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi: 10.1002/advs.201500213
doi: 10.1002/advs.201500213
Wu, C.; Guo, F.; Zhuang, L.; Ai, X.; Zhong, F.; Yang, H.; Qian, J. ACS Energy Lett. 2020, 5, 1644. doi: 10.1021/acsenergylett.0c00804
doi: 10.1021/acsenergylett.0c00804
Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G. Adv. Sci. 2017, 4, 1600445. doi: 10.1002/advs.201600445
doi: 10.1002/advs.201600445
Guo, F.; Wu, C.; Chen, S.; Ai, X.; Zhong, F.; Yang, H.; Qian, J. ACS Mater. Lett. 2020, 2, 358. doi: 10.1021/acsmaterialslett.0c00001
doi: 10.1021/acsmaterialslett.0c00001
Li, S.; Jiang, M.; Xie, Y.; Xu, H.; Jia, J.; Li, J. Adv. Mater. 2018, 30, e1706375. doi: 10.1002/adma.201706375
doi: 10.1002/adma.201706375
Wan, G.; Guo, F.; Li, H.; Cao, Y.; Ai, X.; Qian, J.; Li, Y.; Yang, H. ACS Appl. Mater. Interfaces 2018, 10, 593. doi: 10.1021/acsami.7b14662
doi: 10.1021/acsami.7b14662
Qian, J.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y.; Zhang, J. G. Nano Energy 2015, 15, 135. doi: 10.1016/j.nanoen.2015.04.009
doi: 10.1016/j.nanoen.2015.04.009
Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4, 1. doi: 10.1038/s41560-019-0336-z
doi: 10.1038/s41560-019-0336-z
Chang, Z.; Wang, J.; Wu, Z.; Zhao, J.; Lu, S. Prog. Chem. 2018, 30, 170.
doi: 10.7536/PC180344
Yu, Z.; Zhang, J.; Liu, T.; Tang, B.; Yang, X.; Zhou, X.; Cui, G. Acta Chim. Sin. 2020, 78, 114. doi: 10.6023/a19100385
doi: 10.6023/a19100385
Alia, J. M.; Edwards, H. G. M.; Moore, J. J. Raman. Spectrosc. 1995, 26, 715. doi: 10.1002/jrs.1250260819
doi: 10.1002/jrs.1250260819
Seo, D. M.; Boyle, P. D.; Sommer, R. D.; Daubert, J. S.; Borodin, O.; Henderson, W. A. J. Phys. Chem. B 2014, 118, 13601. doi: 10.1021/jp505006x
doi: 10.1021/jp505006x
Cazzanelli, E.; Mustarelli, P.; Benevelli, F.; Appetecchi, G. B.; Croce, F. Solid State Ionics 1996, 86–88, 379. doi: 10.1016/0167-2738(96)00154-3
doi: 10.1016/0167-2738(96)00154-3
Suo, L.; Zheng, F.; Hu, Y. S.; Chen, L. Chin. Phys. B 2016, 25, 016101. doi: 10.1088/1674-1056/25/1/016101
doi: 10.1088/1674-1056/25/1/016101
Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136, 5039. doi: 10.1021/ja412807w
doi: 10.1021/ja412807w
Ugata, Y.; Tatara, R.; Ueno, K.; Dokko, K.; Watanabe, M. J. Chem. Phys. 2020, 152, 104502. doi: 10.1063/1.5145340
doi: 10.1063/1.5145340
Yoshida, K.; Tsuchiya, M.; Tachikawa, N.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2011, 115, 18384. doi: 10.1021/jp206881t
doi: 10.1021/jp206881t
Suo, L.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481. doi: 10.1038/ncomms2513
doi: 10.1038/ncomms2513
Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362
doi: 10.1038/ncomms7362
Yoshida, K.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Tsuzuki, S.; Seki, S.; Dokko, K.; Watanabe, M. J. Am. Chem. Soc. 2011, 133, 13121. doi: 10.1021/ja203983r
doi: 10.1021/ja203983r
McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Energy Environ. Sci. 2014, 7, 416. doi: 10.1039/C3EE42351D
doi: 10.1039/C3EE42351D
Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. J. Power Sources 2013, 231, 234. doi: 10.1016/j.jpowsour.2012.12.028
doi: 10.1016/j.jpowsour.2012.12.028
Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406. doi: 10.1149/2.0041514jes
doi: 10.1149/2.0041514jes
Moon, H.; Mandai, T.; Tatara, R.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Seki, S.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2015, 119, 3957. doi: 10.1021/jp5128578
doi: 10.1021/jp5128578
Fang, Z.; Ma, Q.; Liu, P.; Ma, J.; Hu, Y. S.; Zhou, Z.; Li, H.; Huang, X.; Chen, L. ACS Appl. Mater. Inter. 2017, 9, 4282. doi: 10.1021/acsami.6b03857
doi: 10.1021/acsami.6b03857
Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q. Nat. Energy 2018, 3, 739. doi: 10.1038/s41560-018-0199-8
doi: 10.1038/s41560-018-0199-8
Liu, B.; Xu, W.; Yan, P.; Sun, X.; Bowden, M. E.; Read, J.; Qian, J.; Mei, D.; Wang, C.; Zhang, J. Adv. Funct. Mater. 2016, 26, 605. doi: 10.1002/adfm.201503697
doi: 10.1002/adfm.201503697
Ren, X.; Zou, L.; Jiao, S.; Mei, D.; Engelhard, M. H.; Li, Q.; Lee, H.; Niu, C.; Adams, B. D.; Wang, C.; et al. ACS Energy Lett. 2019, 4, 896. doi: 10.1021/acsenergylett.9b00381
doi: 10.1021/acsenergylett.9b00381
Fan, X.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J.; Xu, K.; Wang, C. Chem 2018, 4, 174. doi: 10.1016/j.chempr.2017.10.017
doi: 10.1016/j.chempr.2017.10.017
Suo, L.; Xue, W.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y.; Yang, W.; Li, Y.; Li, J. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 1156. doi: 10.1073/pnas.1712895115
doi: 10.1073/pnas.1712895115
Wang, W.; Zhang, J.; Yang, Q.; Wang, S.; Wang, W.; Li, B. ACS Appl. Mater. Inter. 2020, 12, 22901. doi: 10.1021/acsami.0c03952
doi: 10.1021/acsami.0c03952
Dokko, K.; Watanabe, D.; Ugata, Y.; Thomas, M. L.; Tsuzuki, S.; Shinoda, W.; Hashimoto, K.; Ueno, K.; Umebayashi, Y.; Watanabe, M. J. Phys. Chem. B 2018, 122, 10736. doi: 10.1021/acs.jpcb.8b09439
doi: 10.1021/acs.jpcb.8b09439
Maeyoshi, Y.; Ding, D.; Kubota, M.; Ueda, H.; Abe, K.; Kanamura, K.; Abe, H. ACS Appl. Mater. Inter. 2019, 11, 25833. doi: 10.1021/acsami.9b05257
doi: 10.1021/acsami.9b05257
Togasaki, N.; Momma, T.; Osaka, T. J. Power Sources 2016, 307, 98. doi: 10.1016/j.jpowsour.2015.12.123
doi: 10.1016/j.jpowsour.2015.12.123
Liu, B.; Xu, W.; Yan, P.; Kim, S. T.; Engelhard, M. H.; Sun, X.; Mei, D.; Cho, J.; Wang, C. M.; Zhang, J. G. Adv. Energy Mater. 2017, 7, 1602605. doi: 10.1002/aenm.201602605
doi: 10.1002/aenm.201602605
Qi, X.; Yang, Y.; Jin, Q.; Yang, F.; Xie, Y.; Sang, P.; Liu, K.; Zhao, W.; Xu, X.; Fu, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 13908. doi: 10.1002/anie.202004424
doi: 10.1002/anie.202004424
Xiao, L.; Zeng, Z.; Liu, X.; Fang, Y.; Jiang, X.; Shao, Y.; Zhuang, L.; Ai, X.; Yang, H.; Cao, Y.; Liu, J. ACS Energy Lett. 2019, 4, 483. doi: 10.1021/acsenergylett.8b02527
doi: 10.1021/acsenergylett.8b02527
Sun, H.; Zhu, G.; Zhu, Y.; Lin, M. C.; Chen, H.; Li, Y. Y.; Hung, W. H.; Zhou, B.; Wang, X.; Bai, Y.; et al. Adv. Mater. 2020, 32, e2001741. doi: 10.1002/adma.202001741
doi: 10.1002/adma.202001741
Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J. W.; Ueno, K.; Seki, S.; Serizawa, N.; Watanabe, M. J. Electrochem. Soc. 2013, 160, A1304. doi: 10.1149/2.111308jes
doi: 10.1149/2.111308jes
Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, e1706102. doi: 10.1002/adma.201706102
doi: 10.1002/adma.201706102
Chen, S.; Zheng, J.; Yu, L.; Ren, X.; Engelhard, M. H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. Joule 2018, 2, 1548. doi: 10.1016/j.joule.2018.05.002
doi: 10.1016/j.joule.2018.05.002
Zheng, Y.; Soto, F. A.; Ponce, V.; Seminario, J. M.; Cao, X.; Zhang, J.; Balbuena, P. B. J. Mater. Chem. 2019, 7, 25047. doi: 10.1039/c9ta08935g
doi: 10.1039/c9ta08935g
Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Chem 2018, 4, 1877. doi: 10.1016/j.chempr.2018.05.002
doi: 10.1016/j.chempr.2018.05.002
Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S. C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2
doi: 10.1038/s41565-018-0183-2
Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; et al. Joule 2019, 3, 2550. doi: 10.1016/j.joule.2019.08.004
doi: 10.1016/j.joule.2019.08.004
Chen, L.; Fan, X.; Hu, E.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X.; Wang, C. Chem 2019, 5, 896. doi: 10.1016/j.chempr.2019.02.003
doi: 10.1016/j.chempr.2019.02.003
Lin, S.; Zhao, J. ACS Appl. Mater. Inter. 2020, 12, 8316. doi: 10.1021/acsami.9b21679
doi: 10.1021/acsami.9b21679
Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. Nat. Energy 2019, 4, 882. doi: 10.1038/s41560-019-0474-3
doi: 10.1038/s41560-019-0474-3
Ren, X.; Zou, L.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C.; Matthews, B. E.; Zhu, Z.; et al. Joule 2019, 3, 1662. doi: 10.1016/j.joule.2019.05.006
doi: 10.1016/j.joule.2019.05.006
Zheng, J.; Ji, G.; Fan, X.; Chen, J.; Li, Q.; Wang, H.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. Adv. Energy Mater. 2019, 9, 1803774. doi: 10.1002/aenm.201803774
doi: 10.1002/aenm.201803774
Yoo, D. J.; Yang, S.; Kim, K. J.; Choi, J. W. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202003663
doi: 10.1002/anie.202003663
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047