Citation: Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200803. doi: 10.3866/PKU.WHXB202008037 shu

Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property

  • A unique mixed-dimensional van der Waals heterostructure can be formed by integrating one-dimensional (1D) and two-dimensional (2D) materials. Such a 1D/2D mixed-dimensional heterostructure will not only inherit the unique properties of 2D/2D heterostructures, but also has a variety of stacking configurations, offering a new platform to adjust its structure and properties. The combination of p-type 1D single-walled carbon nanotubes (SWCNTs) and n-type 2D molybdenum disulfide (MoS2) is one such example, possessing tunable properties. In situ chemical vapor deposition (CVD) is one of the most effective methods to construct 1D SWCNT/2D MoS2 mixed-dimensional heterostructures. There are several reports of successfully grown SWCNT/MoS2 heterostructures. The reports indicate that these heterostructures exhibit strong electrical and mechanical couplings between the SWCNTs and MoS2, making it suitable for the construction of high-performance electronic and optoelectronic devices. However, there are still several problems associated with the in situ CVD growth of SWCNT/MoS2 heterostructures. First, the growth mechanism of the 1D SWCNT/2D MoS2 heterostructure is unclear. We still do not know how the existence of small-diameter SWCNTs will affect the nucleation and growth process of MoS2. It is undetermined whether MoS2 flakes will grow above the preexisting SWCNTs or under them. Second, current studies all report the growth of MoS2 on a substrate sparsely covered by SWCNTs, which have a wide chirality distribution. Since the chirality of SWCNTs determines their physical properties and the density of SWCNTs significantly affects its performance in electronic devices, both the low density and wide chirality distribution of SWCNTs reported in these studies impose negative impacts on the interface behavior of SWCNT/MoS2 heterostructures and their performance in devices. Herein, we report the preparation of high-quality 1D SWCNT/2D MoS2 heterostructures by directly growing MoS2 on dense and narrow-chirality distributed SWCNTs on a silicon substrate. To achieve this goal, high-purity semiconducting SWCNTs with narrow chirality distributions were sorted from the raw arc-discharged SWCNTs, and then high-density SWCNT arrays or networks were formed on a silicon substrate by dip-coating. Through in-depth analyses of the surface morphology and structure of the nuclei, we found that MoS2 may prefer to grow under the SWCNTs and will grow much faster in the grooves between the SWCNTs to form a growth front. Therefore, an interesting "absorption-diffusion-absorption" growth mechanism has been proposed to explain the nucleation and growth process of SWCNT/MoS2 heterostructures. In addition, we confirm the presence of strong charge coupling in the mixed-dimensional heterostructure through Raman analysis. Carriers can be quickly transferred through the interface between the SWCNTs and MoS2, paving a way for the future design and fabrication of novel electronic and optoelectronic devices based on 1D/2D heterostructures.
  • 加载中
    1. [1]

      Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nat. Rev. Mater. 2017, 2, 17033. doi: 10.1038/natrevmats.2017.33  doi: 10.1038/natrevmats.2017.33

    2. [2]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589  doi: 10.1038/nchem.1589

    3. [3]

      Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. Appl. Phys. Lett. 2011, 99, 261908. doi: 10.1063/1.3672219  doi: 10.1063/1.3672219

    4. [4]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547  doi: 10.1126/science.1235547

    5. [5]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147. doi: 10.1038/nnano.2010.279  doi: 10.1038/nnano.2010.279

    6. [6]

      Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Rakyta, P.; Burkard, G.; Fal'ko, V. I. Phys. Rev. B 2013, 88, 045416. doi: 10.1103/PhysRevB.88.045416  doi: 10.1103/PhysRevB.88.045416

    7. [7]

      Mak, K. F.; He, K.; Shan, J.; Heinz, T. F. Nat. Nanotechnol. 2012, 7, 494. doi: 10.1038/nnano.2012.96  doi: 10.1038/nnano.2012.96

    8. [8]

      Li, X.; Zhang, F.; Niu, Q. Phys. Rev. Lett. 2013, 110, 066803. doi: 10.1103/PhysRevLett.110.066803  doi: 10.1103/PhysRevLett.110.066803

    9. [9]

      Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M.; et al. Nature 2013, 497, 598. doi: 10.1038/nature12186  doi: 10.1038/nature12186

    10. [10]

      Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Nature 2018, 556, 80. doi: 10.1038/nature26154  doi: 10.1038/nature26154

    11. [11]

      Jin, C.; Regan, E. C.; Yan, A.; Utama, M. I. B.; Wang, D.; Zhao, S.; Qin, Y.; Yang, S.; Zheng, Z.; Shi, S.; et al. Nature 2019, 567, 76. doi: 10.1038/s41586-019-0976-y  doi: 10.1038/s41586-019-0976-y

    12. [12]

      White, C. T.; Todorov, T. N. Nature 1998, 393, 240. doi: 10.1038/30420  doi: 10.1038/30420

    13. [13]

      Li, L.; Guo, Y.; Sun, Y.; Yang, L.; Qin, L.; Guan, S.; Wang, J.; Qiu, X.; Li, H.; Shang, Y.; et al. Adv. Mater. 2018, 30, 1706215. doi: 10.1002/adma.201706215  doi: 10.1002/adma.201706215

    14. [14]

      Liu, C.; Hong, H.; Wang, Q.; Liu, P.; Zuo, Y.; Liang, J.; Cheng, Y.; Zhou, X.; Wang, J.; Zhao, Y.; et al. Nanoscale 2019, 11, 17195. doi: 10.1039/C9NR04791C  doi: 10.1039/C9NR04791C

    15. [15]

      Su, W.; Jin, L.; Huo, D.; Yang, L. Opt. Quant. Electron. 2017, 49, 197. doi: 10.1007/s11082-017-1034-3  doi: 10.1007/s11082-017-1034-3

    16. [16]

      Wang, R.; Wang, T.; Hong, T.; Xu, Y. -Q. Nanotechnology 2018, 29, 345205. doi: 10.1088/1361-6528/aaca69  doi: 10.1088/1361-6528/aaca69

    17. [17]

      Gu, J.; Han, J.; Liu, D.; Yu, X.; Kang, L.; Qiu, S.; Jin, H.; Li, H.; Li, Q.; Zhang, J. Small 2016, 12, 4993. doi: 10.1002/smll.201600398  doi: 10.1002/smll.201600398

    18. [18]

      Chen, Y. Y.; Sun, Y.; Zhu, Q. B.; Wang, B. W.; Yan, X.; Qiu, S.; Li, Q. W.; Hou, P. X.; Liu, C.; Sun, D. M.; et al. Adv. Sci. 2018, 5, 1700965. doi: 10.1002/advs.201700965  doi: 10.1002/advs.201700965

    19. [19]

      Gao, B.; Zhang, X.; Qiu, S.; Jin, H.; Song, Q.; Li, Q. Carbon 2019, 146, 172. doi: 10.1016/j.carbon.2019.01.095  doi: 10.1016/j.carbon.2019.01.095

    20. [20]

      Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; et al. Nature 2018, 556, 355. doi: 10.1038/s41586-018-0008-3  doi: 10.1038/s41586-018-0008-3

    21. [21]

      Yang, P.; Zou, X.; Zhang, Z.; Hong, M.; Shi, J.; Chen, S.; Shu, J.; Zhao, L.; Jiang, S.; Zhou, X.; et al. Nat. Commun. 2018, 9, 979. doi: 10.1038/s41467-018-03388-5  doi: 10.1038/s41467-018-03388-5

    22. [22]

      Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. G.; Kikkawa, J. M. Phys. Rev. Lett. 2004, 93, 037404. doi: 10.1103/PhysRevLett.93.037404  doi: 10.1103/PhysRevLett.93.037404

    23. [23]

      Fischer, J. E.; Zhou, W.; Vavro, J.; Llaguno, M. C.; Guthy, C.; Haggenmueller, R.; Casavant, M. J.; Walters, D. E.; Smalley, R. E. J. Appl. Phys. 2003, 93, 2157. doi: 10.1063/1.1536733  doi: 10.1063/1.1536733

    24. [24]

      Li, S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D. M.; Wang, J.; Zhang, Q.; et al. Nat. Mater. 2018, 17, 535. doi: 10.1038/s41563-018-0055-z  doi: 10.1038/s41563-018-0055-z

    25. [25]

      Wu, S.; Huang, C.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. ACS Nano 2013, 7, 2768. doi: 10.1021/nn4002038  doi: 10.1021/nn4002038

    26. [26]

      Zhao, J.; Buldum, A.; Han, J.; Lu, J. Nanotechnology 2002, 13, 195. doi: 10.1088/0957-4484/13/2/312  doi: 10.1088/0957-4484/13/2/312

    27. [27]

      Agnihotri, S.; Mota, J. P. B.; Rostam-Abadi, M.; Rood, M. J. Langmuir 2005, 21, 896. doi: 10.1021/la047662c  doi: 10.1021/la047662c

    28. [28]

      Xiang, R.; Inoue, T.; Zheng, Y.; Kumamoto, A.; Qian, Y.; Sato, Y.; Liu, M.; Tang, D.; Gokhale, D.; Guo, J.; et al. Science 2020, 367, 537. doi: 10.1126/science.aaz2570  doi: 10.1126/science.aaz2570

    29. [29]

      Cai, Z.; Lai, Y.; Zhao, S.; Zhang, R.; Tan, J.; Feng, S.; Zou, J.; Tang, L.; Lin, J.; Liu, B.; et al. Natl. Sci. Rev. 2021, 8, nwaa115. doi: 10.1093/nsr/nwaa115  doi: 10.1093/nsr/nwaa115

    30. [30]

      Zhang, C.; Tan, J.; Pan, Y.; Cai, X.; Zou, X.; Cheng, H. M.; Liu, B. Natl. Sci. Rev. 2020, 7, 324. doi: 10.1093/nsr/nwz156  doi: 10.1093/nsr/nwz156

    31. [31]

      Voggu, R.; Rout, C. S.; Franklin, A. D.; Fisher, T. S.; Rao, C. N. R. J. Phys. Chem. C 2008, 112, 13053. doi: 10.1021/jp805136e  doi: 10.1021/jp805136e

    32. [32]

      Chae, W. H.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Dravid, V. P. Appl. Phys. Lett. 2017, 111, 143106. doi: 10.1063/1.4998284  doi: 10.1063/1.4998284

    33. [33]

      Xing, L.; Jiao, L. Y. Acta Phys. -Chim. Sin. 2016, 32, 2133.  doi: 10.3866/PKU.WHXB201606162

    34. [34]

      Weisman, R. B.; Bachilo, S. M. Nano Lett. 2003, 3, 1235. doi: 10.1021/nl034428i  doi: 10.1021/nl034428i

    35. [35]

      Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. Lett. 2001, 86, 1118. doi: 10.1103/PhysRevLett.86.1118  doi: 10.1103/PhysRevLett.86.1118

    36. [36]

      McEuen, P. L.; Fuhrer, M. S.; Hongkun, P. IEEE Trans. Nanotechnol. 2002, 99, 78. doi: 10.1109/TNANO.2002.1005429  doi: 10.1109/TNANO.2002.1005429

    37. [37]

      Shiraishi, M.; Ata, M. Carbon 2001, 39, 1913. doi: 10.1016/S0008-6223[00)00322-5  doi: 10.1016/S0008-6223[00)00322-5

    38. [38]

      Hu, C.; Yuan, C.; Hong, A.; Guo, M.; Yu, T.; Luo, X. Appl. Phys. Lett. 2018, 113, 041602. doi: 10.1063/1.5038602  doi: 10.1063/1.5038602

    39. [39]

      Chen, S.; Gao, J.; Srinivasan, B. M.; Zhang, Y. Acta Phys. -Chim. Sin. 2019, 35, 1119.  doi: 10.3866/PKU.WHXB201812023

  • 加载中
    1. [1]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    2. [2]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(19)
  • Abstract views(1183)
  • HTML views(231)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return