Citation: Yang Liu, Xuqiang Hao, Haiqiang Hu, Zhiliang Jin. High Efficiency Electron Transfer Realized over NiS2/MoSe2 S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200803. doi: 10.3866/PKU.WHXB202008030 shu

High Efficiency Electron Transfer Realized over NiS2/MoSe2 S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution

  • Corresponding author: Xuqiang Hao, haoxuqiang@126.com Zhiliang Jin, zl-jin@nun.edu.cn
  • Received Date: 13 August 2020
    Revised Date: 30 August 2020
    Accepted Date: 7 September 2020
    Available Online: 11 September 2020

  • S-scheme heterojunction is a major breakthrough in the field of photocatalysis. In this study, NiS2 and MoSe2 were prepared by a typical solvothermal method, and compounded by an in situ growth method to construct an S-scheme heterojunction. The obtained composite showed excellent performance in photocatalytic hydrogen evolution; the hydrogen production rate was approximately 7 mmol·h-1·g-1, which was 2.05 times and 2.44 times those of pure NiS2 and MoSe2, respectively. Through a series of characterizations, it was found that NiS2 and MoSe2 coupling can enhance the light absorption intensity, which is vital for the light reaction system. The efficiency of electron-hole pair separation is also among the important factors restricting photocatalytic reactions. Compared with pure NiS2 and MoSe2, NiS2/MoSe2 exhibited a higher photocurrent density, lower cathode current, and lower electrochemical impedance, which proves that the NiS2/MoSe2 complex can effectively promote photogenerated electron transfer. Simultaneously, the lower emission intensity of fluorescence indicated effective inhibition of electron-hole recombination in the NiS2/MoSe2 complex, which is favorable for the photocatalytic hydrogen evolution reaction. Further, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that MoSe2 is an amorphous sample surrounded by the NiS2 nanomicrosphere, which greatly increased the contact area between the two, thus increasing the active site of the reaction. Secondly, as a photosensitizer, Eosin Y (EY) effectively enhanced the absorption of light by the catalyst in the photoreaction system. Meanwhile, during sensitization, electrons were provided to the catalyst, which effectively improved the photocatalytic reaction efficiency. The establishment of S-scheme heterojunctions contributed to improving the redox capacity of the reaction system and was the most important link in the photocatalytic hydrogen reduction of aquatic products. It was also the main reason for the improvement of the hydrogen evolution effect in this study. The locations of the conduction band and valence band of NiS2 and MoSe2 were determined by Mott-Schottky plots and photon energy curves, and further proved the establishment of the S-scheme heterojunction. This work provides a new reference for studying the S-scheme heterojunction to effectively improve the photocatalytic hydrogen production efficiency.
  • 加载中
    1. [1]

      Zhang, L. J.; Hao, X. Q.; Li, Y. B.; Jin, Z. L.Appl. Surf. Sci. 2020, 499, 143862. doi:10.1016/j.apsusc.2019.143862  doi: 10.1016/j.apsusc.2019.143862

    2. [2]

      Wang, J.; Wang, J. R.; Song, X. H.; Qi, S. Y.; Zhao, M. W.Appl. Surf. Sci. 2020, 511, 145393. doi:10.1016/j.apsusc.2020.145393  doi: 10.1016/j.apsusc.2020.145393

    3. [3]

      Li, Y. B.; Jin, Z. L.; Zhao, T. S.Chem. Eng. J. 2020, 382, 123051. doi:10.1016/j.cej.2019.123051  doi: 10.1016/j.cej.2019.123051

    4. [4]

      He, F.; Meng, A. Y.; Cheng, B.; Ho, W. K.; Yu, J. G.Chin. J. Catal. 2020, 41, 9. doi:10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    5. [5]

      Liu, D. D.; Jin Z. L.; Bi, Y. P.Catal. Sci. Technol. 2017, 7, 4478. doi:10.1039/C7CY01514C  doi: 10.1039/C7CY01514C

    6. [6]

      Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L. N.; Scanlon, M. D.; Girault, H. H.; Liu, B. H.Adv. Funct. Mater. 2013, 23, 5326. doi:10.1002/adfm.201300318  doi: 10.1002/adfm.201300318

    7. [7]

      Peng, S. Q.; Yang, Y.; Tan, J. N.; Gan, C.; Li, Y. X.Appl. Surf. Sci. 2018, 447, 822. doi:10.1016/j.apsusc.2018.04.050  doi: 10.1016/j.apsusc.2018.04.050

    8. [8]

      Fujishima, A.; Honda, K.Nature 1972, 238, 37.doi:10.1038/238037a0  doi: 10.1038/238037a0

    9. [9]

      Park, J. H.; Kim, S.; Bard, A. J. Nano Lett. 2006, 6, 24.doi:10.1021/nl051807y  doi: 10.1021/nl051807y

    10. [10]

      Liu, Y.; Wang, G. R.; Li, Y. B.; Jin, Z. L.J. Colloid Interface Sci. 2019, 554, 113. doi:10.1016/j.jcis.2019.06.080  doi: 10.1016/j.jcis.2019.06.080

    11. [11]

      Pan, J. B.; Shen, S.Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F.Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    12. [12]

      Wang, Z.J.; Jin, Z. L.; Yuan, H.; Wang, G. R.; Ma, B. Z.J. Colloid Interface Sci. 2018, 532, 287. doi:10.1016/j.jcis.2018.07.138  doi: 10.1016/j.jcis.2018.07.138

    13. [13]

      Zhang, L. J.; Hao, X. Q.; Li, J. K.; Wang, Y. P.; Jin, Z. L.Chin. J. Catal. 2020, 41, 82. doi:10.1016/S1872-2067(19)63454-6  doi: 10.1016/S1872-2067(19)63454-6

    14. [14]

      Zhang, B. Y.; Chen, C. Q.; Liu, J.; Qiao, W.; Zhao, J. X.; Yang, J.; Yu, Y.; Chen, S.; Qin, Y. Appl. Surf. Sci. 2020, 508, 144869. doi:10.1016/j.apsusc.2019.144869  doi: 10.1016/j.apsusc.2019.144869

    15. [15]

      Cebad, S.; Soto, E.; Mota, N.; García, J. L.; Fierro, G.; Navarro, R. M.Int. J. Hydrog. Energy 2020, 45, 20536. doi:10.1016/j.ijhydene.2020.01.169  doi: 10.1016/j.ijhydene.2020.01.169

    16. [16]

      Sun, S. C.; Zhang, X. Y.; Liu, X. L.; Pan, L.; Zhang, X. W.; Zou, J. J.Acta Phys. -Chim. Sin. 2020, 36, 1905007.  doi: 10.3866/PKU.WHXB201905007

    17. [17]

      Wang, J. M.; Wang, Z. J.; Zhu, Z. P.Appl. Catal. B:Environ. 2017, 204, 577. doi:10.1016/j.apcatb.2016.12.008  doi: 10.1016/j.apcatb.2016.12.008

    18. [18]

      Wang, Z. Q.; Li, L. F.; Liu, M. Z.; Miao, T. F.; Ye, X. J.; Meng, S. G.; Chen, S. F.; Fu, X. L.J. Energy Chem. 2020, 48, 241. doi:10.1016/j.jechem.2020.01.017  doi: 10.1016/j.jechem.2020.01.017

    19. [19]

      Jin, Z. L.; Zhang, Y. P.Catal. Surv. Asia 2020, 24, 59. doi:10.1007/s10563-019-09289-x  doi: 10.1007/s10563-019-09289-x

    20. [20]

      Zhang, S. S.; Qian, X. B.; Yan, J. Q.; Chen, K. L.; Huang, J. H.New J. Chem. 2020, 44, 11710. doi:10.1039/d0nj01218a  doi: 10.1039/d0nj01218a

    21. [21]

      Huang, Q. Z.; Xiong, Y; Zhang, Q.; Yao, H. C.; Li, Z. J. Appl. Catal. B:Environ. 2017, 209, 514. doi:10.1016/j.apcatb.2017.03.035  doi: 10.1016/j.apcatb.2017.03.035

    22. [22]

      Zheng, B. J.; Chen, Y. F.; Qi, F.; Wang, X. Q.; Zhang, W. L.; Li, Y. R.; Li, X. S.2D Mater. 2017, 4, 025092. doi:10.1088/2053-1583/aa6e65  doi: 10.1088/2053-1583/aa6e65

    23. [23]

      Zeng, D. Q.; Wu, P. Y.; Ong, W. J.; Tang, B. S.; Wu, M. D.; Zheng, H. F.; Chen, Y. Z.; Peng, D. L.Appl. Catal. B:Environ. 2018, 233, 26. doi:10.1016/j.apcatb.2018.03.102  doi: 10.1016/j.apcatb.2018.03.102

    24. [24]

      He, R. G.; Liu, H. J.; Liu, H. M.; Xu, D. F.; Zhang, L. Y. J. Mater. Sci. Technol. 2020, 52, 145. doi:10.1016/j.jmst.2020.03.027  doi: 10.1016/j.jmst.2020.03.027

    25. [25]

      Low, J. X.; Yu, J. G.; Mietek, J.; Swelm, W.; Ahmed, A. Al-G. Adv. Mater. 2017, 29, 1601694. doi:10.1002/adma.201601694  doi: 10.1002/adma.201601694

    26. [26]

      Sun, R. M.; Liu, S. J.; Wei, Q. L.; Sheng, J. Z.; Zhu, S. H.; An, Q. Y. Small 2017, 13, 1701744. doi:10.1002/smll.201701744  doi: 10.1002/smll.201701744

    27. [27]

      Li, N.; Wu, J. J.; Lu, Y. T.; Zhao, Z. J.; Zhang, H. C.; Li, X. T.; Zheng, Y. Z.; Tao, X. Appl. Catal. B:Environ. 2018, 238, 27. doi:10.1016/j.apcatb.2018.07.002  doi: 10.1016/j.apcatb.2018.07.002

    28. [28]

      Jin, Z. L.; Yan, X.; Hao, X. Q. J. Colloid Interface Sci. 2020, 569, 34. doi:10.1016/j.jcis.2020.02.052  doi: 10.1016/j.jcis.2020.02.052

    29. [29]

      Yu, W. L.; Zhang, S.; Chen, J. X.; Xia, P. F.; Matthias, H. R.; Chen, L. F.; Xu, W.; Jin, J. P.; Chen, S. L.; Peng, T. Y. J. Mater. Chem. A 2018, 6, 15668. doi:10.1039/c8ta02922a  doi: 10.1039/c8ta02922a

    30. [30]

      Qin, J. Q.; Zhang, X. Y.; Yang, C. W.; Cao, M.; Ma, M. Z.; Liu, R. P. Appl. Surf. Sci. 2017, 392, 196. doi:10.1016/j.apsusc.2016.09.043  doi: 10.1016/j.apsusc.2016.09.043

    31. [31]

      Lei, Y. G.; Yang, C.; Hou, J. H.; Wang, F.; Min, S. X.; Ma, X. H.; Jin, Z. L.; Xu, J.; Lu, G. X.; Huang, K. W. Appl. Catal. B:Environ. 2017, 216, 59. doi:10.1016/j.apcatb.2017.05.063  doi: 10.1016/j.apcatb.2017.05.063

    32. [32]

      Yang, G.; Ding, H.; Chen, D. M.; Feng, J. J.; Hao, Q.; Zhu, Y. F. Appl. Catal. B:Environ. 2018, 234, 260. doi:10.1016/j.apcatb.2018.04.038  doi: 10.1016/j.apcatb.2018.04.038

    33. [33]

      Liu, Y.; Wang, G. R.; Ma, Y. L.; Jin, Z. L. Catal. Lett. 2019, 149, 1788. doi:10.1007/s10562-019-02777-9  doi: 10.1007/s10562-019-02777-9

    34. [34]

      Wang, T. T.; Guo, X. S.; Zhang, J. Y.; Xiao, W.; Xi, P. X.; Peng, S. L.; Gao, D. Q. J. Mater. Chem. A 2019, 7, 4971. doi:10.1039/c8ta11286j  doi: 10.1039/c8ta11286j

    35. [35]

      Guo, Z.; Wang, X. W. Angew. Chem. Int. Ed. 2018, 57, 5898. doi:10.1002/anie.201803092  doi: 10.1002/anie.201803092

    36. [36]

      Zhao, G. G.; Zhang, Y.; Yang, L.; Jiang, Y. L.; Zhang, Y.; Hong, W. W.; Tian, Y.; Zhao, H. B.; Hu, J. G.; Zhou, L.; et al. Adv. Funct. Mater. 2018, 28, 1803690. doi:10.1002/adfm.201803690  doi: 10.1002/adfm.201803690

    37. [37]

      Wang, Z. J.; Jin, Z. L.; Wang, G. R.; Ma, B. Z. Int. J. Hydrog. Energy 2018, 43, 13039. doi:10.1016/j.ijhydene.2018.05.099  doi: 10.1016/j.ijhydene.2018.05.099

    38. [38]

      Yang, H.; Jin, Z. L.; Hu, H. Y.; Bi, Y. P.; Lu, G. X. Appl. Surf. Sci. 2018, 427, 587. doi:10.1016/j.apsusc.2017.09.021  doi: 10.1016/j.apsusc.2017.09.021

    39. [39]

      Wu, M. H.; Huang, Y. Y.; Cheng, X. L.; Geng, X. S.; Tang, Q.; You, Y.; Yu, Y. Q.; Zhou, R.; Xu, J. Adv. Funct. Mater. 2017, 4, 1700948. doi:10.1002/admi.201700948  doi: 10.1002/admi.201700948

    40. [40]

      Wang, Y.; Zhao, J. X.; Chen, Z.; Zhang, F.; Guo, W.; Lin, H. M.; Qu, F. Y. Appl. Catal. B:Environ. 2019, 244, 76. doi:10.1016/j.apcatb.2018.11.033  doi: 10.1016/j.apcatb.2018.11.033

    41. [41]

      Liu, Y.; Ma, X. H.; Wang, H. Y.; Li, Y. B.; Jin, Z. L. Catal. Surv. Asia 2019, 23, 231. doi:10.1007/s10563-019-09275-3  doi: 10.1007/s10563-019-09275-3

    42. [42]

      Hu, S.; Jiang, Q. Q.; Ding, S. P.; Liu, Y.; Wu, Z. Z.; Huang, Z. X.; Zhou, T. F.; Guo, Z. P.; Hu, J. C. ACS Appl. Mater. Interfaces 2018, 10, 25483. doi:10.1021/acsami.8b09410  doi: 10.1021/acsami.8b09410

    43. [43]

      Hao, X. Q.; Guo, Q. J.; Li, M.; Jin, Z. L.; Wang, Y. Catal. Sci. Technol. 2020, 10, 5267. doi:10.1039/d0cy00893a  doi: 10.1039/d0cy00893a

    44. [44]

      Wang, S.; Zhu, B. C.; Liu, M. J.; Zhang, L. Y.; Yu, J. G.; Zhou, M. H. Appl. Catal. B:Environ. 2019, 243, 19. doi:10.1016/j.apcatb.2018.10.019  doi: 10.1016/j.apcatb.2018.10.019

    45. [45]

      Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. Nano Energy 2018, 47, 463. doi:10.1016/j.nanoen.2018.03.014  doi: 10.1016/j.nanoen.2018.03.014

    46. [46]

      Wei, R. B.; Huang, Z. L.; Gu, G. H.; Wang, Z.; Zeng, L. X.; Chen, Y. B.; Liu, Z. Q. Appl. Catal. B:Environ. 2018, 231, 101. doi:10.1016/j.apcatb.2018.03.014  doi: 10.1016/j.apcatb.2018.03.014

    47. [47]

      Cao, D.; An, H.; Yan, X. Q.; Zhao, Y. X. Acta Phys. -Chim. Sin. 2020, 36, 1901051.

    48. [48]

      Ge, H. N.; Xu, F. Y.; Cheng, B.; Yu, J. G.; Ho, W. K. ChemCatChem 2019, 11, 6301. doi:10.1002/cctc.201901486  doi: 10.1002/cctc.201901486

    49. [49]

      Yuan, Y. J.; Shen, Z. K.; Wu, S. T.; Su, Y. B.; Pei, L.; Ji, Z. G.; Ding, M. Y.; Bai, W. F.; Chen, Y. F.; Yu, Z. T.; et al. Appl. Catal. B:Environ. 2019, 246, 120. doi:10.1016/j.apcatb.2019.01.043  doi: 10.1016/j.apcatb.2019.01.043

    50. [50]

      Mahmoud, S.; Zhang, L. Y.; Yu, J. G. Chem. Eng. J. 2020, 397, 125390. doi:10.1016/j.cej.2020.125390  doi: 10.1016/j.cej.2020.125390

    51. [51]

      Luo, J. H.; Lin, Z. X.; Zhao, Y.; Jiang, S. J.; Song, S. Q. Chin. J. Catal. 2020, 41, 122. doi:10.1016/S1872-2067(19)63490-X  doi: 10.1016/S1872-2067(19)63490-X

    52. [52]

      He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W. K.; Macyk, W. Appl. Catal. B:Environ. 2020, 272, 119006. doi:10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    53. [53]

      Zeng, D. Q.; Ong, W. J.; Zheng, H. F.; Wu, M. D.; Chen, Y. Z.; Peng, D. L.; Han, M. Y. J. Mater. Chem. A 2017, 5, 16171. doi:10.1039/c7ta04816e  doi: 10.1039/c7ta04816e

    54. [54]

      Jin, Z. L.; Zhang, Y. K.; Ma, Q. X. J. Colloid Interface Sci. 2019, 556, 689. doi:10.1016/j.jcis.2019.08.107  doi: 10.1016/j.jcis.2019.08.107

    55. [55]

      Mei, F. F.; Li, Z.; Dai, K.; Zhang, J. F.; Liang, C. H. Chin. J. Catal. 2020, 41, 41. doi:10.1016/S1872-2067(19)63389-9  doi: 10.1016/S1872-2067(19)63389-9

    56. [56]

      Zhang, L. J.; Hao, X. Q.; Jian, Q. Y. J. Solid State Chem. 2019, 274, 286. doi:10.1016/j.jssc.2019.03.040  doi: 10.1016/j.jssc.2019.03.040

    57. [57]

      Wang, H. Y.; Jin, Z. L. Sustainable Energy Fuels 2019, 3, 173. doi:10.1039/c8se00445e  doi: 10.1039/c8se00445e

    58. [58]

      Yang, H.; Jin, Z. L.; Liu, D. D.; Fan, K.; Wang, G. R. J. Phys. Chem. C 2018, 122, 10430. doi:10.1021/acs.jpcc.8b01666  doi: 10.1021/acs.jpcc.8b01666

    59. [59]

      Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Chin. J. Catal. 2021, 42, 56. doi:10.1016/S1872-2067(20)63634-8  doi: 10.1016/S1872-2067(20)63634-8

    60. [60]

      Zhang, Y. K.; Jin, Z. L. Catal. Sci. Technol. 2019, 9, 1944. doi:10.1039/c8cy026  doi: 10.1039/c8cy026

    61. [61]

      Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G. Angew. Chem. 2020, 59, 5218. doi:10.1002/anie.201916012  doi: 10.1002/anie.201916012

    62. [62]

      Hao, X. Q.; Cui, Z. W.; Zhou, J.; Wang, Y. C.; Hu, Y.; Wang, Y.; Zou, Z. G. Nano Energy 2018, 52, 105. doi:10.1016/j.nanoen.2018.07.043  doi: 10.1016/j.nanoen.2018.07.043

    63. [63]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    64. [64]

      Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi:10.1016/S1872-2067(19)63481-9  doi: 10.1016/S1872-2067(19)63481-9

    65. [65]

      Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Nat. Commun. 2020, in press.

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    4. [4]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    5. [5]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    6. [6]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    13. [13]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    14. [14]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    15. [15]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(48)
  • Abstract views(822)
  • HTML views(380)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return