Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel
- Corresponding author: Feng Ligang, ligang.feng@yzu.edu.cn
Citation: Bao Yufei, Feng Ligang. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200803. doi: 10.3866/PKU.WHXB202008031
Feng, L.; Chang, J.; Jiang, K.; Xue, H.; Liu, C.; Cai, W. B.; Xing, W.; Zhang, J. Nano Energy 2016, 30, 355. doi: 10.1016/j.nanoen.2016.10.023
doi: 10.1016/j.nanoen.2016.10.023
Ong, B. C.; Kamarudin, S. K.; Basri, S. Int. J. Hydrogen Energy 2017, 42, 10142. doi: 10.1016/j.ijhydene.2017.01.117
doi: 10.1016/j.ijhydene.2017.01.117
Yang, J. L. Acta Phys. -Chim. Sin. 2020, 36, 2003010.
doi: 10.3866/PKU.WHXB202003010
Lü, Y.; Song, Y. J.; Liu, H. Y.; Li, H. Q. Acta Phys. -Chim. Sin. 2017, 33, 283.
doi: 10.3866/PKU.WHXB201611071
Li, Q. W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Liu, X.; Ding, W.; Ma, Y. Acta Phys. -Chim. Sin. 2011, 27, 2857.
doi: 10.3866/PKU.WHXB20112857
Hu, S.; Che, F.; Khorasani, B.; Jeon, M.; Yoon, C. W.; McEwen, J. S.; Scudiero, L.; Ha, S. Appl. Catal. B: Environ. 2019, 254, 685. doi: 10.1016/j.apcatb.2019.03.072
doi: 10.1016/j.apcatb.2019.03.072
Romero Hernández, A.; Arce Estrada, E. M.; Ezeta, A.; Manríquez, M. E. Electrochim. Acta 2019, 327, 134977. doi: 10.1016/j.electacta.2019.134977
doi: 10.1016/j.electacta.2019.134977
Fang, B.; Feng, L. G. Acta Phys. -Chim. Sin. 2020, 36, 1905023.
doi: 10.3866/PKU.WHXB201905023
Wang, F.; Xue, H.; Tian, Z.; Xing, W.; Feng, L. J. Power Sources 2018, 375, 37. doi: 10.1016/j.jpowsour.2017.11.055
doi: 10.1016/j.jpowsour.2017.11.055
Jiang, K.; Zhang, H. X.; Zou, S.; Cai, W. B. Phys. Chem. Chem. Phys. 2014, 16, 20360. doi: 10.1039/C4CP03151B
doi: 10.1039/C4CP03151B
Liu, H.; Yang, D.; Bao, Y.; Yu, X.; Feng, L. J. Power Sources 2019, 434, 226754. doi: 10.1016/j.jpowsour.2019.226754
doi: 10.1016/j.jpowsour.2019.226754
Bao, Y.; Wang, F.; Gu, X.; Feng, L. Nanoscale 2019, 11, 18866. doi: 10.1039/C9NR07158J
doi: 10.1039/C9NR07158J
Bin, D.; Yang, B.; Ren, F.; Zhang, K.; Yang, P.; Du, Y. J. Mater. Chem. A 2015, 3, 14001. doi: 10.1039/C5TA02829A
doi: 10.1039/C5TA02829A
Chen, W.; Xue, J.; Bao, Y.; Feng, L. Chem. Eng. J. 2020, 381, 122752. doi: 10.1016/j.cej.2019.122752
doi: 10.1016/j.cej.2019.122752
Zhang, X.; Zhu, J.; Tiwary, C. S.; Ma, Z.; Huang, H.; Zhang, J.; Lu, Z.; Huang, W.; Wu, Y. ACS Appl. Mater. Interfaces 2016, 8, 10858. doi: 10.1021/acsami.6b01580
doi: 10.1021/acsami.6b01580
Siller-Ceniceros, A. A.; Sánchez-Castro, M. E.; Morales-Acosta, D.; Torres-Lubian, J. R.; Martínez G, E.; Rodríguez-Varela, F. J. Appl. Catal. B: Environ. 2017, 209, 455. doi: 10.1016/j.apcatb.2017.03.023
doi: 10.1016/j.apcatb.2017.03.023
Tzorbatzoglou, F.; Brouzgou, A.; Jing, S.; Wang, Y.; Song, S.; Tsiakaras, P. Int. J. Hydrogen Energy 2018, 43, 11766. doi: 10.1016/j.ijhydene.2018.02.071
doi: 10.1016/j.ijhydene.2018.02.071
Perivoliotis, D. K.; Tagmatarchis, N. Carbon 2017, 118, 493. doi: 10.1016/j.carbon.2017.03.073
doi: 10.1016/j.carbon.2017.03.073
Zhang, H.; Zhai, C.; Gao, H.; Fu, N.; Zhu, M. J. Colloid Interface Sci. 2019, 547, 102. doi: 10.1016/j.jcis.2019.03.090
doi: 10.1016/j.jcis.2019.03.090
Zhang, Z.; Gong, Y.; Wu, D.; Li, Z.; Li, Q.; Zheng, L.; Chen, W.; Yuan, W.; Zhang, L. Y. Int. J. Hydrogen Energy 2019, 44, 2731. doi: 10.1016/j.ijhydene.2018.12.004
doi: 10.1016/j.ijhydene.2018.12.004
Kotal, M.; Kim, J.; Oh, J.; Oh, I. K. Front. Mater. 2016, 3. doi: 10.3389/fmats.2016.00029
doi: 10.3389/fmats.2016.00029
Zhang, X.; Han, Y.; Huang, L.; Dong, S. ChemSusChem 2016, 9, 3049. doi: 10.1002/cssc.201600904
doi: 10.1002/cssc.201600904
Zhao, L.; Wang, Z. B.; Li, J. L.; Zhang, J. J.; Sui, X. L.; Zhang, L. M. Electrochim. Acta 2016, 189, 175. doi: 10.1016/j.electacta.2015.12.072
doi: 10.1016/j.electacta.2015.12.072
Zhang, X.; Hao, N.; Dong, X.; Chen, S.; Zhou, Z.; Zhang, Y.; Wang, K. RSC Adv. 2016, 6, 69973. doi: 10.1039/C6RA12562J
doi: 10.1039/C6RA12562J
Xia, W.; Qu, C.; Liang, Z.; Zhao, B.; Dai, S.; Qiu, B.; Jiao, Y.; Zhang, Q.; Huang, X.; Guo, W.; et al. Nano Lett. 2017, 17, 2788. doi: 10.1021/acs.nanolett.6b05004
doi: 10.1021/acs.nanolett.6b05004
Fu, G.; Yan, X.; Chen, Y.; Xu, L.; Sun, D.; Lee, J. M.; Tang, Y. Adv. Mater. 2018, 30, 1704609. doi: 10.1002/adma.201704609
doi: 10.1002/adma.201704609
Çögenli, M. S.; Ayşe, B. Y. Mater. Res. Express 2018, 5, 075513. doi: 10.1088/2053-1591/aad0e8
doi: 10.1088/2053-1591/aad0e8
Çögenli, M. S.; Bayrakçeken Yurtcan, A. Int. J. Hydrogen Energy 2020, 45, 650. doi: 10.1016/j.ijhydene.2019.10.226
doi: 10.1016/j.ijhydene.2019.10.226
Zhao, S.; Yin, H.; Du, L.; Yin, G.; Tang, Z.; Liu, S. J. Mater. Chem. A 2014, 2, 3719. doi: 10.1039/C3TA14809B
doi: 10.1039/C3TA14809B
Wang, F.; Yu, H.; Tian, Z.; Xue, H.; Feng, L. J. Energy Chem. 2018, 27, 395. doi: 10.1016/j.jechem.2017.12.011
doi: 10.1016/j.jechem.2017.12.011
Bao, Y.; Liu, H.; Liu, Z.; Wang, F.; Feng, L. Appl. Catal. B: Environ. 2020, 274, 119106. doi: 10.1016/j.apcatb.2020.119106
doi: 10.1016/j.apcatb.2020.119106
Sun, L.; Liao, B.; Ren, X.; Li, Y.; Zhang, P.; Deng, L.; Gao, Y. Electrochim. Acta 2017, 235, 543. doi: 10.1016/j.electacta.2017.03.159
doi: 10.1016/j.electacta.2017.03.159
Lohrasbi, E.; Javanbakht, M.; Mozaffari, S. A. Ind. Eng. Chem. Res. 2016, 55, 9154. doi: 10.1021/acs.iecr.6b00980
doi: 10.1021/acs.iecr.6b00980
Pei, C.; Ding, R.; Yu, X.; Feng, L. ChemCatChem 2019, 11, 4617. doi: 10.1002/cctc.201900886
doi: 10.1002/cctc.201900886
Lim, E. J.; Kim, H. J.; Kim, W. B. Catal. Commun. 2012, 25, 74. doi: 10.1016/j.catcom.2012.04.011
doi: 10.1016/j.catcom.2012.04.011
Xu, C.; Liu, Y.; Hao, Q.; Duan, H. J. Mater. Chem. A 2013, 1, 13542. doi: 10.1039/C3TA12765F
doi: 10.1039/C3TA12765F
Wang, Y.; He, Q.; Wei, H.; Guo, J.; Ding, K.; Wang, Q.; Wang, Z.; Wei, S.; Guo, Z. Electrochim. Acta 2015, 184, 452. doi: 10.1016/j.electacta.2015.10.046
doi: 10.1016/j.electacta.2015.10.046
Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. J. Electroanal. Chem. 2002, 524–525, 242. doi: 10.1016/S0022-0728(02)00669-1
doi: 10.1016/S0022-0728(02)00669-1
Seland, F.; Tunold, R.; Harrington, D. A. Electrochim. Acta 2008, 53, 6851. doi: 10.1016/j.electacta.2007.12.021
doi: 10.1016/j.electacta.2007.12.021
Li, S.; Dong, Z.; Yang, H.; Guo, S.; Gou, G.; Ren, R.; Zhu, Z.; Jin, J.; Ma, J. Chem. Euro. J. 2013, 19, 2384. doi: 10.1002/chem.201203686
doi: 10.1002/chem.201203686
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Xiaoxiao Huang , Zhi-Long He , Yangpeng Chen , Lei Li , Zhenyu Yang , Chunyang Zhai , Mingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825