Citation: Wang Qian, Wu Kai, Wang Hangchao, Liu Wen, Zhou Henghui. Lithiophilic 3D SnS2@Carbon Fiber Cloth for Stable Li Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200709. doi: 10.3866/PKU.WHXB202007092 shu

Lithiophilic 3D SnS2@Carbon Fiber Cloth for Stable Li Metal Anode

  • Corresponding author: Liu Wen, wenliu@mail.buct.edu.cn Zhou Henghui, hhzhou@pku.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 31 July 2020
    Revised Date: 1 September 2020
    Accepted Date: 11 September 2020
    Available Online: 16 September 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21771018, 21875004), the National Natural Science Foundation of Beijing (2192018), and the PULEAD Technology Industry Co. Ltdthe National Natural Science Foundation of Beijing 2192018the National Natural Science Foundation of China 21771018the National Natural Science Foundation of China 21875004

  • Li metal batteries (LMBs) have attracted worldwide attention in recent years with a focus on the extremely high theoretical energy density of 3580 Wh·kg-1 (Li-O2) and 2600 Wh·kg-1 (Li-S), which benefit from the highest specific capacity (3860 mAh·g-1) and the lowest negative potential (-3.04 V) of Li metal anodes. However, further development and practical applications are hindered by the formation of Li dendrites and a large volume expansion, which not only lowers the coulombic efficiency but also leads to many security risks, such as internal short circuits, fires, and even explosions. In this study, we selected a low-cost and commercial carbon fiber cloth (CC) as a 3D framework for accommodating Li metal and relieving the volume expansion during the Li plating/stripping process. In addition, lithiophilic SnS2 nano-sheet arrays were grown on the surface of carbon fiber cloth via a one-step method. The SnS2 arrays can be partially converted to Li-Sn alloy and Li2S components during the Li plating process. The as-formed Li-Sn alloy can provide reversible sites for further Li deposition and improve the electrochemical kinetics process. As a typical component of the solid electrolyte interface (SEI), Li2S can promote Li+ migration at SEI and ensure a homogeneous distribution of Li+-flux near the electrode surface, thereby reducing the overpotential of Li deposition and suppressing the formation and growth of Li dendrites. Meanwhile, the 3D carbon skeleton can also reduce the local current density of the electrode because of its high specific surface area to ensure uniform Li deposition. Benefiting from the design of the combination bulk and the surface, the composite SnS2@carbon fiber cloth (SnS2@CC) demonstrated excellent prospects for practical applications. Upon pairing with Li foils, the SnS2@CC electrode displayed stable cycling performance with improved coulombic efficiency (> 98%) over 100 cycles at 1.0 mA·cm-2/5.0 mAh·cm-2. After loading 10 mAh·cm-2 Li metal, the composite Li metal anode could run over 400 h with a low overpotential of 60 mV at a current density of 1.0 mA·cm-2, even when the current density was increased to 2.0 mA·cm-2; additionally, a low overpotential of 85 mV could also be maintained over 350 h, manifesting one of the most stable composite Li metal anodes to date. Moreover, when the composite Li metal anode was assembled with a LiFePO4 cathode, the full cells exhibited a high initial specific discharge capacity of 160.6 mAh·g-1 and high cycling stability. At a rate of 2.0C, the cell showed a high capacity retention of 80.6% after 500 cycles.We believe that the lithiophilic SnS2@CC composite electrode offers a simple and effective strategy to suppress dendritic Li growth and relieve the volume change during the charging/discharging process.
  • 加载中
    1. [1]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19. doi: 10.1038/nchem.2085  doi: 10.1038/nchem.2085

    2. [2]

      Udaeta, M. E. M.; Galvao, L. C. R.; Rigolin, P. H. D.; Bernal, J. L. D. Renew. Sust. Energy Rev. 2016, 66, 190. doi: 10.1016/j.rser.2016.07.008  doi: 10.1016/j.rser.2016.07.008

    3. [3]

      Yang, Z. G.; Zhang, J. L.; M. Kintner-Meyer, C. W.; Lu, X. C.; Choi, D. W.; Lemmon, J. P.; Liu, B. J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v  doi: 10.1021/cr100290v

    4. [4]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    5. [5]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    6. [6]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    7. [7]

      Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Energy Environ. Sci 2012, 5, 7854. doi: 10.1039/c2ee21892e  doi: 10.1039/c2ee21892e

    8. [8]

      Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2017, 16, 16. doi: 10.1038/nmat4834  doi: 10.1038/nmat4834

    9. [9]

      Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141  doi: 10.1038/nenergy.2016.141

    10. [10]

      Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 9994. doi: /10.1002/anie.201201429  doi: 10.1002/anie.201201429

    11. [11]

      Li, S.; Jiang, M. W.; Xie, Y.; Xu, H.; Jia, J. Y.; Li, J. Adv. Mater. 2018, 30, 1706375. doi: 10.1002/adma.201706375  doi: 10.1002/adma.201706375

    12. [12]

      Liu, B.; Zhang, J. G.; Xu, W. Joule 2018, 2, 833. doi: 10.1016/j.joule.2018.03.008  doi: 10.1016/j.joule.2018.03.008

    13. [13]

      Liu, S.; Yao, L.; Zhang, Q.; Li, L. L.; Hu, N. T.; Wei, L. M.; Wei, H. Acta Phys. -Chim. Sin.2017, 33, 2339.  doi: 10.3866/PKU.WHXB201706021

    14. [14]

      Lin, D. C.; Liu, Y. Y.; Cui, Y. Nat. Nanotech.2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    15. [15]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater.2012, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    16. [16]

      Mizuno, F.; Arthur, T. S.; Takechi, K. ACS Energy Lett. 2016, 1, 542. doi: 10.1021/acsenergylett.6b00200  doi: 10.1021/acsenergylett.6b00200

    17. [17]

      Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Nat. Energy 2016, 1, 1. doi: 10.1038/nenergy.2016.114  doi: 10.1038/nenergy.2016.114

    18. [18]

      Li, P. R.; Xu, T. H.; Ding, P.; Deng, J.; Zha, C. Y.; Wu, Y. L.; Wang, Y. Y.; Li, Y. G. Energy Storage Mater. 2018, 15, 8. doi: 10.1016/j.ensm.2018.03.008  doi: 10.1016/j.ensm.2018.03.008

    19. [19]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    20. [20]

      Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Hu, C. J.; Lu, J.; Liu, W.; Sun, X. M.; Qiu, J. Y.; Zhou, H. H. Adv. Mater. 2019, 31, 1903248. doi: 10.1002/adma.201903248  doi: 10.1002/adma.201903248

    21. [21]

      Wang, Q.; Yang, C. K.; Zhang, Y. F.; Yang, J. J.; Wu, K.; Hu, C. J.; Lu, J.; Liu, W.; Zhou, H. H. ACS Appl. Energy Mater. 2019, 2, 4602. doi: 10.1021/acsaem.9b00929  doi: 10.1021/acsaem.9b00929

    22. [22]

      Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    23. [23]

      Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Adv. Mater. 2017, 29, 1603755. doi: 10.1002/adma.201603755  doi: 10.1002/adma.201603755

    24. [24]

      Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Nano Lett. 2016, 16, 4431. doi: 10.1021/acs.nanolett.6b01581  doi: 10.1021/acs.nanolett.6b01581

    25. [25]

      Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Qi, L. Y.; Tang, H.; Zhang, Z. Y.; Liu, W.; Zhou, H. H. Energy Storage Mater. 2018, 15, 249. doi: 10.1016/j.ensm.2018.04.030  doi: 10.1016/j.ensm.2018.04.030

    26. [26]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun.2015, 6, 8058. doi: 10.1038/ncomms9058  doi: 10.1038/ncomms9058

    27. [27]

      Chao, J. F.; Zhang, X. T.; Xing, S. M.; Fan, Q. F.; Yang, J. P.; Zhao, L. H.; Li, X. Mater. Sci. Eng. B-Solid State Mater. Adv. 2016, 210, 24. doi: 10.1016/j.mseb.2016.03.007  doi: 10.1016/j.mseb.2016.03.007

    28. [28]

      Cheng, X. B.; Yan, C.; Peng, H. J.; Huang, J. Q.; Yang, S. T.; Zhang, Q. Energy Storage Mater. 2018, 10, 199. doi: 10.1016/j.ensm.2017.03.008  doi: 10.1016/j.ensm.2017.03.008

    29. [29]

      Wan, G. J.; Guo, F. H.; Li, H.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Li, Y. X.; Yang, H. X. ACS Appl. Mater. Interfaces 2018, 10, 593. doi: 10.1021/acsami.7b14662  doi: 10.1021/acsami.7b14662

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    7. [7]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(25)
  • Abstract views(1441)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return