Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors
- Corresponding author: Wang Feng, wangfengchem@hust.edu.cn †These authors contributed equally to this article.
Citation: Wu Jin, Liu Jing, Xia Wu, Ren Ying-Yi, Wang Feng. Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200804. doi: 10.3866/PKU.WHXB202008043
Cowan, A. J.; Durrant, J. R. Chem. Soc. Rev. 2013, 42, 2281. doi: 10.1039/c2cs35305a
doi: 10.1039/c2cs35305a
Fresno, F.; Portela, R.; Suarezc, S.; Coronado, M. J. J. Mater. Chem. A 2014, 2, 2863. doi: 10.1039/c3ta13793g
doi: 10.1039/c3ta13793g
Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. J. Am. Chem. Soc. 2014, 136, 8839. doi: 10.1021/ja5044787
doi: 10.1021/ja5044787
Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Sci. China Mater. 2014, 57, 70. doi: 10.1007/s40843-014-0003-1
doi: 10.1007/s40843-014-0003-1
Liu, Z. Acta Phys. -Chim. Sin.2020, 36, 1912045.
doi: 10.3866/PKU.WHXB201912045
Praus, P.; Kozak, O.; Koci, K.; Panacek, A.; Dvorsky, R. J. Colloid. Interf. Sci. 2011, 360, 574. doi: 10.1016/j.jcis.2011.05.004
doi: 10.1016/j.jcis.2011.05.004
Beigi, A. A.; Fatemi, S.; Salehi, S. J. CO2 Util. 2014, 7, 23. doi: 10.1016/j.jcou.2014.06.003
doi: 10.1016/j.jcou.2014.06.003
Nie, R.; Ma, W.; Dong, Y.; Xu, Y.; Wang, J.; Wang, J.; Jing, H. ChemCatChem 2018, 10, 3342. doi: 10.1002/cctc.201800190
doi: 10.1002/cctc.201800190
Gao, Y.; Liu, S.; Zhao, Z.; Tao, H.; Sun, Z. Acta Phys. -Chim. Sin. 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061
Liu, X.; Inagaki, S.; Gong, J. Angew. Chem. Int. Ed. 2016, 55, 14924. doi: 10.1002/anie.201600395
doi: 10.1002/anie.201600395
Windle, C. D.; Perutz, R. N. Coordin. Chem. Rev. 2012, 256, 2562. doi: 10.1016/j.ccr.2012.03.010
doi: 10.1016/j.ccr.2012.03.010
Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194. doi: 10.1002/advs.201700194
doi: 10.1002/advs.201700194
Yui, T.; Tamaki, Y.; Sekizawa, K.; Ishitani, O. Top. Curr. Chem. 2011, 303, 151. doi: 10.1007/128_2011_139
doi: 10.1007/128_2011_139
Maeda, K. Adv. Mater. 2019, 31, 1808205. doi: 10.1002/adma.201808205
doi: 10.1002/adma.201808205
Akhundi, A.; Habibi-Yangjeh, A.; Abitorabi, M.; Pouran, S. R. Catal. Rev. 2019, 61, 595. doi: 10.1080/01614940.2019.1654224
doi: 10.1080/01614940.2019.1654224
Zhu, C. -Y.; Huang, Y. -C.; Hu, J. -C.; Wang, F. J. Photochem. Photobiol. A 2018, 38, 175. doi: 10.1016/j.jphotochem.2017.09.056
doi: 10.1016/j.jphotochem.2017.09.056
Hu, J. -C.; Gui, M. -X.; Xia, W.; Wu, J. J. Mater. Chem. A 2019, 7, 10475. doi: 10.1039/c9ta00949c
doi: 10.1039/c9ta00949c
Pan, Z. M.; Liu, M. H.; Niu, P. P.; Guo, F. S.; Fu, X. Z.; Wang, X. C. Acta Phys. -Chim. Sin. 2020, 36 (1), 1906014.
doi: 10.3866/PKU.WHXB201906014
Zhou, L.; Zhang, X. H.; Lin, L.; Li, P.; Shao, K. J.; Li, C. Z.; He, T. Acta Phys.-Chim. Sin. 2017, 33 (9), 1884.
doi: 10.3866/PKU.WHXB201705084
Hu, J. -C.; Sun, S.; Li, M. -D.; Xia, W.; Wu, J.; Liu, H.; Wang, F. Chem. Commun. 2019, 55, 14490. doi: 10.1039/c9cc08512b
doi: 10.1039/c9cc08512b
Xu, C.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Chem. Soc. Rev. 2019, 48, 3868. doi: 10.1039/c9cs00102f
doi: 10.1039/c9cs00102f
Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. Adv. Energy Mater. 2015, 5, 1500010. doi: 10.1002/aenm.201500010
doi: 10.1002/aenm.201500010
Li, X. -B.; Tung, C. -H.; Wu, L. -Z. Angew. Chem. Int. Ed. 2019, 58, 10804. doi: 10.1002/anie.201901267
doi: 10.1002/anie.201901267
Yuan, Y.-J.; Chen, A.; Yu, Z. -T.; Zou, Z. -G. J. Mater. Chem. A 2018, 6, 11606. doi: 10.1039/c8ta00671g
doi: 10.1039/c8ta00671g
Fujiwara, H.; Hosokawa, H.; Murakoshi, K.; Wada, Y.; Yanagida, S. J. Phys. Chem. B1997, 101, 8270. doi: 10.1021/jp971621q
doi: 10.1021/jp971621q
Liu, B. -J.; Torimoto, T.; Yoneyama, H. J. Photochem. Photobiol. A 1998, 113, 93. doi: 10.1016/S1010-6030(97)00318-3
doi: 10.1016/S1010-6030(97)00318-3
Yang, X.; Xin, W.; Yin, X.; Shao, X. J. Wuhan Univ. Technol. 2018, 1, 78. doi: 10.1007/s11595-018-1789-9
doi: 10.1007/s11595-018-1789-9
Kandy, M. M.; Gaikar, V. G. Mater. Res. Bull. 2018, 102, 440. doi: 10.1016/j.materresbull.2018.02.054
doi: 10.1016/j.materresbull.2018.02.054
Chai, Y.; Lu, J.; Li, L.; Li, D.; Li, M.; Liang, J. Catal. Sci. Technol. 2018, 10, 2697. doi: 10.1039/C8CY00274F
doi: 10.1039/C8CY00274F
Brus, L. J. Phys. Chem. 1986, 90, 2555. doi: 10.1021/j100403a003
doi: 10.1021/j100403a003
Wang, L. G.; Pennycook, S. J.; Pantelides, S. T. Phys. Rev. Lett. 2002, 89, 075506. doi: 10.1103/PhysRevLett.89.075506
doi: 10.1103/PhysRevLett.89.075506
Sheng, H.; Oh, M. H.; Osowiecki, W. T.; Kim, W.; Alivisatos, A. P.; Frei, H. J. Am. Chem. Soc. 2018, 140, 4363. doi: 10.1021/jacs.8b00271
doi: 10.1021/jacs.8b00271
Xia, W.; Wu, J.; Hu, J. -C.; Sun, S.; Li, M.; Liu, H.; Lan, M.; Tung, C. -H.; Wu, L. -Z.; Wang, F. ChemSusChem 2019, 12, 4617. doi: 10.1002/cssc.201901633
doi: 10.1002/cssc.201901633
Guo, Q.; Liang, F.; Li, X. -B.; Gao, Y. -J.; Huang, M. -Y.; Wang, Y.; Xia, S. -G.; Gao, X. -Y.; Gan, Q. -C.; Lin, Z. -S.; et al. Chem 2019, 5, 2605. doi: 10.1016/j.chempr.2019.06.019
doi: 10.1016/j.chempr.2019.06.019
Koci, K.; Praus, P.; Edelmannová, M.; Ambrožová, N.; Troppová, I.; Fridrichová, D.; Słowik, G.; Ryczkowski, J. J. Nanosci. Nanotechnol. 2017, 17, 4041. doi: 10.1166/jnn.2017.13093
doi: 10.1166/jnn.2017.13093
Ijaz, S.; Ehsan, M. F.; Ashiq, M. N.; Karamat, N.; He, T. Appl. Surf. Sci. 2016, 390, 550. doi: 10.1016/j.apsusc.2016.08.098
doi: 10.1016/j.apsusc.2016.08.098
Benedetti, J. E.; Bernardo, D. R.; Morais, A.; Bettini, J.; Nogueira, A. F. RSC Adv.2015, 5, 33914. doi: 10.1039/c4ra15605f
doi: 10.1039/c4ra15605f
Ijaz, S.; Ehsan, M. F.; Ashiq, M. N.; Karamt, N.; Najam-ul-Haq, M.; He, T. Mater. Des.2016, 107, 178. doi: org/10.1016/j.matdes.2016.06.031
doi: 10.1016/j.matdes.2016.06.031
Park, H.; Ou, H. -H.; Kang, U.; Choi, J.; Hoffmann, M. R. Catal. Today 2016, 266, 153. doi: 10.1016/j.cattod.2015.09.017
doi: 10.1016/j.cattod.2015.09.017
Wei, Y.; Jiao, J.; Zhao, Z.; Liu, J.; Li, J.; Jiang, G.; Wang, Y.; Duan, A. Appl. Catal. B- Environ. 2015, 179, 422. doi: 10.1016/j.apcatb.2015.05.041
doi: 10.1016/j.apcatb.2015.05.041
Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. J. Mater. Chem. A 2014, 2, 3407. doi: 10.1039/c3ta14493c
doi: 10.1039/c3ta14493c
Li, X.; Liu, H.; Luo, D.; Li, J.; Huang, Y.; Li, H.; Fang, Y.; Xu, Y.; Zhu, L. Chem. Eng.J. 2012, 180, 151. doi: 10.1016/j.cej.2011.11.029
doi: 10.1016/j.cej.2011.11.029
Wang, J.; Xia, T.; Wang, L.; Zheng, X.; Qi, Z.; Gao, C.; Zhu, J.; Li, Z.; Xu, H.; Xiong, Y. Angew. Chem. Int. Ed. 2018, 57, 16447. doi: org/10.1002/ange.201810550
doi: 10.1002/anie.201810550
Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, J. J. Phys. Chem. Lett. 2010, 1, 48. doi: 10.1021/jz9000032
doi: 10.1021/jz9000032
Peng, H.-J.; Zheng, P. -Q.; Chao, H. -Y.; Jiang, L.; Qiao, Z. -P. RSC Adv. 2020, 10, 551. doi: 10.1039/c9ra08801f
doi: 10.1039/c9ra08801f
Wang, F. ChemSusChem2017, 10, 4393. doi: 10.1002/cssc.201701385
doi: 10.1002/cssc.201701385
Chai, Z. G.; Li, Q.; Xu, D. X. RSC Adv. 2014, 4, 44991. doi: 10.1039/c4ra08848d
doi: 10.1039/c4ra08848d
Lin, J. L.; Qin, B.; Fang, Z. X. Catal. Lett. 2019, 149, 25. doi: 10.1007/s10562-018-2586-y
doi: 10.1007/s10562-018-2586-y
Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. J. Am. Chem. Soc. 2017, 139, 7217. doi: 10.1021/jacs.7b00369
doi: 10.1021/jacs.7b00369
Kuehnel, M. F.; Sahm, C. D.; Neri, G.; Lee, J. R.; Orchard, K. L.; Cowan, A. J.; Reisner, E. Chem. Sci. 2018, 9, 2501. doi: 10.1039/c7sc04429a
doi: 10.1039/c7sc04429a
Huang, J.; Gatty, M. G.; Xu, B.; Pati, P. B.; Etman, A. S.; Tian, L.; Sun, J. L.; Tian, H. N. Dalton Trans. 2018, 47, 10775. doi: 10.1039/c8dt01631c
doi: 10.1039/c8dt01631c
Suzuki, T. M.; Yoshino, S. N.; Takayama, T.; Iwase, A.; Kudo, A.; Morikawa, T. Chem. Commun. 2018, 54, 10199. doi: 10.1039/c8cc05505j
doi: 10.1039/c8cc05505j
Bao, Y. P.; Wang, J.; Wang, Q.; Cui, X. F.; Long, R.; Li, Z. Q. Nanoscale 2020, 12, 2507. doi: 10.1039/c9nr09321d
doi: 10.1039/c9nr09321d
Lian, S. C.; Kodaimati, M. S.; Dolzhnikov, D. S.; Calzada, R.; Weiss, E. A. J. Am. Chem. Soc. 2017, 139, 8931. doi: 10.1021/jacs.7b03134
doi: 10.1021/jacs.7b03134
Lian, S. C.; Kodaimati, M. S.; Weiss, E. A. ACS Nano 2018, 12, 568. doi: 10.1021/acsnano.7b07377
doi: 10.1021/acsnano.7b07377
Bi, Q. -Q.; Wang, J. -W.; Lv, J. -X.; Wang, J.; Zhang, W.; Lu, T. -B. ACS Catal. 2018, 8, 11815. doi: 10.1021/acscatal.8b03457
doi: 10.1021/acscatal.8b03457
Li, P.; Hou, C. C.; Zhang, X. H.; Chen, Y.; He, T. Appl. Surf. Sci. 2018, 459, 292. doi: 10.1016/j.apsusc.2018.08.002
doi: 10.1016/j.apsusc.2018.08.002
Li, P.; Zhang, X.; Hou, C.; Chen, Y.; He, T. Appl. Catal. B-Environ. 2018, 238, 656. doi: 10.1016/j.apcatb.2018.07.066
doi: 10.1016/j.apcatb.2018.07.066
Chen, C. J.; Wu, T. B.; Wu, H. H.; Liu, H. Z.; Qian, Q. L.; Liu, Z. M.; Yang, G. Y.; Han, B. X. Chem. Sci. 2018, 9, 8890. doi: 10.1039/c8sc02809e
doi: 10.1039/c8sc02809e
Gui, M. -X.; Wu, J.; Hu, J. -C.; Xia, W.; Liu, H.; Feng, N.; Li, W.; Wang, F. J. Photochem. Photobiol. A 2020, 401, 112742. doi: 10.1016/j.jphotochem.2020.112742
doi: 10.1016/j.jphotochem.2020.112742
Fu, J.; Yu, J.; Jiang, C.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503. doi: 10.1002/aenm.201701503
doi: 10.1002/aenm.201701503
Yin, S.; Han, J.; Zhou, T.; Xu, R. Catal. Sci. Technol. 2015, 5, 5048. doi: 10.1039/c5cy00938c
doi: 10.1039/c5cy00938c
He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. Appl. Catal. B-Environ. 2020, 269, 118828. doi: 10.1016/j.apcatb.2020.118828
doi: 10.1016/j.apcatb.2020.118828
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398