Citation: Han Hongsa, Wang Yanqing, Zhang Yunlong, Cong Yuanyuan, Qin Jiaqi, Gao Rui, Chai Chunxiao, Song Yujiang. Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200801. doi: 10.3866/PKU.WHXB202008017 shu

Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline

  • Corresponding author: Song Yujiang, yjsong@dlut.edu.cn
  • Received Date: 6 August 2020
    Revised Date: 1 September 2020
    Accepted Date: 2 September 2020
    Available Online: 4 September 2020

    Fund Project: The project was supported by the National Key Research & Development Program of China (2019YFB1504501), the Fundamental Research Funds for the Central Universities (DUT19ZD208, DUT20ZD208), the Science & Technology Innovation Fund of Dalian (2020JJ25CY003), and the Special Funds for Guiding Local Scientific and Technological Development by the Central Government (2020JH6/10500021)the Science & Technology Innovation Fund of Dalian 2020JJ25CY003the Special Funds for Guiding Local Scientific and Technological Development by the Central Government 2020JH6/10500021the Fundamental Research Funds for the Central Universities DUT20ZD208the Fundamental Research Funds for the Central Universities DUT19ZD208the National Key Research & Development Program of China 2019YFB1504501

  • Oxygen reduction reaction (ORR) largely governs the overall performance of fuel cells. Commercial Pt/C has long been employed as the state-of-the-art electrocatalyst for ORR. The scarcity and high price of Pt, however, have restrained the broad application of fuel cells. Thus, it is crucial to substitute commercial Pt/C with non-precious metal or metal-free electrocatalysts. Among them, heteroatom-doped metal-free electrocatalysts (DMFEs) are promising candidates. Heteroatom doping can modify the electron distribution of carbon materials, generating active sites suitable for the adsorption and reduction of oxygen. Despite significant progress in recent years, high-performance DMFEs remain rare. It is possible to obtain improved ORR activity by the introduction of more active sites to DMFEs, in combination with a large specific surface area. Since Jasinski reported cobalt phthalocyanine is active for ORR more than half a century ago (Nature 1964, 201, 1212), tremendous investigations on metallomacrocycles as ORR electrocatalysts have been carried out. Nevertheless, few studies have further enriched the active sites of DMFEs by adding metallomacrocycles. Herein, we attempt to introduce metallomacrocycles to DMFEs, and to use templates to fabricate porous nanostructures with high specific surface areas. By controlling pH, positively charged aniline monomers can be adsorbed on the negatively charged surface of SiO2 nanospheres via electrostatic interactions. After in situ polymerization of aniline monomers, a polyaniline (PANI) coated SiO2 (SiO2@PANI) composite was formed. To introduce more active components, Fe tetrakis(4-methoxyphenyl) porphyrin (FeP) was deposited on the surface of SiO2@PANI by rotary evaporation method. After pyrolysis and removal of the template, FeP-modified porous PANI-based electrocatalysts were synthesized. Remarkably, the resultant 40%FeP/PANI-18-700 electrocatalysts demonstrate a high ORR activity, in terms of a half-wave potential (E1/2) of 0.843 V (vs. reversible hydrogen electrode (RHE)) in 0.1 mol·L-1 KOH aqueous solution, which is better than that of most DMFEs, and comparable to that of commercial Pt/C. The improvement of the ORR activity likely originates from the abundant pore structure (18 nm average pore diameter, pore volume of 1.1 cm3·g-1), large surface area (687.5 m2·g-1), and high N content (6.4%). Only 25 mV degradation of E1/2 was observed for 40%FeP/PANI-18-700 during the accelerated durability test, in contrast to a 74 mV negative shift of E1/2 for commercial Pt/C. Additionally, a hydroxide exchange membrane fuel cell (HEMFC) fabricated with 40%FeP/PANI-18-700 as the cathode approaches a peak power density of 42 mW·cm-2. The results exhibit 40%FeP/PANI-18-700 may have potential applications in HEMFCs. Our strategy highlights a new avenue for the design and synthesis of non-precious metal electrocatalysts toward ORR in alkaline media.
  • 加载中
    1. [1]

      Gür, T. M. Energy Environ. Sci. 2018, 11 (10), 2696. doi: 10.1039/c8ee01419a  doi: 10.1039/c8ee01419a

    2. [2]

      Wan, C.; Duan, X.; Huang, Y. Adv. Energy Mater. 2020, 10 (14), 1903815. doi: 10.1002/aenm.201903815  doi: 10.1002/aenm.201903815

    3. [3]

      Lü, Y.; Song, Y. J.; Liu, H. Y.; Li, H. Q. Acta Phys. -Chim. Sin. 2017, 33 (2), 283.  doi: 10.3866/PKU.WHXB201611071

    4. [4]

      Ouyang, C.; Wang, X. Inorg. Chem. Front. 2020, 7 (1), 28. doi: 10.1039/c9qi00962k  doi: 10.1039/c9qi00962k

    5. [5]

      Wang, J.; Wei, Z. D. Acta Phys. -Chim. Sin. 2017, 33 (5), 886.  doi: 10.3866/PKU.WHXB201702092

    6. [6]

      Quílez-Bermejo, J.; Morallón, E.; Cazorla-Amorós, D. Carbon 2020, 165, 434. doi: 10.1016/j.carbon.2020.04.068  doi: 10.1016/j.carbon.2020.04.068

    7. [7]

      Liu, D.; Dai, L.; Lin, X.; Chen, J. F.; Zhang, J.; Feng, X.; Müllen, K.; Zhu, X.; Dai, S. Adv. Mater. 2019, 31 (13), 1804863. doi: 10.1002/adma.201804863  doi: 10.1002/adma.201804863

    8. [8]

      Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323 (5915), 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    9. [9]

      Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C. P. Nano Energy 2013, 2 (2), 241. doi: 10.1016/j.nanoen.2012.09.002  doi: 10.1016/j.nanoen.2012.09.002

    10. [10]

      Liang, H. W.; Wu, Z. Y.; Chen, L. F.; Li, C.; Yun, S. H. Nano Energy 2015, 11 (11), 366. doi: 10.1016/j.nanoen.2014.11.008  doi: 10.1016/j.nanoen.2014.11.008

    11. [11]

      Yang, M.; Liu, Y.; Chen, H.; Yang, D.; Li, H. ACS Appl. Mater. Interfaces 2016, 8 (42), 28615. doi: 10.1021/acsami.6b09811  doi: 10.1021/acsami.6b09811

    12. [12]

      Yang, L.; Shui, J.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z. Adv Mater. 2019, 31 (13), e1804799. doi: 10.1002/adma.201804799  doi: 10.1002/adma.201804799

    13. [13]

      Paul, R.; Du, F.; Dai, L.; Ding, Y.; Wang, L. Z.; Wei, F.; Roy, A. Adv. Mater. 2019, 31 (13), 1805598. doi: 10.1002/adma.201805598  doi: 10.1002/adma.201805598

    14. [14]

      Jasinski, R. Nature 1964, 201 (4925), 1212. doi: 10.1038/2011212a0  doi: 10.1038/2011212a0

    15. [15]

      Cheng, N.; Kemna, C.; Goubert-Renaudin, S.; Wieckowski, A. Electrocatalysis 2012, 3 (3–4), 238. doi: 10.1007/s12678-012-0083-4  doi: 10.1007/s12678-012-0083-4

    16. [16]

      Kumar, A.; Zhang, Y.; Liu, W.; Sun, X. Coordin. Chem. Rev. 2020, 402, 213047. doi: 10.1016/j.ccr.2019.213047  doi: 10.1016/j.ccr.2019.213047

    17. [17]

      Zhang, Q.; Wang, J.; Yu, P.; Song, F.; Yin, X.; Chen, R.; Nie, H.; Zhang, X.; Yang, W. Carbon 2018, 132, 85. doi: 10.1016/j.carbon.2018.02.019  doi: 10.1016/j.carbon.2018.02.019

    18. [18]

      Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y. Chem. Soc. Rev. 2016, 45 (3), 517. doi: 10.1039/c5cs00670h  doi: 10.1039/c5cs00670h

    19. [19]

      Li, J.; Zhu, X.; Wang, J.; Rui, Z.; Zhang, S.; Li, Y.; Ding, R.; He. W.; Liu, J.; Zou, Z. ACS Appl. Nano Mater. 2020, 3 (1), 742. doi: 10.1021/acsanm.9b02260  doi: 10.1021/acsanm.9b02260

    20. [20]

      Wang, C.; Wang, F.; Liu, Z.; Zhao, Y.; Liu, Y.; Yue, Q.; Zhu, H.; Deng, Y.; Wu, Y.; Zhao, D. Nano Energy 2017, 41, 674. doi: 10.1016/j.nanoen.2017.10.025  doi: 10.1016/j.nanoen.2017.10.025

    21. [21]

      Kang, N.; Park, J. H.; Jin, M.; Park, N.; Lee, S. M.; Kim, H. J.; Kim, J. M.; Son, S. U. J. Am. Chem. Soc. 2013, 135 (51), 19115. doi: 10.1021/ja411263h  doi: 10.1021/ja411263h

    22. [22]

      Lv, Y.; Liu, H.; Li, J.; Chen, J.; Song, Y. J. Electroanal. Chem. 2020, 870, 114172. doi: 10.1016/j.jelechem.2020.114172  doi: 10.1016/j.jelechem.2020.114172

    23. [23]

      Li, J.; Liu, J. X.; Gao, X.; Goldsmith, B. R.; Cong, Y.; Zhai, Z.; Miao, S.; Jiang, Q.; Dou, Y.; Wang, J.; Shi, Q.; et al. J. Catal. 2019, 378, 113. doi: 10.1016/j.jcat.2019.08.018  doi: 10.1016/j.jcat.2019.08.018

    24. [24]

      Jang, J.; Ha, J.; Lim, B. Chem. Commun. 2006, 15, 1622. doi: 10.1039/b600167j  doi: 10.1039/b600167j

    25. [25]

      Primeau, N.; Vautey, C.; Langlet, M. Thin Solid Films 1997, 310 (1–2), 47. doi: 10.1016/S0040-6090(97)00340-4  doi: 10.1016/S0040-6090(97)00340-4

    26. [26]

      Hofman, R.; Westheim, J. G. F.; Pouwel, I.; Fransen T.; Gellings, P. J. Surf. Interface Anal. 2017, 24 (1), 1. doi: 10.1002/(SICI)1096-9918(199601)24:13.0.CO; 2-I  doi: 10.1002/(SICI)1096-9918(199601)24:13.0.CO;2-I

    27. [27]

      Nabid, M. R.; Sedghi, R.; Jamaat, P. R.; Safari, N.; Entezami, A. A. J. Appl. Polym. Sci. 2006, 102 (3), 2929. doi: 10.1002/app.24034  doi: 10.1002/app.24034

    28. [28]

      Nabid, M. R.; Zamiraei, Z.; Sedghi, R.; Safari, N. React. Funct. Polym. 2009, 69 (5), 319. doi: 10.1016/j.reactfunctpolym.2009.02.003  doi: 10.1016/j.reactfunctpolym.2009.02.003

    29. [29]

      Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Nat. Chem. 2016, 8 (7), 718. doi: 10.1038/NCHEM.2515  doi: 10.1038/NCHEM.2515

    30. [30]

      Lyon, L. A.; Keating, C. D.; Fox, A. P.; Baker, B. E.; Natan, M. J. Anal. Chem. 1998, 70 (12), 341. doi: 10.1021/a1980021p  doi: 10.1021/a1980021p

    31. [31]

      Xu, Z.; Zhou, Z.; Li, B.; Wang, G.; Leu, P. W. J. Phys. Chem. C 2020, 124 (16), 8689. doi: 10.1021/acs.jpcc.9b11090  doi: 10.1021/acs.jpcc.9b11090

    32. [32]

      Li, J.; Song, Y.; Zhang, G.; Liu, H.; Wang, Y.; Sun, S.; Guo, X. Adv. Funct. Mater. 2017, 27 (3), 1604356. doi: 10.1002/adfm.201604356  doi: 10.1002/adfm.201604356

    33. [33]

      Wei, Q.; Zhang, G.; Yang, X.; Chenitz, R.; Banham, D.; Yang, L.; Ye, S.; Knights, S.; Sun, S. ACS Appl. Mater. Interfaces 2017, 9 (42), 36944. doi: 10.1021/acsami.7b12666  doi: 10.1021/acsami.7b12666

    34. [34]

      Peng, S.; Guo, H. L.; Kang, X. F. Acta Phys. -Chim. Sin. 2014, 30 (9), 1778.  doi: 10.3866/PKU.WHXB201407112

    35. [35]

      Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Science 2016, 351 (6271), 361. doi: 10.1126/science.aad0832  doi: 10.1126/science.aad0832

    36. [36]

      Zhou, Y.; Cheng, Q. Q.; Huang, Q. H.; Zou, Z. Q.; Yan, L. M.; Yang, H. Acta Phys. -Chim. Sin. 2017, 33 (7), 1429.  doi: 10.3866/PKU.WHXB201704131

    37. [37]

      Xie, Y; Tang, C.; Hao, Z.; Lv, Y.; Yang, R.; Wei, X.; Deng, W.; Wang, A.; Yi, B.; Song, Y. Faraday Discuss 2014, 176, 393. doi: 10.1039/c4fd00121d  doi: 10.1039/c4fd00121d

    38. [38]

      Li, C.; Zhou, E.; Yu, Z.; Liu, H.; Xiong, M. Appl. Catal. B 2020, 269, 118771. doi: 10.1016/j.apcatb.2020.118771  doi: 10.1016/j.apcatb.2020.118771

    39. [39]

      Tian, P.; Zang, J.; Song, S.; Zhou, S.; Gao, H.; Xu, H.; Tian, X.; Wang, Y. J. Power Sources 2020, 448, 227443. doi: 10.1016/j.jpowsour.2019.227443  doi: 10.1016/j.jpowsour.2019.227443

    40. [40]

      Yang, J.; Xiang, F.; Guo, H.; Wang, L.; Niu, X. Carbon 2020, 156, 514. doi: 10.1016/j.carbon.2019.09.087  doi: 10.1016/j.carbon.2019.09.087

    41. [41]

      Tavakkoli, M.; Flahaut, E.; Peljo, P.; Sainio, J.; Davodi, F.; Lobiak, E. V.; Mustonen, K.; Kauppinen, E. I. ACS Catal. 2020, 10 (8), 4647. doi: 10.1021/acscatal.0c00352  doi: 10.1021/acscatal.0c00352

    42. [42]

      Park, H.; Oh, S.; Lee, S.; Choi, S.; Oh, M. Appl. Catal. B 2019, 246, 322. doi: 10.1016/j.apcatb.2019.01.083  doi: 10.1016/j.apcatb.2019.01.083

    43. [43]

      Li, M.; Liu, Y.; Han, L.; Xiao, J.; Zeng, X.; Zhang, C.; Xu, M.; Dong, P.; Zhang, Y. J. Mater. Chem. A 2019, 7 (30), 17923. doi: 10.1039/c9ta04388h  doi: 10.1039/c9ta04388h

    44. [44]

      Chen, S.; Zheng, Y.; Zhang, B.; Feng, Y.; Zhu, J.; Xu, J.; Zhang, C.; Feng, W.; Liu, T. ACS Appl. Mater. Interfaces 2019, 11 (1), 1384. doi: 10.1021/acsami.8b16920  doi: 10.1021/acsami.8b16920

    45. [45]

      Peng, X.; Zhang, L.; Chen, Z.; Zhong, L.; Zhao, D.; Chi, X.; Zhao, X.; Li, L.; Lu, X.; Leng, K.; et al. Adv. Mater. 2019, 31 (16), e1900341. doi: 10.1002/adma.201900341  doi: 10.1002/adma.201900341

    46. [46]

      Mahmood, A.; Tabassum, H.; Zhao, R.; Guo, W.; Aftab, W.; Liang, Z.; Sun, Z.; Zou, R. Small 2018, 14 (49), e1803500. doi: 10.1002/smll.201803500  doi: 10.1002/smll.201803500

    47. [47]

      Zhu, J.; Li, W.; Li, S.; Zhang, J.; Zhou, H.; Zhang, C.; Zhang, J.; Mu, S. Small 2018, 14 (21), e1800563. doi: 10.1002/smll.201800563  doi: 10.1002/smll.201800563

    48. [48]

      Lv, Y.; Yang, L.; Cao, D. ACS Appl. Mater. Interfaces 2017, 9 (38), 32859. doi: 10.1021/acsami.7b11371  doi: 10.1021/acsami.7b11371

    49. [49]

      Jiang, H.; Wang, Y.; Hao, J.; Liu, Y.; Li, W.; Li, J. Carbon 2017, 122, 64. doi: 10.1016/j.carbon.2017.06.043  doi: 10.1016/j.carbon.2017.06.043

    50. [50]

      Yang, H. B.; Miao, J.; Hung, S. F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L. Sci. Adv. 2016, 2 (4), e1501122. doi: 10.1126/sciadv.1501122  doi: 10.1126/sciadv.1501122

    51. [51]

      Li, L.; Chen, S. Y.; Wei, G. H.; Zhang, J. L. Acta Phys. -Chim. Sin. 2021, 37, 1911011.  doi: 10.3866/PKU.WHXB201911011

    52. [52]

      Xia, W.; Mahmood A.; Liang, Z.; Zou, R.; Guo, S. Angew. Chem. Int. Edit. 2016, 55 (8), 2650. doi: 10.1002/anie.201504830  doi: 10.1002/anie.201504830

    53. [53]

      Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35 (5), 472.  doi: 10.3866/PKU.WHXB201806131

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    11. [11]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

Metrics
  • PDF Downloads(17)
  • Abstract views(574)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return