Citation: Hongyu Liu, Gang Meng, Zanhong Deng, Meng Li, Junqing Chang, Tiantian Dai, Xiaodong Fang. Progress in Research on VOC Molecule Recognition by Semiconductor Sensors[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200801. doi: 10.3866/PKU.WHXB202008018 shu

Progress in Research on VOC Molecule Recognition by Semiconductor Sensors

  • Corresponding author: Gang Meng, menggang@aiofm.ac.cn Xiaodong Fang, xdfang@aiofm.ac.cn
  • Received Date: 6 August 2020
    Revised Date: 27 August 2020
    Accepted Date: 28 August 2020
    Available Online: 3 September 2020

    Fund Project: the National Natural Science Foundation of China 11604339the National Natural Science Foundation of China 11674324CAS-JSPS Joint Research Projects GJHZ1891CAS-NSTDA Joint Research Projects GJHZ202101National Key Laboratory of Quantum Optics and Photonic Devices, China KF201901

  • Metal oxide semiconductor (MOS) gas sensors have been widely used in military and scientific research, as well as various industries; this is because of the unique advantages of MOS gas sensors including their small size, low power consumption, high sensitivity, and good silicon chip compatibility. However, the poor selectivity of MOS sensors has restricted their potential application in the Internet of Things (IoT) era. In this paper, progress in the research addressing the selectivity issues of MOS sensors is reviewed, and three strategies for selective MOS sensors, and performance improvements of MOS, e-nose, and thermal modulation, are introduced. Research on the performance improvements of MOS-sensitive materials provides an important guarantee for fast and accurate identification of trace gas molecules. The e-nose system adopts an array of sensors with distinct surface chemical properties; more "features" of volatile organic compound (VOC) molecules can be extracted by enlarging the number of sensor arrays, providing a "many-to-one" or "many-to-many" approach to discriminate VOC gas molecules via pattern recognition/machine learning algorithms. For thermal modulation technology, the working temperature of the sensor is intentionally swept during one measurement cycle, and the dynamic response signals of the sensor to different VOC gases under a given temperature mode are tested. Combined with signal processing and pattern recognition/machine learning, the "one-to-many" recognition of VOC gas molecules is realized by a single MOS sensor. Principal component analysis (PCA), linear discriminant analysis (LDA), and neural network (NN) pattern recognition/machine learning algorithms are compared in this review. Among them, the LDA algorithm based on supervised learning can be used as a signal dimension reduction or pattern recognition method. It is mainly applicable to the gas identification and classification of small datasets of VOC gas molecules. LDA is superior to PCA (based on unsupervised learning) in identifying and classifying VOC gas molecules. Compared with the LDA algorithm, an artificial neural network (ANN) based on the back-propagation algorithm, as a highly robust machine learning classification model, has the potential to process large datasets and realize the classification and identification of multiple kinds of VOC gases. Finally, the deep learning algorithm of convolutional neural networks (CNNs), with the performance of data dimension reduction, feature extraction, and robust identification, is expected to be applied in the field of VOC gas identification. Based on the performance improvement of MOS, a combination of multiple modulation methods and array technology, as well as the latest developments of deep learning algorithms in the artificial intelligence (AI) field, will greatly enhance the VOC molecular recognition capability of nonselective MOS sensors.
  • 加载中
    1. [1]

      Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Nat. Nanotechnol. 2009, 4 (10), 669. doi: 10.1038/nnano.2009.235  doi: 10.1038/nnano.2009.235

    2. [2]

      Turner, M. A.; Bandelow, S.; Edwards, L.; Patel, P.; Martin, H. J.; Wilson, I. D.; Thomas, C. L. P. J. Breath Res. 2013, 7 (1), 017102. doi: 10.1088/1752-7155/7/1/017102  doi: 10.1088/1752-7155/7/1/017102

    3. [3]

      Kim, H. J.; Yoon, J. W.; Choi, K. I.; Jang, H. W.; Umar, A.; Lee, J. H. Nanoscale 2013, 5 (15), 7066. doi: 10.1039/c3nr01281f  doi: 10.1039/c3nr01281f

    4. [4]

      Meng, F.; Zheng, H.; Sun, Y.; Li, M.; Liu, J. Sensors 2017, 17 (7), 1478. doi: 10.3390/s17071478  doi: 10.3390/s17071478

    5. [5]

      Guntner, A. T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S. E. ACS Sens. 2016, 1 (5), 528. doi: 10.1021/acssensors.6b00008  doi: 10.1021/acssensors.6b00008

    6. [6]

      Zhang, Q.; Guan, Z. Instrum. Tech. Sens. 2006, 7, 6.
       

    7. [7]

      Meng, G.; Zhuge, F.; Nagashima, K.; Nakao, A.; Kanai, M.; He, Y.; Boudot, M.; Takahashi, T.; Uchida, K.; Yanagida, T. ACS Sens. 2016, 1 (8), 997. doi: 10.1021/acssensors.6b00364  doi: 10.1021/acssensors.6b00364

    8. [8]

      Dai, Z.; Xu, L.; Duan, G.; Li, T.; Zhang, H.; Li, Y.; Wang, Y.; Wang, Y.; Cai, W. Sci. Rep. 2013, 3, 1669. doi: 10.1038/srep01669  doi: 10.1038/srep01669

    9. [9]

      Zhu, B.; Yin, C.; Zhang, Z.; Yang, L. J. Nanjing Univ. Technol. 2013, 35, 61.

    10. [10]

      Qin, W.; Yuan, Z.; Gao, H.; Meng, F. Sensors 2020, 20 (12), 3353. doi: 10.3390/s20123353  doi: 10.3390/s20123353

    11. [11]

      Meng, D.; Si, J. P.; Wang, M. Y.; Wang, G. S.; Shen, Y. B.; San, X. G.; Meng, F. L. Vacuum 2020, 171, 108994. doi: 10.1016/j.vacuum.2019.108994  doi: 10.1016/j.vacuum.2019.108994

    12. [12]

      Sedghi, S. M.; Mortazavi, Y.; Khodadadi, A. Sens. Actuator B-Chem. 2010, 145 (1), 7. doi: 10.1016/j.snb.2009.11.002  doi: 10.1016/j.snb.2009.11.002

    13. [13]

      Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; et al. Nano Lett. 2013, 13 (7), 3287. doi: 10.1021/nl401498t  doi: 10.1021/nl401498t

    14. [14]

      Li, M.; Li, B.; Meng, F.; Liu, J.; Yuan, Z.; Wang, C.; Liu, J. Sens. Actuator B-Chem. 2018, 273, 543. doi: 10.1016/j.snb.2018.06.081  doi: 10.1016/j.snb.2018.06.081

    15. [15]

      Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H. Appl. Phys. Lett. 2008, 93 (26), 263103. doi: 10.1063/1.3046726  doi: 10.1063/1.3046726

    16. [16]

      Sun, P.; Zhou, X.; Wang, C.; Shimanoe, K.; Lu, G.; Yamazoe, N. J. Mater. Chem. A 2014, 2 (5), 1302. doi: 10.1039/c3ta13707d  doi: 10.1039/c3ta13707d

    17. [17]

      Walker, J. M.; Akbar, S. A.; Morris, P. A. Sens. Actuator B-Chem. 2019, 286, 624. doi: 10.1016/j.snb.2019.01.049  doi: 10.1016/j.snb.2019.01.049

    18. [18]

      Xie, F.; Li, W. H.; Zhang, Q. Y.; Zhang, S. P. IEEE Sens. J. 2019, 19 (22), 10674. doi: 10.1109/jsen.2019.2929504  doi: 10.1109/jsen.2019.2929504

    19. [19]

      Zhang, M.; Guo, J. X.; Xie, F.; Wang, J. C.; Zhang, S. P.; Guo, X. Solid State Ion. 2020, 347, 115274. doi: 10.1016/j.ssi.2020.115274  doi: 10.1016/j.ssi.2020.115274

    20. [20]

      Sysoev, V. V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. Nano Lett. 2007, 7 (10), 3182. doi: 10.1021/nl071815+  doi: 10.1021/nl071815+

    21. [21]

      Han, J. W.; Rim, T.; Baek, C. K.; Meyyappan, M. ACS Appl. Mater. Interfaces 2015, 7 (38), 21263. doi: 10.1021/acsami.5b05479  doi: 10.1021/acsami.5b05479

    22. [22]

      Persaud, K.; Dodd, G. Nature 1982, 299 (5881), 352. doi: 10.1038/299352a0  doi: 10.1038/299352a0

    23. [23]

      Chen, P. C.; Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Zhou, C. Nanotechnology 2009, 20 (12), 125503. doi: 10.1088/0957-4484/20/12/125503  doi: 10.1088/0957-4484/20/12/125503

    24. [24]

      Wu, Z.; Zhou, C.; Zu, B.; Li, Y.; Dou, X. Adv. Funct. Mater. 2016, 26 (25), 4578. doi: 10.1002/adfm.201600592  doi: 10.1002/adfm.201600592

    25. [25]

      Li, S.; Jaegle, M.; Boettner, H. Chin. J. Sens. Actuators 2005, 18, 36.
       

    26. [26]

      Gutierrez-Osuna, R.; Gutierrez-Galvez, A.; Powar, N. Sens. Actuator B-Chem. 2003, 93 (1–3), 57. doi: 10.1016/S0925-4005(03)00248-X  doi: 10.1016/S0925-4005(03)00248-X

    27. [27]

      Hossein-Babaei, F.; Amini, A. Sens. Actuator B-Chem. 2012, 166, 419. doi: 10.1016/j.snb.2012.02.082  doi: 10.1016/j.snb.2012.02.082

    28. [28]

      Sears, W. M.; Colbow, K.; Consadori, F. Semicond. Sci. Technol. 1989, 4 (5), 351. doi: 10.1088/0268-1242/4/5/004  doi: 10.1088/0268-1242/4/5/004

    29. [29]

      Nakata, S.; Kato, Y.; Kaneda, Y.; Yoshikawa, K. Appl. Surf. Sci. 1996, 103 (4), 369. doi: 10.1016/S0169-4332(96)00551-X  doi: 10.1016/S0169-4332(96)00551-X

    30. [30]

      Hierlemann, A.; Gutierrez-Osuna, R. Chem. Rev. 2008, 108 (2), 563. doi: 10.1021/cr068116m  doi: 10.1021/cr068116m

    31. [31]

      Nakata, S.; Nakasuji, M.; Ojima, N.; Kitora, M. Appl. Surf. Sci. 1998, 135 (1–4), 285. doi: 10.1016/S0169-4332(98)00290-6  doi: 10.1016/S0169-4332(98)00290-6

    32. [32]

      Huang, X. J.; Liu, J. H.; Shao, D. L.; Pi, Z. X.; Yu, Z. L. Sens. Actuator B-Chem. 2003, 96 (3), 630. doi: 10.1016/j.snb.2003.07.006  doi: 10.1016/j.snb.2003.07.006

    33. [33]

      Nakata, S.; Okunishi, H. Appl. Surf. Sci. 2005, 240 (1–4), 366. doi: 10.1016/j.apsusc.2004.07.005  doi: 10.1016/j.apsusc.2004.07.005

    34. [34]

      Lee, A. P.; Reedy, B. J. Sens. Actuator B-Chem. 1999, 60 (1), 35. doi: 10.1016/S0925-4005(99)00241-5  doi: 10.1016/S0925-4005(99)00241-5

    35. [35]

      Bukowiecki, S.; Pfister, G.; Reis, A.; Troup, A. P.; Ulli, H. P. Gas or Vapor Alarm System Including Scanning Gas Sensors. USA Patent 4567475, 1986.

    36. [36]

      Deng, Q.; Gao, S.; Lei, T.; Ling, Y.; Zhang, S.; Xie, C. Sens. Actuator B-Chem. 2017, 247, 903. doi: 10.1016/j.snb.2017.03.107  doi: 10.1016/j.snb.2017.03.107

    37. [37]

      Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. Anal. Chem. 1962, 34 (11), 1502. doi: 10.1021/ac60191a001  doi: 10.1021/ac60191a001

    38. [38]

      Kim, H. J.; Lee, J. H. Sens. Actuator B-Chem. 2014, 192, 607. doi: 10.1016/j.snb.2013.11.005  doi: 10.1016/j.snb.2013.11.005

    39. [39]

      Amoore, J. E.; Johnston, J. W.; Rubin, M. Sci. Am. 1964, 210 (2), 42. doi: 10.1038/scientificamerican0264-42  doi: 10.1038/scientificamerican0264-42

    40. [40]

      Ghasemi-Varnamkhasti, M.; Amiri, Z. S.; Tohidi, M.; Dowlati, M.; Mohtasebi, S. S.; Silva, A. C.; Fernandes, D. D. S.; Araujo, M. C. U. Talanta 2018, 176, 221. doi: 10.1016/j.talanta.2017.08.024  doi: 10.1016/j.talanta.2017.08.024

    41. [41]

      Liu, H.; He, Y.; Nagashima, K.; Meng, G.; Dai, T.; Tong, B.; Deng, Z.; Wang, S.; Zhu, N.; Yanagida, T.; et al. Sens. Actuator B-Chem. 2019, 293, 342. doi: 10.1016/j.snb.2019.04.078  doi: 10.1016/j.snb.2019.04.078

    42. [42]

      Zhang, X.; Lan, W.; Xu, J.; Luo, Y.; Pan, J.; Liao, C.; Yang, L.; Tan, W.; Huang, X. Sens. Actuator B-Chem. 2019, 289, 144. doi: 10.1016/j.snb.2019.03.090  doi: 10.1016/j.snb.2019.03.090

    43. [43]

      Liu, H.; Shen, W.; Chen, X.; Corriou, J. P. J. Mater. Sci. -Mater. Electron. 2018, 29 (21), 18380. doi: 10.1007/s10854-018-9952-9  doi: 10.1007/s10854-018-9952-9

    44. [44]

      Zhang, B.; Li, M.; Song, Z.; Kan, H.; Yu, H.; Liu, Q.; Zhang, G.; Liu, H. Sens. Actuator B-Chem. 2017, 249, 558. doi: 10.1016/j.snb.2017.03.098  doi: 10.1016/j.snb.2017.03.098

    45. [45]

      Li, Y.; Zhang, Q.; Li, X.; Bai, H.; Li, W.; Zeng, T.; Xi, G. RSC Adv. 2016, 6 (98), 95747. doi: 10.1039/c6ra20531c  doi: 10.1039/c6ra20531c

    46. [46]

      Shao, S.; Chen, X.; Chen, Y.; Zhang, L.; Kim, H. W.; Kim, S. S. ACS Appl. Nano Mater. 2020, 3 (6), 5220. doi: 10.1021/acsanm.0c00642  doi: 10.1021/acsanm.0c00642

    47. [47]

      Zhang, D.; Wu, Z.; Zong, X. Sens. Actuator B-Chem. 2019, 288, 232. doi: 10.1016/j.snb.2019.02.093  doi: 10.1016/j.snb.2019.02.093

    48. [48]

      Wang, Z.; Zhang, T.; Han, T.; Fei, T.; Liu, S.; Lu, G. Sens. Actuator B-Chem. 2018, 266, 812. doi: 10.1016/j.snb.2018.03.169  doi: 10.1016/j.snb.2018.03.169

    49. [49]

      Kim, H. W.; Na, H. G.; Kwon, Y. J.; Kang, S. Y.; Choi, M. S.; Bang, J. H.; Wu, P.; Kim, S. S. ACS Appl. Mater. Interfaces 2017, 9 (37), 31667. doi: 10.1021/acsami.7b02533  doi: 10.1021/acsami.7b02533

    50. [50]

      Srivastava, V.; Jain, K. Mater. Lett. 2016, 169, 28. doi: 10.1016/j.matlet.2015.12.115  doi: 10.1016/j.matlet.2015.12.115

    51. [51]

      Chen, K.; Lu, H.; Li, G.; Zhang, J.; Tian, Y.; Gao, Y.; Guo, Q.; Lu, H.; Gao, J. Sens. Actuator B-Chem. 2020, 308, 127716. doi: 10.1016/j.snb.2020.127716  doi: 10.1016/j.snb.2020.127716

    52. [52]

      Zhang, M.; Guo, J.; Xie, F.; Wang, J.; Zhang, S.; Guo, X. Solid State Ion. 2020, 347, 115274. doi: 10.1016/j.ssi.2020.115274  doi: 10.1016/j.ssi.2020.115274

    53. [53]

      Huang, B.; Wang, Y.; Hu, Q.; Mu, X.; Zhang, Y.; Bai, J.; Wang, Q.; Sheng, Y.; Zhang, Z.; Xie, E. J. Mater. Chem. C 2018, 6 (40), 10935. doi: 10.1039/c8tc03669a  doi: 10.1039/c8tc03669a

    54. [54]

      Wu, H.; Huang, H.; Zhou, J.; Hong, D.; Ikram, M.; Rehman, A. U.; Li, L.; Shi, K. Sci. Rep. 2017, 7, 1688. doi: 10.1038/s41598-017-15319-3  doi: 10.1038/s41598-017-15319-3

    55. [55]

      Sui, L.; Zhang, X.; Cheng, X.; Wang, P.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. ACS Appl. Mater. Interfaces 2017, 9 (2), 1661. doi: 10.1021/acsami.6b11754  doi: 10.1021/acsami.6b11754

    56. [56]

      Lee, J. H.; Jung, H.; Yoo, R.; Park, Y.; Lee, H. S.; Choe, Y. S.; Lee, W. Sens. Actuator B-Chem. 2019, 284, 444. doi: 10.1016/j.snb.2018.12.144  doi: 10.1016/j.snb.2018.12.144

    57. [57]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110 (1), 132. doi: 10.1021/cr900070d  doi: 10.1021/cr900070d

    58. [58]

      Hwang, I. S.; Choi, J. K.; Woo, H. S.; Kim, S. J.; Jung, S. Y.; Seong, T. Y.; Kim, I. D.; Lee, J. H. ACS Appl. Mater. Interfaces 2011, 3 (8), 3140. doi: 10.1021/am200647f  doi: 10.1021/am200647f

    59. [59]

      Xu, C. N.; Tamaki, J.; Miura, N.; Yamazoe, N. Sens. Actuator B-Chem. 1991, 3 (2), 147. doi: 10.1016/0925-4005(91)80207-Z  doi: 10.1016/0925-4005(91)80207-Z

    60. [60]

      Shaver, P. J. Appl. Phys. Lett. 1967, 11 (8), 255. doi: 10.1063/1.1755123  doi: 10.1063/1.1755123

    61. [61]

      Gardner, J. W.; Bartlett, P. N. Electronic Noses Principles and Applications; Oxford University Press: London, UK, 1999; p. 1.

    62. [62]

      Gardner, J. W.; Bartlett, P. N. Sens. Actuator B-Chem. 1994, 18 (1–3), 211.

    63. [63]

      Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Chemometrics Intell. Lab. Syst. 2016, 156, 148. doi: 10.1016/j.chemolab.2016.05.013  doi: 10.1016/j.chemolab.2016.05.013

    64. [64]

      Ucar, A.; Ozalp, R. Chemometrics Intell. Lab. Syst. 2017, 166, 69. doi: 10.1016/j.chemolab.2017.05.013  doi: 10.1016/j.chemolab.2017.05.013

    65. [65]

      Estanislao Acuna-Avila, P.; Calavia, R.; Vigueras-Santiago, E.; Llobet, E. Sensors 2017, 17 (12), 2943. doi: 10.3390/s17122943  doi: 10.3390/s17122943

    66. [66]

      Corcoran, P.; Lowery, P.; Anglesea, J. Sens. Actuator B-Chem. 1998, 48 (1–3), 448. doi: 10.1016/S0925-4005(98)00083-5  doi: 10.1016/S0925-4005(98)00083-5

    67. [67]

      Srivastava, A. K. Sens. Actuator B-Chem. 2003, 96 (1–2), 24. doi: 10.1016/S0925-4005(03)00477-5  doi: 10.1016/S0925-4005(03)00477-5

    68. [68]

      Penza, M.; Cassano, G. Sens. Actuator B-Chem. 2003, 89 (3), 269. doi: 10.1016/s0925-4005(03)00002-9  doi: 10.1016/s0925-4005(03)00002-9

    69. [69]

      Sudarmaji, A.; Kitagawa, A. J. Sens. 2016, 2016, 1035902. doi: 10.1155/2016/1035902  doi: 10.1155/2016/1035902

    70. [70]

      Bonnefille, M. Practical Analysis of Flavor and Fragrance Materials; Goodner, K., Rouseff, R., Eds.; John Wiley & Sons Ltd. : Hoboken, NJ, USA, 2011; p. 111.

    71. [71]

      Amini, A.; Bagheri, M. A.; Montazer, G. A. Sens. Actuator B-Chem. 2013, 187, 241. doi: 10.1016/j.snb.2012.10.140  doi: 10.1016/j.snb.2012.10.140

    72. [72]

      Bastuck, M.; Leidinger, M.; Sauerwald, T.; Sch€utze, A. Improved Quantification of Naphthalene Using Non-Linear Partial Least Squares Regression. 16th International Symposium on Olfaction and Electronic Nose, Dijon, French, 2015.

    73. [73]

      Sauerwald, T.; Baur, T.; Sch€utze, A. Strategien Zur Optimierung Des Temperaturzyklischen Betriebs Von Halbleitergassensoren. Symposium des Arbeitskreises der Hochschullehrer für Messtechnik, Aachen, Germany, 2014.

    74. [74]

      Schultealbert, C.; Baur, T.; Schuetze, A.; Boettcher, S.; Sauerwald, T. Sens. Actuator B-Chem. 2017, 239, 390. doi: 10.1016/j.snb.2016.08.002  doi: 10.1016/j.snb.2016.08.002

    75. [75]

      Baur, T.; Schutze, A.; Sauerwald, T. tm-Tech. Mess. 2017, 84 (Suppl. 1), S88. doi: 10.1515/teme-2017-0035  doi: 10.1515/teme-2017-0035

    76. [76]

      Le Vine, H. D. Method and Apparatus for Operating a Gas Sensor. USA Patent 3906473, 1975.

    77. [77]

      Eicker, H. Method and Apparatus for Determining the Concentration of One Gaseous Component in Amixture of Gases. USA Patent 4012692, 1977.

    78. [78]

      Nakata, S.; Ozaki, E.; Ojima, N. Anal. Chim. Acta 1998, 361 (1–2), 93. doi: 10.1016/s0003-2670(98)00013-0  doi: 10.1016/s0003-2670(98)00013-0

    79. [79]

      Nakata, S.; Akakabe, S.; Nakasuji, M.; Yoshikawa, K. Anal. Chem. 1996, 68 (13), 2067. doi: 10.1021/ac9510954  doi: 10.1021/ac9510954

    80. [80]

      Nakata, S.; Takemura, K.; Neya, K. Sens. Actuator B-Chem. 2001, 76 (1–3), 436. doi: 10.1016/s0925-4005(01)00652-9  doi: 10.1016/s0925-4005(01)00652-9

    81. [81]

      Huang, J. R.; Li, G. Y.; Huang, Z. Y.; Huang, X. J.; Liu, J. H. Sens. Actuator B-Chem. 2006, 114 (2), 1059. doi: 10.1016/j.snb.2005.07.070  doi: 10.1016/j.snb.2005.07.070

    82. [82]

      Ge, H.; Liu, J. Sens. Actuator B-Chem. 2006, 117 (2), 408. doi: 10.1016/j.snb.2005.11.037  doi: 10.1016/j.snb.2005.11.037

    83. [83]

      Dattoli, E. N.; Davydov, A. V.; Benkstein, K. D. Nanoscale 2012, 4 (5), 1760. doi: 10.1039/c2nr11885h  doi: 10.1039/c2nr11885h

    84. [84]

      Hossein-Babaei, F.; Amini, A. Sens. Actuator B-Chem. 2014, 194, 156. doi: 10.1016/j.snb.2013.12.061  doi: 10.1016/j.snb.2013.12.061

    85. [85]

      Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A. Meas. Sci. Technol. 2015, 26 (6), 065103. doi: 10.1088/0957-0233/26/6/065103  doi: 10.1088/0957-0233/26/6/065103

    86. [86]

      Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J. ACS Appl. Mater. Interfaces 2020, 12 (15), 17725. doi: 10.1021/acsami.0c00720  doi: 10.1021/acsami.0c00720

    87. [87]

      Kim, S. J.; Choi, S. J.; Jang, J. S.; Cho, H. J.; Kim, I. D. Accounts Chem. Res. 2017, 50 (7), 1587. doi: 10.1021/acs.accounts.7b00047  doi: 10.1021/acs.accounts.7b00047

    88. [88]

      Gancarz, M.; Nawrocka, A.; Rusinek, R. J. Food Sci. 2019, 84 (8), 2077. doi: 10.1111/1750-3841.14701  doi: 10.1111/1750-3841.14701

    89. [89]

      Liu, Q.; Zhao, N.; Zhou, D.; Sun, Y.; Sun, K.; Pan, L.; Tu, K. Food Chem. 2018, 262, 226. doi: 10.1016/j.foodchem.2018.04.100  doi: 10.1016/j.foodchem.2018.04.100

    90. [90]

      Gruber, J.; Nascimento, H. M.; Yamauchi, E. Y.; Li, R. W. C.; Esteves, C. H. A.; Rehder, G. P.; Gaylarde, C. C.; Shirakawa, M. A. Mater. Sci. Eng. C-Mater. Biol. Appl. 2013, 33 (5), 2766. doi: 10.1016/j.msec.2013.02.043  doi: 10.1016/j.msec.2013.02.043

    91. [91]

      Gwizdz, P.; Radecka, M.; Zakrzewska, K. Array of Gas Sensors Based on TiO2 upon Temperature Modulation. 15th International Scientific Conference on Optoelectronic and Electronic Sensors, Warsaw, Poland, 2018.

    92. [92]

      Polese, D.; Martinelli, E.; Catini, A.; D'Amico, A.; Di Natale, C. Proc. Eng. 2010, 5, 156. doi: 10.1016/j.proeng.2010.09.071  doi: 10.1016/j.proeng.2010.09.071

    93. [93]

      Zhou, C.; Wu, Z.; Guo, Y.; Li, Y.; Cao, H.; Zheng, X.; Dou, X. Sci. Rep. 2016, 6, 25588. doi: 10.1038/srep25588  doi: 10.1038/srep25588

    94. [94]

      Kwon, O. S.; Park, S. J.; Lee, J. S.; Park, E.; Kim, T.; Park, H. W.; You, S. A.; Yoon, H.; Jang, J. Nano Lett. 2012, 12 (6), 2797. doi: 10.1021/nl204587t  doi: 10.1021/nl204587t

    95. [95]

      Bianchi, G.; Rizzolo, A.; Grassi, M.; Provenzi, L.; Lo Scalzo, R. Postharvest Biol. Technol. 2018, 136, 1. doi: 10.1016/j.postharvbio.2017.09.009  doi: 10.1016/j.postharvbio.2017.09.009

    96. [96]

      Bieganowski, A.; Jozefaciuk, G.; Bandura, L.; Guz, L.; Lagod, G.; Franus, W. Sensors 2018, 18 (8), 2463. doi: 10.3390/s18082463  doi: 10.3390/s18082463

    97. [97]

      Jolayemi, O. S.; Tokatli, F.; Buratti, S.; Alamprese, C. Eur. Food Res. Technol. 2017, 243 (11), 2035. doi: 10.1007/s00217-017-2909-z  doi: 10.1007/s00217-017-2909-z

    98. [98]

      Giungato, P.; de Gennaro, G.; Barbieri, P.; Briguglio, S.; Amodio, M.; de Gennaro, L.; Lasigna, F. J. Clean Prod. 2016, 133, 1395. doi: 10.1016/j.jclepro.2016.05.148  doi: 10.1016/j.jclepro.2016.05.148

    99. [99]

      Giovanelli, G.; Limbo, S.; Buratti, S. Postharvest Biol. Technol. 2014, 98, 72. doi: 10.1016/j.postharvbio.2014.07.002  doi: 10.1016/j.postharvbio.2014.07.002

    100. [100]

      Liu, H.; Zeng, F. K.; Wang, Q. H.; Wu, H. S.; Tan, L. H. Eur. Food Res. Technol. 2013, 237 (2), 245. doi: 10.1007/s00217-013-1986-x  doi: 10.1007/s00217-013-1986-x

    101. [101]

      Thriumani, R.; Zakaria, A.; Hashim, Y. Z. H. Y.; Jeffree, A. I.; Helmy, K. M.; Kamarudin, L. M.; Omar, M. I.; Shakaff, A. Y. M.; Adom, A. H.; Persaud, K. C. BMC Cancer 2018, 18, 362. doi: 10.1186/s12885-018-4235-7  doi: 10.1186/s12885-018-4235-7

    102. [102]

      Nouri, B.; Mohtasebi, S. S.; Rafiee, S. Int. J. Food Prop. 2020, 23 (1), 9. doi: 10.1080/10942912.2019.1705851  doi: 10.1080/10942912.2019.1705851

    103. [103]

      Guney, S.; Atasoy, A. Int. J. Pattern Recognit. Artif. Intell. 2020, 34 (3), 2050003. doi: 10.1142/s0218001420500032  doi: 10.1142/s0218001420500032

    104. [104]

      Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Measurement 2020, 157, 107561. doi: 10.1016/j.measurement.2020.107561  doi: 10.1016/j.measurement.2020.107561

    105. [105]

      Tohidi, M.; Ghasemi-Varnamkhasti, M.; Ghafarinia, V.; Mohtasebi, S. S.; Bonyadian, M. Measurement 2018, 124, 120. doi: 10.1016/j.measurement.2018.04.006  doi: 10.1016/j.measurement.2018.04.006

    106. [106]

      Tohidi, M.; Ghasemi-Varnamkhasti, M.; Ghafarinia, V.; Bonyadian, M.; Mohtasebi, S. S. Int. Dairy J. 2018, 77, 38. doi: 10.1016/j.idairyj.2017.09.003  doi: 10.1016/j.idairyj.2017.09.003

    107. [107]

      Ali, A. A. S.; Farhat, A.; Mohamad, S.; Amira, A.; Bensaali, F.; Benammar, M.; Bermak, A. IEEE Sens. J. 2018, 18 (11), 4633. doi: 10.1109/jsen.2018.2822711  doi: 10.1109/jsen.2018.2822711

    108. [108]

      Hosseini-Golgoo, S. M.; Ebrahimpour, N. Comparison of Different Feature Reduction Methods in the Improvement of Gas Diagnosis of a Temperature Modulated Resistive Gas Sensor. 5th International Conference on Materials and Applications for Sensors and Transducers, Mykonos, Greece, 2016. doi: 10.1088/1757-899X/108/1/012001

    109. [109]

      Gao, K.; Li, S.; Zhuang, L.; Qin, Z.; Zhang, B.; Huang, L.; Wang, P. Biosens. Bioelectron. 2018, 102, 150. doi: 10.1016/j.bios.2017.08.055  doi: 10.1016/j.bios.2017.08.055

    110. [110]

      Bright, C. J.; Nallon, E. C.; Polcha, M. P.; Schnee, V. P. Anal. Chem. 2015, 87 (24), 12270. doi: 10.1021/acs.analchem.5b03559  doi: 10.1021/acs.analchem.5b03559

    111. [111]

      Chen, Q.; Song, J.; Bi, J.; Meng, X.; Wu, X. Food Res. Int. 2018, 105, 605. doi: 10.1016/j.foodres.2017.11.054  doi: 10.1016/j.foodres.2017.11.054

    112. [112]

      Gorji-Chakespari, A.; Nikbakht, A. M.; Sefidkon, F.; Ghasemi-Varnamkhasti, M.; Brezmes, J.; Llobet, E. Sensors 2016, 16 (5), 636. doi: 10.3390/s16050636  doi: 10.3390/s16050636

    113. [113]

      Xu, S.; Zhou, Z.; Lu, H.; Luo, X.; Lan, Y.; Zhang, Y.; Li, Y. Sensors 2014, 14 (10), 18114. doi: 10.3390/s141018114  doi: 10.3390/s141018114

    114. [114]

      Xiong, Y.; Xiao, X.; Yang, X.; Yan, D.; Zhang, C.; Zou, H.; Lin, H.; Peng, L.; Xiao, X.; Yan, Y. J. Pharm. Biomed. Anal. 2014, 91, 68. doi: 10.1016/j.jpba.2013.12.016  doi: 10.1016/j.jpba.2013.12.016

    115. [115]

      Tian, X.; Long, M.; Liu, Y. L.; Zhang, P.; Bai, X. Q.; Wang, J.; Wei, Z. B.; Chen, S. E.; Ma, Z. R.; Song, L.; et al. J. Food Qual. 2020, 2020, 6145189. doi: 10.1155/2020/6145189  doi: 10.1155/2020/6145189

    116. [116]

      Wijaya, D. R.; Sarno, R.; Zulaika, E. Comput. Electron. Agric. 2019, 157, 305. doi: 10.1016/j.compag.2019.01.001  doi: 10.1016/j.compag.2019.01.001

    117. [117]

      Schuermans, V. N. E.; Li, Z.; Jongen, A. C. H. M.; Wu, Z.; Shi, J.; Ji, J.; Bouvy, N. D. Surg. Innov. 2018, 25 (5), 429. doi: 10.1177/1553350618781267  doi: 10.1177/1553350618781267

    118. [118]

      Chang, F.; Heinemann, P. H. Trans. ASABE 2018, 61 (2), 399. doi: 10.13031/trans.12177  doi: 10.13031/trans.12177

    119. [119]

      Aleixandre, M.; Cabellos, J. M.; Arroyo, T.; Horrillo, M. C. Front. Bioeng. Biotechnol. 2018, 6, 14. doi: 10.3389/fbioe.2018.00014  doi: 10.3389/fbioe.2018.00014

    120. [120]

      Shahid, A.; Choi, J. H.; Rana, A. U. H. S.; Kim, H. S. Sensors 2018, 18 (5), 1446. doi: 10.3390/s18051446  doi: 10.3390/s18051446

    121. [121]

      Dong, W.; Zhao, J.; Hu, R.; Dong, Y.; Tan, L. Food Chem. 2017, 229, 743. doi: 10.1016/j.foodchem.2017.02.149  doi: 10.1016/j.foodchem.2017.02.149

    122. [122]

      Yao, M. S.; Cao, L. A.; Hou, G. L.; Cai, M. L.; Xiu, J. W.; Fang, C. H.; Yuan, F. L.; Chen, Y. F. RSC Adv. 2017, 7 (33), 2027. doi: 10.1039/c7ra02282d  doi: 10.1039/c7ra02282d

    123. [123]

      Jeong, S. Y.; Yoon, J. W.; Kim, T. H.; Jeong, H. M.; Lee, C. S.; Kang, Y. C.; Lee, J. H. J. Mater. Chem. A 2017, 5 (4), 1446. doi: 10.1039/c6ta09397c  doi: 10.1039/c6ta09397c

    124. [124]

      Luis Herrero, J.; Lozano, J.; Pedro Santos, J.; Ignacio Suarez, J. Chemosphere 2016, 152, 107. doi: 10.1016/j.chemosphere.2016.02.106  doi: 10.1016/j.chemosphere.2016.02.106

    125. [125]

      Sudarmaji, A.; Kitagawa, A. J. Sens. 2016, 2016, 1035902. doi: 10.1155/2016/1035902  doi: 10.1155/2016/1035902

    126. [126]

      Her, Y. C.; Yeh, B. Y.; Huang, S. L. ACS Appl. Mater. Interfaces 2014, 6 (12), 9150. doi: 10.1021/am5012518  doi: 10.1021/am5012518

    127. [127]

      LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. Neural Comput. 1989, 1 (4), 541. doi: 10.1162/neco.1989.1.4.541  doi: 10.1162/neco.1989.1.4.541

    128. [128]

      Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Proc. IEEE 1998, 86 (11), 2278. doi: 10.1109/5.726791  doi: 10.1109/5.726791

    129. [129]

      Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Commun. ACM 2017, 60 (6), 84. doi: 10.1145/3065386  doi: 10.1145/3065386

    130. [130]

      Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015. doi: 10.1109/cvpr.2015.7298594

    131. [131]

      He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2016. doi: 10.1109/CVPR.2016.90

    132. [132]

      Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations, San Diego, CA, USA, 2015.

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Sirui Xin Jiayin Zhou Kin Shing Chan . Smelling Disease: E-nose. University Chemistry, 2024, 39(9): 141-145. doi: 10.3866/PKU.DXHX202309051

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

Metrics
  • PDF Downloads(34)
  • Abstract views(1329)
  • HTML views(363)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return