Citation: Kang Danmiao, Hart Noam, Xiao Muye, Lemmon John P.. Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200801. doi: 10.3866/PKU.WHXB202008013 shu

Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research

  • Corresponding author: Kang Danmiao, kangdanmiao@nicenergy.com
  • Received Date: 5 August 2020
    Revised Date: 3 September 2020
    Available Online: 9 September 2020

  • Lithium is a promising anode material for next-generation high-energy-density rechargeable batteries owing to its high specific capacity, low density, and low electrochemical reduction potential. However, dendrite growth during cycling impedes its practical application and causes safety hazards. Extensive research has been conducted to obtain dendrite-free safe Li anodes with an extended cycle life by electrolyte or anode surface modification. In previous studies, the symmetrical Li/Li cell test was widely applied to evaluate the effect of various Li anode modification methods on the cycle stability and Li deposition overpotential. However, a general criterion has not yet been established to identify the short circuit in Li/Li cells. Some researchers have even made incorrect conclusions based on the Li/Li cycling data. The most common misjudgment is the ignorance of short circuit signals and mixing up of soft short circuit and normal potential decrease caused by electrode activation. In some studies, the fractal voltage signals were attributed to the unstable activation process of the symmetrical cell. Therefore, this study uses an in situ optical cell to demonstrate that a short circuit caused by the contact of dendrites from two opposite electrodes can cause a sudden drop in cell voltage to certain extent. According to the reversibility of the voltage, the short circuit induced by dendrite growth can be classified into unrecoverable hard short circuits and recoverable soft short circuits. Typical short circuit data were summarized and described to establish a rule to determine the different types of short circuits. The voltage profiles provide characteristic signals to distinguish between the soft short circuit, hard short circuit, and cell activation processes in symmetrical cells. Furthermore, this study provides a reference for identifying dendrite growth and cell short circuits, which is important for confirming the practical effect of different modification methods.
  • 加载中
    1. [1]

      Whittingham, S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c  doi: 10.1021/cr020731c

    2. [2]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    3. [3]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    4. [4]

      Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y. Proc. Natl. Acad. Sci. 2017, 114, 11069. doi: 10.1073/pnas.1708489114  doi: 10.1073/pnas.1708489114

    5. [5]

      Cui, Y. Acta Phys. -Chim. Sin. 2019, 35, 661.  doi: 10.3866/PKU.WHXB201809053

    6. [6]

      Ran, Q.; Sun, T. Y.; Han, C. Y.; Zhang, H. N.; Yan, J.; Wang, J. L. Acta Phys. -Chim. Sin. 2020, 36, 1912068.  doi: 10.3866/PKU.WHXB201912068

    7. [7]

      Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Chem 2017, 2 (2), 258. doi: 10.1016/j.chempr.2017.01.003  doi: 10.1016/j.chempr.2017.01.003

    8. [8]

      Cao, X; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Mattenw. B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4 (9), 796. doi: 10.1038/s41560-019-0464-5  doi: 10.1038/s41560-019-0464-5

    9. [9]

      Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy 2018, 3 (9), 739. doi: 10.1038/s41560-018-0199-8  doi: 10.1038/s41560-018-0199-8

    10. [10]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    11. [11]

      Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. Nat. Energy 2019, 4 (10), 882. doi: 10.1038/s41560-019-0474-3  doi: 10.1038/s41560-019-0474-3

    12. [12]

      Pang, Q.; Liang, X.; Shyamsunder, A.; Nazar, L. F. Joule 2017, 1 (4), 871. doi: 10.1016/j.joule.2017.11.009  doi: 10.1016/j.joule.2017.11.009

    13. [13]

      Wu, H.; Zhuo, D.; Kong, D.; Cui, Y. Nat. Commun. 2014, 5, 5193. doi: 10.1038/ncomms6193  doi: 10.1038/ncomms6193

    14. [14]

      Lu, Y.; Korf, K.; Kambe, Y.; Tu, Z.; Archer, L. A. Angew. Chem. Int. Ed. 2014, 126 (2), 498. doi: 10.1002/anie.201307137  doi: 10.1002/anie.201307137

    15. [15]

      Lu, Y.; Tu, Z.; Archer, L. A. Nat. Mater. 2014, 13 (10), 961. doi: 10.1038/nmat4041  doi: 10.1038/nmat4041

    16. [16]

      Zhang, W.; Zhuang, H. L.; Fan, L.; Gao, L.; Lu, Y. Sci. Adv. 2018, 4 (2), eaar4410. doi: 10.1126/sciadv.aar4410  doi: 10.1126/sciadv.aar4410

    17. [17]

      Wood, K. N.; Noked, M.; Dasgupta, N. P. ACS Energy Lett. 2017, 2 (3), 664. doi: 10.1021/acsenergylett.6b00650  doi: 10.1021/acsenergylett.6b00650

    18. [18]

      Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. J. Mater. Chem. 2017, 5 (23), 11671. doi: 10.1039/C7TA00371D  doi: 10.1039/C7TA00371D

    19. [19]

      Ping, W.; Wang, C.; Lin, Z.; Hitz, E.; Yang, C.; Wang, H.; Hu, L. Adv. Energy Mater. 2020, 10, 2000702. doi: 10.1002/aenm.202000702  doi: 10.1002/aenm.202000702

    20. [20]

      Kang, D.; Hart, N.; Koh, J.; Ma, L.; Liang, W.; Xu, J.; Sardar, S.; Lemmon, J. P. Energy Storage Mater. 2020, 24, 618. doi: 10.1016/j.ensm.2019.06.014  doi: 10.1016/j.ensm.2019.06.014

    21. [21]

      Bai, P.; Guo, J.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Joule 2018, 2, 2434. doi: 10.1016/j.joule.2018.08.018  doi: 10.1016/j.joule.2018.08.018

    22. [22]

      Ely, Y. E.; Aurbach, D. Langmuir 1992, 8 (7), 1845. doi: 10.1021/la00043a026  doi: 10.1021/la00043a026

  • 加载中
    1. [1]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    5. [5]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    6. [6]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    7. [7]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    9. [9]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    10. [10]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    11. [11]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    14. [14]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    15. [15]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    19. [19]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    20. [20]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

Metrics
  • PDF Downloads(262)
  • Abstract views(4334)
  • HTML views(1946)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return