Progress in Research on VOC Molecule Recognition by Semiconductor Sensors
- Corresponding author: Gang Meng, menggang@aiofm.ac.cn Xiaodong Fang, xdfang@aiofm.ac.cn
Citation: Hongyu Liu, Gang Meng, Zanhong Deng, Meng Li, Junqing Chang, Tiantian Dai, Xiaodong Fang. Progress in Research on VOC Molecule Recognition by Semiconductor Sensors[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200801. doi: 10.3866/PKU.WHXB202008018
Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Nat. Nanotechnol. 2009, 4 (10), 669. doi: 10.1038/nnano.2009.235
doi: 10.1038/nnano.2009.235
Turner, M. A.; Bandelow, S.; Edwards, L.; Patel, P.; Martin, H. J.; Wilson, I. D.; Thomas, C. L. P. J. Breath Res. 2013, 7 (1), 017102. doi: 10.1088/1752-7155/7/1/017102
doi: 10.1088/1752-7155/7/1/017102
Kim, H. J.; Yoon, J. W.; Choi, K. I.; Jang, H. W.; Umar, A.; Lee, J. H. Nanoscale 2013, 5 (15), 7066. doi: 10.1039/c3nr01281f
doi: 10.1039/c3nr01281f
Meng, F.; Zheng, H.; Sun, Y.; Li, M.; Liu, J. Sensors 2017, 17 (7), 1478. doi: 10.3390/s17071478
doi: 10.3390/s17071478
Guntner, A. T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S. E. ACS Sens. 2016, 1 (5), 528. doi: 10.1021/acssensors.6b00008
doi: 10.1021/acssensors.6b00008
Meng, G.; Zhuge, F.; Nagashima, K.; Nakao, A.; Kanai, M.; He, Y.; Boudot, M.; Takahashi, T.; Uchida, K.; Yanagida, T. ACS Sens. 2016, 1 (8), 997. doi: 10.1021/acssensors.6b00364
doi: 10.1021/acssensors.6b00364
Dai, Z.; Xu, L.; Duan, G.; Li, T.; Zhang, H.; Li, Y.; Wang, Y.; Wang, Y.; Cai, W. Sci. Rep. 2013, 3, 1669. doi: 10.1038/srep01669
doi: 10.1038/srep01669
Zhu, B.; Yin, C.; Zhang, Z.; Yang, L. J. Nanjing Univ. Technol. 2013, 35, 61.
Qin, W.; Yuan, Z.; Gao, H.; Meng, F. Sensors 2020, 20 (12), 3353. doi: 10.3390/s20123353
doi: 10.3390/s20123353
Meng, D.; Si, J. P.; Wang, M. Y.; Wang, G. S.; Shen, Y. B.; San, X. G.; Meng, F. L. Vacuum 2020, 171, 108994. doi: 10.1016/j.vacuum.2019.108994
doi: 10.1016/j.vacuum.2019.108994
Sedghi, S. M.; Mortazavi, Y.; Khodadadi, A. Sens. Actuator B-Chem. 2010, 145 (1), 7. doi: 10.1016/j.snb.2009.11.002
doi: 10.1016/j.snb.2009.11.002
Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; et al. Nano Lett. 2013, 13 (7), 3287. doi: 10.1021/nl401498t
doi: 10.1021/nl401498t
Li, M.; Li, B.; Meng, F.; Liu, J.; Yuan, Z.; Wang, C.; Liu, J. Sens. Actuator B-Chem. 2018, 273, 543. doi: 10.1016/j.snb.2018.06.081
doi: 10.1016/j.snb.2018.06.081
Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H. Appl. Phys. Lett. 2008, 93 (26), 263103. doi: 10.1063/1.3046726
doi: 10.1063/1.3046726
Sun, P.; Zhou, X.; Wang, C.; Shimanoe, K.; Lu, G.; Yamazoe, N. J. Mater. Chem. A 2014, 2 (5), 1302. doi: 10.1039/c3ta13707d
doi: 10.1039/c3ta13707d
Walker, J. M.; Akbar, S. A.; Morris, P. A. Sens. Actuator B-Chem. 2019, 286, 624. doi: 10.1016/j.snb.2019.01.049
doi: 10.1016/j.snb.2019.01.049
Xie, F.; Li, W. H.; Zhang, Q. Y.; Zhang, S. P. IEEE Sens. J. 2019, 19 (22), 10674. doi: 10.1109/jsen.2019.2929504
doi: 10.1109/jsen.2019.2929504
Zhang, M.; Guo, J. X.; Xie, F.; Wang, J. C.; Zhang, S. P.; Guo, X. Solid State Ion. 2020, 347, 115274. doi: 10.1016/j.ssi.2020.115274
doi: 10.1016/j.ssi.2020.115274
Sysoev, V. V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. Nano Lett. 2007, 7 (10), 3182. doi: 10.1021/nl071815+
doi: 10.1021/nl071815+
Han, J. W.; Rim, T.; Baek, C. K.; Meyyappan, M. ACS Appl. Mater. Interfaces 2015, 7 (38), 21263. doi: 10.1021/acsami.5b05479
doi: 10.1021/acsami.5b05479
Persaud, K.; Dodd, G. Nature 1982, 299 (5881), 352. doi: 10.1038/299352a0
doi: 10.1038/299352a0
Chen, P. C.; Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Zhou, C. Nanotechnology 2009, 20 (12), 125503. doi: 10.1088/0957-4484/20/12/125503
doi: 10.1088/0957-4484/20/12/125503
Wu, Z.; Zhou, C.; Zu, B.; Li, Y.; Dou, X. Adv. Funct. Mater. 2016, 26 (25), 4578. doi: 10.1002/adfm.201600592
doi: 10.1002/adfm.201600592
Li, S.; Jaegle, M.; Boettner, H. Chin. J. Sens. Actuators 2005, 18, 36.
Gutierrez-Osuna, R.; Gutierrez-Galvez, A.; Powar, N. Sens. Actuator B-Chem. 2003, 93 (1–3), 57. doi: 10.1016/S0925-4005(03)00248-X
doi: 10.1016/S0925-4005(03)00248-X
Hossein-Babaei, F.; Amini, A. Sens. Actuator B-Chem. 2012, 166, 419. doi: 10.1016/j.snb.2012.02.082
doi: 10.1016/j.snb.2012.02.082
Sears, W. M.; Colbow, K.; Consadori, F. Semicond. Sci. Technol. 1989, 4 (5), 351. doi: 10.1088/0268-1242/4/5/004
doi: 10.1088/0268-1242/4/5/004
Nakata, S.; Kato, Y.; Kaneda, Y.; Yoshikawa, K. Appl. Surf. Sci. 1996, 103 (4), 369. doi: 10.1016/S0169-4332(96)00551-X
doi: 10.1016/S0169-4332(96)00551-X
Hierlemann, A.; Gutierrez-Osuna, R. Chem. Rev. 2008, 108 (2), 563. doi: 10.1021/cr068116m
doi: 10.1021/cr068116m
Nakata, S.; Nakasuji, M.; Ojima, N.; Kitora, M. Appl. Surf. Sci. 1998, 135 (1–4), 285. doi: 10.1016/S0169-4332(98)00290-6
doi: 10.1016/S0169-4332(98)00290-6
Huang, X. J.; Liu, J. H.; Shao, D. L.; Pi, Z. X.; Yu, Z. L. Sens. Actuator B-Chem. 2003, 96 (3), 630. doi: 10.1016/j.snb.2003.07.006
doi: 10.1016/j.snb.2003.07.006
Nakata, S.; Okunishi, H. Appl. Surf. Sci. 2005, 240 (1–4), 366. doi: 10.1016/j.apsusc.2004.07.005
doi: 10.1016/j.apsusc.2004.07.005
Lee, A. P.; Reedy, B. J. Sens. Actuator B-Chem. 1999, 60 (1), 35. doi: 10.1016/S0925-4005(99)00241-5
doi: 10.1016/S0925-4005(99)00241-5
Bukowiecki, S.; Pfister, G.; Reis, A.; Troup, A. P.; Ulli, H. P. Gas or Vapor Alarm System Including Scanning Gas Sensors. USA Patent 4567475, 1986.
Deng, Q.; Gao, S.; Lei, T.; Ling, Y.; Zhang, S.; Xie, C. Sens. Actuator B-Chem. 2017, 247, 903. doi: 10.1016/j.snb.2017.03.107
doi: 10.1016/j.snb.2017.03.107
Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. Anal. Chem. 1962, 34 (11), 1502. doi: 10.1021/ac60191a001
doi: 10.1021/ac60191a001
Kim, H. J.; Lee, J. H. Sens. Actuator B-Chem. 2014, 192, 607. doi: 10.1016/j.snb.2013.11.005
doi: 10.1016/j.snb.2013.11.005
Amoore, J. E.; Johnston, J. W.; Rubin, M. Sci. Am. 1964, 210 (2), 42. doi: 10.1038/scientificamerican0264-42
doi: 10.1038/scientificamerican0264-42
Ghasemi-Varnamkhasti, M.; Amiri, Z. S.; Tohidi, M.; Dowlati, M.; Mohtasebi, S. S.; Silva, A. C.; Fernandes, D. D. S.; Araujo, M. C. U. Talanta 2018, 176, 221. doi: 10.1016/j.talanta.2017.08.024
doi: 10.1016/j.talanta.2017.08.024
Liu, H.; He, Y.; Nagashima, K.; Meng, G.; Dai, T.; Tong, B.; Deng, Z.; Wang, S.; Zhu, N.; Yanagida, T.; et al. Sens. Actuator B-Chem. 2019, 293, 342. doi: 10.1016/j.snb.2019.04.078
doi: 10.1016/j.snb.2019.04.078
Zhang, X.; Lan, W.; Xu, J.; Luo, Y.; Pan, J.; Liao, C.; Yang, L.; Tan, W.; Huang, X. Sens. Actuator B-Chem. 2019, 289, 144. doi: 10.1016/j.snb.2019.03.090
doi: 10.1016/j.snb.2019.03.090
Liu, H.; Shen, W.; Chen, X.; Corriou, J. P. J. Mater. Sci. -Mater. Electron. 2018, 29 (21), 18380. doi: 10.1007/s10854-018-9952-9
doi: 10.1007/s10854-018-9952-9
Zhang, B.; Li, M.; Song, Z.; Kan, H.; Yu, H.; Liu, Q.; Zhang, G.; Liu, H. Sens. Actuator B-Chem. 2017, 249, 558. doi: 10.1016/j.snb.2017.03.098
doi: 10.1016/j.snb.2017.03.098
Li, Y.; Zhang, Q.; Li, X.; Bai, H.; Li, W.; Zeng, T.; Xi, G. RSC Adv. 2016, 6 (98), 95747. doi: 10.1039/c6ra20531c
doi: 10.1039/c6ra20531c
Shao, S.; Chen, X.; Chen, Y.; Zhang, L.; Kim, H. W.; Kim, S. S. ACS Appl. Nano Mater. 2020, 3 (6), 5220. doi: 10.1021/acsanm.0c00642
doi: 10.1021/acsanm.0c00642
Zhang, D.; Wu, Z.; Zong, X. Sens. Actuator B-Chem. 2019, 288, 232. doi: 10.1016/j.snb.2019.02.093
doi: 10.1016/j.snb.2019.02.093
Wang, Z.; Zhang, T.; Han, T.; Fei, T.; Liu, S.; Lu, G. Sens. Actuator B-Chem. 2018, 266, 812. doi: 10.1016/j.snb.2018.03.169
doi: 10.1016/j.snb.2018.03.169
Kim, H. W.; Na, H. G.; Kwon, Y. J.; Kang, S. Y.; Choi, M. S.; Bang, J. H.; Wu, P.; Kim, S. S. ACS Appl. Mater. Interfaces 2017, 9 (37), 31667. doi: 10.1021/acsami.7b02533
doi: 10.1021/acsami.7b02533
Srivastava, V.; Jain, K. Mater. Lett. 2016, 169, 28. doi: 10.1016/j.matlet.2015.12.115
doi: 10.1016/j.matlet.2015.12.115
Chen, K.; Lu, H.; Li, G.; Zhang, J.; Tian, Y.; Gao, Y.; Guo, Q.; Lu, H.; Gao, J. Sens. Actuator B-Chem. 2020, 308, 127716. doi: 10.1016/j.snb.2020.127716
doi: 10.1016/j.snb.2020.127716
Zhang, M.; Guo, J.; Xie, F.; Wang, J.; Zhang, S.; Guo, X. Solid State Ion. 2020, 347, 115274. doi: 10.1016/j.ssi.2020.115274
doi: 10.1016/j.ssi.2020.115274
Huang, B.; Wang, Y.; Hu, Q.; Mu, X.; Zhang, Y.; Bai, J.; Wang, Q.; Sheng, Y.; Zhang, Z.; Xie, E. J. Mater. Chem. C 2018, 6 (40), 10935. doi: 10.1039/c8tc03669a
doi: 10.1039/c8tc03669a
Wu, H.; Huang, H.; Zhou, J.; Hong, D.; Ikram, M.; Rehman, A. U.; Li, L.; Shi, K. Sci. Rep. 2017, 7, 1688. doi: 10.1038/s41598-017-15319-3
doi: 10.1038/s41598-017-15319-3
Sui, L.; Zhang, X.; Cheng, X.; Wang, P.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. ACS Appl. Mater. Interfaces 2017, 9 (2), 1661. doi: 10.1021/acsami.6b11754
doi: 10.1021/acsami.6b11754
Lee, J. H.; Jung, H.; Yoo, R.; Park, Y.; Lee, H. S.; Choe, Y. S.; Lee, W. Sens. Actuator B-Chem. 2019, 284, 444. doi: 10.1016/j.snb.2018.12.144
doi: 10.1016/j.snb.2018.12.144
Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110 (1), 132. doi: 10.1021/cr900070d
doi: 10.1021/cr900070d
Hwang, I. S.; Choi, J. K.; Woo, H. S.; Kim, S. J.; Jung, S. Y.; Seong, T. Y.; Kim, I. D.; Lee, J. H. ACS Appl. Mater. Interfaces 2011, 3 (8), 3140. doi: 10.1021/am200647f
doi: 10.1021/am200647f
Xu, C. N.; Tamaki, J.; Miura, N.; Yamazoe, N. Sens. Actuator B-Chem. 1991, 3 (2), 147. doi: 10.1016/0925-4005(91)80207-Z
doi: 10.1016/0925-4005(91)80207-Z
Shaver, P. J. Appl. Phys. Lett. 1967, 11 (8), 255. doi: 10.1063/1.1755123
doi: 10.1063/1.1755123
Gardner, J. W.; Bartlett, P. N. Electronic Noses Principles and Applications; Oxford University Press: London, UK, 1999; p. 1.
Gardner, J. W.; Bartlett, P. N. Sens. Actuator B-Chem. 1994, 18 (1–3), 211.
Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Chemometrics Intell. Lab. Syst. 2016, 156, 148. doi: 10.1016/j.chemolab.2016.05.013
doi: 10.1016/j.chemolab.2016.05.013
Ucar, A.; Ozalp, R. Chemometrics Intell. Lab. Syst. 2017, 166, 69. doi: 10.1016/j.chemolab.2017.05.013
doi: 10.1016/j.chemolab.2017.05.013
Estanislao Acuna-Avila, P.; Calavia, R.; Vigueras-Santiago, E.; Llobet, E. Sensors 2017, 17 (12), 2943. doi: 10.3390/s17122943
doi: 10.3390/s17122943
Corcoran, P.; Lowery, P.; Anglesea, J. Sens. Actuator B-Chem. 1998, 48 (1–3), 448. doi: 10.1016/S0925-4005(98)00083-5
doi: 10.1016/S0925-4005(98)00083-5
Srivastava, A. K. Sens. Actuator B-Chem. 2003, 96 (1–2), 24. doi: 10.1016/S0925-4005(03)00477-5
doi: 10.1016/S0925-4005(03)00477-5
Penza, M.; Cassano, G. Sens. Actuator B-Chem. 2003, 89 (3), 269. doi: 10.1016/s0925-4005(03)00002-9
doi: 10.1016/s0925-4005(03)00002-9
Sudarmaji, A.; Kitagawa, A. J. Sens. 2016, 2016, 1035902. doi: 10.1155/2016/1035902
doi: 10.1155/2016/1035902
Bonnefille, M. Practical Analysis of Flavor and Fragrance Materials; Goodner, K., Rouseff, R., Eds.; John Wiley & Sons Ltd. : Hoboken, NJ, USA, 2011; p. 111.
Amini, A.; Bagheri, M. A.; Montazer, G. A. Sens. Actuator B-Chem. 2013, 187, 241. doi: 10.1016/j.snb.2012.10.140
doi: 10.1016/j.snb.2012.10.140
Bastuck, M.; Leidinger, M.; Sauerwald, T.; Sch€utze, A. Improved Quantification of Naphthalene Using Non-Linear Partial Least Squares Regression. 16th International Symposium on Olfaction and Electronic Nose, Dijon, French, 2015.
Sauerwald, T.; Baur, T.; Sch€utze, A. Strategien Zur Optimierung Des Temperaturzyklischen Betriebs Von Halbleitergassensoren. Symposium des Arbeitskreises der Hochschullehrer für Messtechnik, Aachen, Germany, 2014.
Schultealbert, C.; Baur, T.; Schuetze, A.; Boettcher, S.; Sauerwald, T. Sens. Actuator B-Chem. 2017, 239, 390. doi: 10.1016/j.snb.2016.08.002
doi: 10.1016/j.snb.2016.08.002
Baur, T.; Schutze, A.; Sauerwald, T. tm-Tech. Mess. 2017, 84 (Suppl. 1), S88. doi: 10.1515/teme-2017-0035
doi: 10.1515/teme-2017-0035
Le Vine, H. D. Method and Apparatus for Operating a Gas Sensor. USA Patent 3906473, 1975.
Eicker, H. Method and Apparatus for Determining the Concentration of One Gaseous Component in Amixture of Gases. USA Patent 4012692, 1977.
Nakata, S.; Ozaki, E.; Ojima, N. Anal. Chim. Acta 1998, 361 (1–2), 93. doi: 10.1016/s0003-2670(98)00013-0
doi: 10.1016/s0003-2670(98)00013-0
Nakata, S.; Akakabe, S.; Nakasuji, M.; Yoshikawa, K. Anal. Chem. 1996, 68 (13), 2067. doi: 10.1021/ac9510954
doi: 10.1021/ac9510954
Nakata, S.; Takemura, K.; Neya, K. Sens. Actuator B-Chem. 2001, 76 (1–3), 436. doi: 10.1016/s0925-4005(01)00652-9
doi: 10.1016/s0925-4005(01)00652-9
Huang, J. R.; Li, G. Y.; Huang, Z. Y.; Huang, X. J.; Liu, J. H. Sens. Actuator B-Chem. 2006, 114 (2), 1059. doi: 10.1016/j.snb.2005.07.070
doi: 10.1016/j.snb.2005.07.070
Ge, H.; Liu, J. Sens. Actuator B-Chem. 2006, 117 (2), 408. doi: 10.1016/j.snb.2005.11.037
doi: 10.1016/j.snb.2005.11.037
Dattoli, E. N.; Davydov, A. V.; Benkstein, K. D. Nanoscale 2012, 4 (5), 1760. doi: 10.1039/c2nr11885h
doi: 10.1039/c2nr11885h
Hossein-Babaei, F.; Amini, A. Sens. Actuator B-Chem. 2014, 194, 156. doi: 10.1016/j.snb.2013.12.061
doi: 10.1016/j.snb.2013.12.061
Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A. Meas. Sci. Technol. 2015, 26 (6), 065103. doi: 10.1088/0957-0233/26/6/065103
doi: 10.1088/0957-0233/26/6/065103
Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J. ACS Appl. Mater. Interfaces 2020, 12 (15), 17725. doi: 10.1021/acsami.0c00720
doi: 10.1021/acsami.0c00720
Kim, S. J.; Choi, S. J.; Jang, J. S.; Cho, H. J.; Kim, I. D. Accounts Chem. Res. 2017, 50 (7), 1587. doi: 10.1021/acs.accounts.7b00047
doi: 10.1021/acs.accounts.7b00047
Gancarz, M.; Nawrocka, A.; Rusinek, R. J. Food Sci. 2019, 84 (8), 2077. doi: 10.1111/1750-3841.14701
doi: 10.1111/1750-3841.14701
Liu, Q.; Zhao, N.; Zhou, D.; Sun, Y.; Sun, K.; Pan, L.; Tu, K. Food Chem. 2018, 262, 226. doi: 10.1016/j.foodchem.2018.04.100
doi: 10.1016/j.foodchem.2018.04.100
Gruber, J.; Nascimento, H. M.; Yamauchi, E. Y.; Li, R. W. C.; Esteves, C. H. A.; Rehder, G. P.; Gaylarde, C. C.; Shirakawa, M. A. Mater. Sci. Eng. C-Mater. Biol. Appl. 2013, 33 (5), 2766. doi: 10.1016/j.msec.2013.02.043
doi: 10.1016/j.msec.2013.02.043
Gwizdz, P.; Radecka, M.; Zakrzewska, K. Array of Gas Sensors Based on TiO2 upon Temperature Modulation. 15th International Scientific Conference on Optoelectronic and Electronic Sensors, Warsaw, Poland, 2018.
Polese, D.; Martinelli, E.; Catini, A.; D'Amico, A.; Di Natale, C. Proc. Eng. 2010, 5, 156. doi: 10.1016/j.proeng.2010.09.071
doi: 10.1016/j.proeng.2010.09.071
Zhou, C.; Wu, Z.; Guo, Y.; Li, Y.; Cao, H.; Zheng, X.; Dou, X. Sci. Rep. 2016, 6, 25588. doi: 10.1038/srep25588
doi: 10.1038/srep25588
Kwon, O. S.; Park, S. J.; Lee, J. S.; Park, E.; Kim, T.; Park, H. W.; You, S. A.; Yoon, H.; Jang, J. Nano Lett. 2012, 12 (6), 2797. doi: 10.1021/nl204587t
doi: 10.1021/nl204587t
Bianchi, G.; Rizzolo, A.; Grassi, M.; Provenzi, L.; Lo Scalzo, R. Postharvest Biol. Technol. 2018, 136, 1. doi: 10.1016/j.postharvbio.2017.09.009
doi: 10.1016/j.postharvbio.2017.09.009
Bieganowski, A.; Jozefaciuk, G.; Bandura, L.; Guz, L.; Lagod, G.; Franus, W. Sensors 2018, 18 (8), 2463. doi: 10.3390/s18082463
doi: 10.3390/s18082463
Jolayemi, O. S.; Tokatli, F.; Buratti, S.; Alamprese, C. Eur. Food Res. Technol. 2017, 243 (11), 2035. doi: 10.1007/s00217-017-2909-z
doi: 10.1007/s00217-017-2909-z
Giungato, P.; de Gennaro, G.; Barbieri, P.; Briguglio, S.; Amodio, M.; de Gennaro, L.; Lasigna, F. J. Clean Prod. 2016, 133, 1395. doi: 10.1016/j.jclepro.2016.05.148
doi: 10.1016/j.jclepro.2016.05.148
Giovanelli, G.; Limbo, S.; Buratti, S. Postharvest Biol. Technol. 2014, 98, 72. doi: 10.1016/j.postharvbio.2014.07.002
doi: 10.1016/j.postharvbio.2014.07.002
Liu, H.; Zeng, F. K.; Wang, Q. H.; Wu, H. S.; Tan, L. H. Eur. Food Res. Technol. 2013, 237 (2), 245. doi: 10.1007/s00217-013-1986-x
doi: 10.1007/s00217-013-1986-x
Thriumani, R.; Zakaria, A.; Hashim, Y. Z. H. Y.; Jeffree, A. I.; Helmy, K. M.; Kamarudin, L. M.; Omar, M. I.; Shakaff, A. Y. M.; Adom, A. H.; Persaud, K. C. BMC Cancer 2018, 18, 362. doi: 10.1186/s12885-018-4235-7
doi: 10.1186/s12885-018-4235-7
Nouri, B.; Mohtasebi, S. S.; Rafiee, S. Int. J. Food Prop. 2020, 23 (1), 9. doi: 10.1080/10942912.2019.1705851
doi: 10.1080/10942912.2019.1705851
Guney, S.; Atasoy, A. Int. J. Pattern Recognit. Artif. Intell. 2020, 34 (3), 2050003. doi: 10.1142/s0218001420500032
doi: 10.1142/s0218001420500032
Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Measurement 2020, 157, 107561. doi: 10.1016/j.measurement.2020.107561
doi: 10.1016/j.measurement.2020.107561
Tohidi, M.; Ghasemi-Varnamkhasti, M.; Ghafarinia, V.; Mohtasebi, S. S.; Bonyadian, M. Measurement 2018, 124, 120. doi: 10.1016/j.measurement.2018.04.006
doi: 10.1016/j.measurement.2018.04.006
Tohidi, M.; Ghasemi-Varnamkhasti, M.; Ghafarinia, V.; Bonyadian, M.; Mohtasebi, S. S. Int. Dairy J. 2018, 77, 38. doi: 10.1016/j.idairyj.2017.09.003
doi: 10.1016/j.idairyj.2017.09.003
Ali, A. A. S.; Farhat, A.; Mohamad, S.; Amira, A.; Bensaali, F.; Benammar, M.; Bermak, A. IEEE Sens. J. 2018, 18 (11), 4633. doi: 10.1109/jsen.2018.2822711
doi: 10.1109/jsen.2018.2822711
Hosseini-Golgoo, S. M.; Ebrahimpour, N. Comparison of Different Feature Reduction Methods in the Improvement of Gas Diagnosis of a Temperature Modulated Resistive Gas Sensor. 5th International Conference on Materials and Applications for Sensors and Transducers, Mykonos, Greece, 2016. doi: 10.1088/1757-899X/108/1/012001
Gao, K.; Li, S.; Zhuang, L.; Qin, Z.; Zhang, B.; Huang, L.; Wang, P. Biosens. Bioelectron. 2018, 102, 150. doi: 10.1016/j.bios.2017.08.055
doi: 10.1016/j.bios.2017.08.055
Bright, C. J.; Nallon, E. C.; Polcha, M. P.; Schnee, V. P. Anal. Chem. 2015, 87 (24), 12270. doi: 10.1021/acs.analchem.5b03559
doi: 10.1021/acs.analchem.5b03559
Chen, Q.; Song, J.; Bi, J.; Meng, X.; Wu, X. Food Res. Int. 2018, 105, 605. doi: 10.1016/j.foodres.2017.11.054
doi: 10.1016/j.foodres.2017.11.054
Gorji-Chakespari, A.; Nikbakht, A. M.; Sefidkon, F.; Ghasemi-Varnamkhasti, M.; Brezmes, J.; Llobet, E. Sensors 2016, 16 (5), 636. doi: 10.3390/s16050636
doi: 10.3390/s16050636
Xu, S.; Zhou, Z.; Lu, H.; Luo, X.; Lan, Y.; Zhang, Y.; Li, Y. Sensors 2014, 14 (10), 18114. doi: 10.3390/s141018114
doi: 10.3390/s141018114
Xiong, Y.; Xiao, X.; Yang, X.; Yan, D.; Zhang, C.; Zou, H.; Lin, H.; Peng, L.; Xiao, X.; Yan, Y. J. Pharm. Biomed. Anal. 2014, 91, 68. doi: 10.1016/j.jpba.2013.12.016
doi: 10.1016/j.jpba.2013.12.016
Tian, X.; Long, M.; Liu, Y. L.; Zhang, P.; Bai, X. Q.; Wang, J.; Wei, Z. B.; Chen, S. E.; Ma, Z. R.; Song, L.; et al. J. Food Qual. 2020, 2020, 6145189. doi: 10.1155/2020/6145189
doi: 10.1155/2020/6145189
Wijaya, D. R.; Sarno, R.; Zulaika, E. Comput. Electron. Agric. 2019, 157, 305. doi: 10.1016/j.compag.2019.01.001
doi: 10.1016/j.compag.2019.01.001
Schuermans, V. N. E.; Li, Z.; Jongen, A. C. H. M.; Wu, Z.; Shi, J.; Ji, J.; Bouvy, N. D. Surg. Innov. 2018, 25 (5), 429. doi: 10.1177/1553350618781267
doi: 10.1177/1553350618781267
Chang, F.; Heinemann, P. H. Trans. ASABE 2018, 61 (2), 399. doi: 10.13031/trans.12177
doi: 10.13031/trans.12177
Aleixandre, M.; Cabellos, J. M.; Arroyo, T.; Horrillo, M. C. Front. Bioeng. Biotechnol. 2018, 6, 14. doi: 10.3389/fbioe.2018.00014
doi: 10.3389/fbioe.2018.00014
Shahid, A.; Choi, J. H.; Rana, A. U. H. S.; Kim, H. S. Sensors 2018, 18 (5), 1446. doi: 10.3390/s18051446
doi: 10.3390/s18051446
Dong, W.; Zhao, J.; Hu, R.; Dong, Y.; Tan, L. Food Chem. 2017, 229, 743. doi: 10.1016/j.foodchem.2017.02.149
doi: 10.1016/j.foodchem.2017.02.149
Yao, M. S.; Cao, L. A.; Hou, G. L.; Cai, M. L.; Xiu, J. W.; Fang, C. H.; Yuan, F. L.; Chen, Y. F. RSC Adv. 2017, 7 (33), 2027. doi: 10.1039/c7ra02282d
doi: 10.1039/c7ra02282d
Jeong, S. Y.; Yoon, J. W.; Kim, T. H.; Jeong, H. M.; Lee, C. S.; Kang, Y. C.; Lee, J. H. J. Mater. Chem. A 2017, 5 (4), 1446. doi: 10.1039/c6ta09397c
doi: 10.1039/c6ta09397c
Luis Herrero, J.; Lozano, J.; Pedro Santos, J.; Ignacio Suarez, J. Chemosphere 2016, 152, 107. doi: 10.1016/j.chemosphere.2016.02.106
doi: 10.1016/j.chemosphere.2016.02.106
Sudarmaji, A.; Kitagawa, A. J. Sens. 2016, 2016, 1035902. doi: 10.1155/2016/1035902
doi: 10.1155/2016/1035902
Her, Y. C.; Yeh, B. Y.; Huang, S. L. ACS Appl. Mater. Interfaces 2014, 6 (12), 9150. doi: 10.1021/am5012518
doi: 10.1021/am5012518
LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. Neural Comput. 1989, 1 (4), 541. doi: 10.1162/neco.1989.1.4.541
doi: 10.1162/neco.1989.1.4.541
Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Proc. IEEE 1998, 86 (11), 2278. doi: 10.1109/5.726791
doi: 10.1109/5.726791
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Commun. ACM 2017, 60 (6), 84. doi: 10.1145/3065386
doi: 10.1145/3065386
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015. doi: 10.1109/cvpr.2015.7298594
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2016. doi: 10.1109/CVPR.2016.90
Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations, San Diego, CA, USA, 2015.
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Sirui Xin , Jiayin Zhou , Kin Shing Chan . Smelling Disease: E-nose. University Chemistry, 2024, 39(9): 141-145. doi: 10.3866/PKU.DXHX202309051
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059