Citation: Wu Jin, Liu Jing, Xia Wu, Ren Ying-Yi, Wang Feng. Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200804. doi: 10.3866/PKU.WHXB202008043 shu

Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors

  • Corresponding author: Wang Feng, wangfengchem@hust.edu.cn
  • These authors contributed equally to this article.
  • Received Date: 16 August 2020
    Revised Date: 7 September 2020
    Accepted Date: 7 September 2020
    Available Online: 10 September 2020

    Fund Project: the Fundamental Research Funds for the Central Universities, China 2019kfyRCPY101The project was supported by the National Natural Science Foundation of China (21871102) and the Fundamental Research Funds for the Central Universities, China (2019kfyRCPY101)the National Natural Science Foundation of China 21871102

  • Carbon dioxide (CO2) is one of the main greenhouse gases in the atmosphere. The conversion of CO2 into solar fuels (CO, HCOOH, CH4, CH3OH, etc.) using artificial photosynthetic systems is an ideal way to utilize CO2 as a resource and reduce CO2 emissions. A typical artificial photosynthetic system is composed of three key components: a photosensitizer (PS) to harvest visible light, a catalyst (C) to catalyze CO2 or protons into carbon-based fuels or H2, respectively, and a sacrificial electron donor (SED) to consume the holes generated in the PS. In most cases, the PS and catalyst are two different components of a system. However, some components that possess both light harvesting and redox catalysis functionalities, e.g., nano-semiconductors, are referred to as photocatalysts. During photocatalysis, the PS is typically excited by photons to generate excited electrons. The excited electrons in the PS are transferred to the catalyst to generate a reduced catalyst. The reduced catalyst is used as an active intermediate to perform CO2 binding and transformation. The PS can be recovered through a reaction with the SED. Nano-semiconductors have been used as photosensitizers and/or photocatalysts in photocatalytic CO2 reduction systems owing to their excellent photophysical and photochemical properties and photostability. CdS and CdSe nano-semiconductors, such as quantum dots, nanorods, and nanosheets, have been widely used in the construction of photocatalytic CO2 reduction systems. Systems based on CdS or CdSe nano-semiconductors can be classified into three categories. The first category is systems based on CdS or CdSe photocatalysts. In these systems, CdS or CdSe nano-semiconductors function as photocatalysts to catalyze CO2 reduction without a co-catalyst under visible-light irradiation. The CO2 reduction reaction occurs at the surface of the CdS or CdSe nano-semiconductors. The second category is systems based on CdS or CdSe composite photocatalysts. CdS or CdSe nano-semiconductors are combined with functional materials, such as reduced graphene oxide or TiO2, to prepare composite photocatalysts. These composite photocatalysts are expected to improve the lifetime of the charge separation state and inhibit the photocorrosion of the nano-semiconductors during photocatalysis. The third category is hybrid systems containing a CdS nano-semiconductor and molecular catalysts, such as nickel and cobalt complexes and iron porphyrin. In these hybrid systems, CdS functions as a photosensitizer and the CO2 reduction reaction occurs at the molecular catalyst. This review article introduces the construction of artificial photosynthetic systems and the photocatalytic mechanism of nano-semiconductors, and summarizes the representative works in the three aforementioned categories of systems. Finally, the challenges of nano-semiconductors for photocatalytic CO2 reduction are discussed.
  • 加载中
    1. [1]

      Cowan, A. J.; Durrant, J. R. Chem. Soc. Rev. 2013, 42, 2281. doi: 10.1039/c2cs35305a  doi: 10.1039/c2cs35305a

    2. [2]

      Fresno, F.; Portela, R.; Suarezc, S.; Coronado, M. J. J. Mater. Chem. A 2014, 2, 2863. doi: 10.1039/c3ta13793g  doi: 10.1039/c3ta13793g

    3. [3]

      Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. J. Am. Chem. Soc. 2014, 136, 8839. doi: 10.1021/ja5044787  doi: 10.1021/ja5044787

    4. [4]

      Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Sci. China Mater. 2014, 57, 70. doi: 10.1007/s40843-014-0003-1  doi: 10.1007/s40843-014-0003-1

    5. [5]

      Liu, Z. Acta Phys. -Chim. Sin.2020, 36, 1912045.  doi: 10.3866/PKU.WHXB201912045

    6. [6]

      Praus, P.; Kozak, O.; Koci, K.; Panacek, A.; Dvorsky, R. J. Colloid. Interf. Sci. 2011, 360, 574. doi: 10.1016/j.jcis.2011.05.004  doi: 10.1016/j.jcis.2011.05.004

    7. [7]

      Beigi, A. A.; Fatemi, S.; Salehi, S. J. CO2 Util. 2014, 7, 23. doi: 10.1016/j.jcou.2014.06.003  doi: 10.1016/j.jcou.2014.06.003

    8. [8]

      Nie, R.; Ma, W.; Dong, Y.; Xu, Y.; Wang, J.; Wang, J.; Jing, H. ChemCatChem 2018, 10, 3342. doi: 10.1002/cctc.201800190  doi: 10.1002/cctc.201800190

    9. [9]

      Gao, Y.; Liu, S.; Zhao, Z.; Tao, H.; Sun, Z. Acta Phys. -Chim. Sin. 2018, 34, 858.  doi: 10.3866/PKU.WHXB201802061

    10. [10]

      Liu, X.; Inagaki, S.; Gong, J. Angew. Chem. Int. Ed. 2016, 55, 14924. doi: 10.1002/anie.201600395  doi: 10.1002/anie.201600395

    11. [11]

      Windle, C. D.; Perutz, R. N. Coordin. Chem. Rev. 2012, 256, 2562. doi: 10.1016/j.ccr.2012.03.010  doi: 10.1016/j.ccr.2012.03.010

    12. [12]

      Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194. doi: 10.1002/advs.201700194  doi: 10.1002/advs.201700194

    13. [13]

      Yui, T.; Tamaki, Y.; Sekizawa, K.; Ishitani, O. Top. Curr. Chem. 2011, 303, 151. doi: 10.1007/128_2011_139  doi: 10.1007/128_2011_139

    14. [14]

      Maeda, K. Adv. Mater. 2019, 31, 1808205. doi: 10.1002/adma.201808205  doi: 10.1002/adma.201808205

    15. [15]

      Akhundi, A.; Habibi-Yangjeh, A.; Abitorabi, M.; Pouran, S. R. Catal. Rev. 2019, 61, 595. doi: 10.1080/01614940.2019.1654224  doi: 10.1080/01614940.2019.1654224

    16. [16]

      Zhu, C. -Y.; Huang, Y. -C.; Hu, J. -C.; Wang, F. J. Photochem. Photobiol. A 2018, 38, 175. doi: 10.1016/j.jphotochem.2017.09.056  doi: 10.1016/j.jphotochem.2017.09.056

    17. [17]

      Hu, J. -C.; Gui, M. -X.; Xia, W.; Wu, J. J. Mater. Chem. A 2019, 7, 10475. doi: 10.1039/c9ta00949c  doi: 10.1039/c9ta00949c

    18. [18]

      Pan, Z. M.; Liu, M. H.; Niu, P. P.; Guo, F. S.; Fu, X. Z.; Wang, X. C. Acta Phys. -Chim. Sin. 2020, 36 (1), 1906014.  doi: 10.3866/PKU.WHXB201906014

    19. [19]

      Zhou, L.; Zhang, X. H.; Lin, L.; Li, P.; Shao, K. J.; Li, C. Z.; He, T. Acta Phys.-Chim. Sin. 2017, 33 (9), 1884.  doi: 10.3866/PKU.WHXB201705084

    20. [20]

      Hu, J. -C.; Sun, S.; Li, M. -D.; Xia, W.; Wu, J.; Liu, H.; Wang, F. Chem. Commun. 2019, 55, 14490. doi: 10.1039/c9cc08512b  doi: 10.1039/c9cc08512b

    21. [21]

      Xu, C.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Chem. Soc. Rev. 2019, 48, 3868. doi: 10.1039/c9cs00102f  doi: 10.1039/c9cs00102f

    22. [22]

      Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. Adv. Energy Mater. 2015, 5, 1500010. doi: 10.1002/aenm.201500010  doi: 10.1002/aenm.201500010

    23. [23]

      Li, X. -B.; Tung, C. -H.; Wu, L. -Z. Angew. Chem. Int. Ed. 2019, 58, 10804. doi: 10.1002/anie.201901267  doi: 10.1002/anie.201901267

    24. [24]

      Yuan, Y.-J.; Chen, A.; Yu, Z. -T.; Zou, Z. -G. J. Mater. Chem. A 2018, 6, 11606. doi: 10.1039/c8ta00671g  doi: 10.1039/c8ta00671g

    25. [25]

      Fujiwara, H.; Hosokawa, H.; Murakoshi, K.; Wada, Y.; Yanagida, S. J. Phys. Chem. B1997, 101, 8270. doi: 10.1021/jp971621q  doi: 10.1021/jp971621q

    26. [26]

      Liu, B. -J.; Torimoto, T.; Yoneyama, H. J. Photochem. Photobiol. A 1998, 113, 93. doi: 10.1016/S1010-6030(97)00318-3  doi: 10.1016/S1010-6030(97)00318-3

    27. [27]

      Yang, X.; Xin, W.; Yin, X.; Shao, X. J. Wuhan Univ. Technol. 2018, 1, 78. doi: 10.1007/s11595-018-1789-9  doi: 10.1007/s11595-018-1789-9

    28. [28]

      Kandy, M. M.; Gaikar, V. G. Mater. Res. Bull. 2018, 102, 440. doi: 10.1016/j.materresbull.2018.02.054  doi: 10.1016/j.materresbull.2018.02.054

    29. [29]

      Chai, Y.; Lu, J.; Li, L.; Li, D.; Li, M.; Liang, J. Catal. Sci. Technol. 2018, 10, 2697. doi: 10.1039/C8CY00274F  doi: 10.1039/C8CY00274F

    30. [30]

      Brus, L. J. Phys. Chem. 1986, 90, 2555. doi: 10.1021/j100403a003  doi: 10.1021/j100403a003

    31. [31]

      Wang, L. G.; Pennycook, S. J.; Pantelides, S. T. Phys. Rev. Lett. 2002, 89, 075506. doi: 10.1103/PhysRevLett.89.075506  doi: 10.1103/PhysRevLett.89.075506

    32. [32]

      Sheng, H.; Oh, M. H.; Osowiecki, W. T.; Kim, W.; Alivisatos, A. P.; Frei, H. J. Am. Chem. Soc. 2018, 140, 4363. doi: 10.1021/jacs.8b00271  doi: 10.1021/jacs.8b00271

    33. [33]

      Xia, W.; Wu, J.; Hu, J. -C.; Sun, S.; Li, M.; Liu, H.; Lan, M.; Tung, C. -H.; Wu, L. -Z.; Wang, F. ChemSusChem 2019, 12, 4617. doi: 10.1002/cssc.201901633  doi: 10.1002/cssc.201901633

    34. [34]

      Guo, Q.; Liang, F.; Li, X. -B.; Gao, Y. -J.; Huang, M. -Y.; Wang, Y.; Xia, S. -G.; Gao, X. -Y.; Gan, Q. -C.; Lin, Z. -S.; et al. Chem 2019, 5, 2605. doi: 10.1016/j.chempr.2019.06.019  doi: 10.1016/j.chempr.2019.06.019

    35. [35]

      Koci, K.; Praus, P.; Edelmannová, M.; Ambrožová, N.; Troppová, I.; Fridrichová, D.; Słowik, G.; Ryczkowski, J. J. Nanosci. Nanotechnol. 2017, 17, 4041. doi: 10.1166/jnn.2017.13093  doi: 10.1166/jnn.2017.13093

    36. [36]

      Ijaz, S.; Ehsan, M. F.; Ashiq, M. N.; Karamat, N.; He, T. Appl. Surf. Sci. 2016, 390, 550. doi: 10.1016/j.apsusc.2016.08.098  doi: 10.1016/j.apsusc.2016.08.098

    37. [37]

      Benedetti, J. E.; Bernardo, D. R.; Morais, A.; Bettini, J.; Nogueira, A. F. RSC Adv.2015, 5, 33914. doi: 10.1039/c4ra15605f  doi: 10.1039/c4ra15605f

    38. [38]

      Ijaz, S.; Ehsan, M. F.; Ashiq, M. N.; Karamt, N.; Najam-ul-Haq, M.; He, T. Mater. Des.2016, 107, 178. doi: org/10.1016/j.matdes.2016.06.031  doi: 10.1016/j.matdes.2016.06.031

    39. [39]

      Park, H.; Ou, H. -H.; Kang, U.; Choi, J.; Hoffmann, M. R. Catal. Today 2016, 266, 153. doi: 10.1016/j.cattod.2015.09.017  doi: 10.1016/j.cattod.2015.09.017

    40. [40]

      Wei, Y.; Jiao, J.; Zhao, Z.; Liu, J.; Li, J.; Jiang, G.; Wang, Y.; Duan, A. Appl. Catal. B- Environ. 2015, 179, 422. doi: 10.1016/j.apcatb.2015.05.041  doi: 10.1016/j.apcatb.2015.05.041

    41. [41]

      Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. J. Mater. Chem. A 2014, 2, 3407. doi: 10.1039/c3ta14493c  doi: 10.1039/c3ta14493c

    42. [42]

      Li, X.; Liu, H.; Luo, D.; Li, J.; Huang, Y.; Li, H.; Fang, Y.; Xu, Y.; Zhu, L. Chem. Eng.J. 2012, 180, 151. doi: 10.1016/j.cej.2011.11.029  doi: 10.1016/j.cej.2011.11.029

    43. [43]

      Wang, J.; Xia, T.; Wang, L.; Zheng, X.; Qi, Z.; Gao, C.; Zhu, J.; Li, Z.; Xu, H.; Xiong, Y. Angew. Chem. Int. Ed. 2018, 57, 16447. doi: org/10.1002/ange.201810550  doi: 10.1002/anie.201810550

    44. [44]

      Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, J. J. Phys. Chem. Lett. 2010, 1, 48. doi: 10.1021/jz9000032  doi: 10.1021/jz9000032

    45. [45]

      Peng, H.-J.; Zheng, P. -Q.; Chao, H. -Y.; Jiang, L.; Qiao, Z. -P. RSC Adv. 2020, 10, 551. doi: 10.1039/c9ra08801f  doi: 10.1039/c9ra08801f

    46. [46]

      Wang, F. ChemSusChem2017, 10, 4393. doi: 10.1002/cssc.201701385  doi: 10.1002/cssc.201701385

    47. [47]

      Chai, Z. G.; Li, Q.; Xu, D. X. RSC Adv. 2014, 4, 44991. doi: 10.1039/c4ra08848d  doi: 10.1039/c4ra08848d

    48. [48]

      Lin, J. L.; Qin, B.; Fang, Z. X. Catal. Lett. 2019, 149, 25. doi: 10.1007/s10562-018-2586-y  doi: 10.1007/s10562-018-2586-y

    49. [49]

      Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. J. Am. Chem. Soc. 2017, 139, 7217. doi: 10.1021/jacs.7b00369  doi: 10.1021/jacs.7b00369

    50. [50]

      Kuehnel, M. F.; Sahm, C. D.; Neri, G.; Lee, J. R.; Orchard, K. L.; Cowan, A. J.; Reisner, E. Chem. Sci. 2018, 9, 2501. doi: 10.1039/c7sc04429a  doi: 10.1039/c7sc04429a

    51. [51]

      Huang, J.; Gatty, M. G.; Xu, B.; Pati, P. B.; Etman, A. S.; Tian, L.; Sun, J. L.; Tian, H. N. Dalton Trans. 2018, 47, 10775. doi: 10.1039/c8dt01631c  doi: 10.1039/c8dt01631c

    52. [52]

      Suzuki, T. M.; Yoshino, S. N.; Takayama, T.; Iwase, A.; Kudo, A.; Morikawa, T. Chem. Commun. 2018, 54, 10199. doi: 10.1039/c8cc05505j  doi: 10.1039/c8cc05505j

    53. [53]

      Bao, Y. P.; Wang, J.; Wang, Q.; Cui, X. F.; Long, R.; Li, Z. Q. Nanoscale 2020, 12, 2507. doi: 10.1039/c9nr09321d  doi: 10.1039/c9nr09321d

    54. [54]

      Lian, S. C.; Kodaimati, M. S.; Dolzhnikov, D. S.; Calzada, R.; Weiss, E. A. J. Am. Chem. Soc. 2017, 139, 8931. doi: 10.1021/jacs.7b03134  doi: 10.1021/jacs.7b03134

    55. [55]

      Lian, S. C.; Kodaimati, M. S.; Weiss, E. A. ACS Nano 2018, 12, 568. doi: 10.1021/acsnano.7b07377  doi: 10.1021/acsnano.7b07377

    56. [56]

      Bi, Q. -Q.; Wang, J. -W.; Lv, J. -X.; Wang, J.; Zhang, W.; Lu, T. -B. ACS Catal. 2018, 8, 11815. doi: 10.1021/acscatal.8b03457  doi: 10.1021/acscatal.8b03457

    57. [57]

      Li, P.; Hou, C. C.; Zhang, X. H.; Chen, Y.; He, T. Appl. Surf. Sci. 2018, 459, 292. doi: 10.1016/j.apsusc.2018.08.002  doi: 10.1016/j.apsusc.2018.08.002

    58. [58]

      Li, P.; Zhang, X.; Hou, C.; Chen, Y.; He, T. Appl. Catal. B-Environ. 2018, 238, 656. doi: 10.1016/j.apcatb.2018.07.066  doi: 10.1016/j.apcatb.2018.07.066

    59. [59]

      Chen, C. J.; Wu, T. B.; Wu, H. H.; Liu, H. Z.; Qian, Q. L.; Liu, Z. M.; Yang, G. Y.; Han, B. X. Chem. Sci. 2018, 9, 8890. doi: 10.1039/c8sc02809e  doi: 10.1039/c8sc02809e

    60. [60]

      Gui, M. -X.; Wu, J.; Hu, J. -C.; Xia, W.; Liu, H.; Feng, N.; Li, W.; Wang, F. J. Photochem. Photobiol. A 2020, 401, 112742. doi: 10.1016/j.jphotochem.2020.112742  doi: 10.1016/j.jphotochem.2020.112742

    61. [61]

      Fu, J.; Yu, J.; Jiang, C.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503. doi: 10.1002/aenm.201701503  doi: 10.1002/aenm.201701503

    62. [62]

      Yin, S.; Han, J.; Zhou, T.; Xu, R. Catal. Sci. Technol. 2015, 5, 5048. doi: 10.1039/c5cy00938c  doi: 10.1039/c5cy00938c

    63. [63]

      He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. Appl. Catal. B-Environ. 2020, 269, 118828. doi: 10.1016/j.apcatb.2020.118828  doi: 10.1016/j.apcatb.2020.118828

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(45)
  • Abstract views(1342)
  • HTML views(370)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return