Citation: Wang Yanqiu, Zhong Zixin, Liu Tangkang, Liu Guoliang, Hong Xinlin. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200708. doi: 10.3866/PKU.WHXB202007089 shu

Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol

  • Corresponding author: Liu Guoliang, liugl@whu.edu.cn Hong Xinlin, hongxl@whu.edu.cn
  • Received Date: 29 July 2020
    Revised Date: 24 August 2020
    Accepted Date: 25 August 2020
    Available Online: 28 August 2020

    Fund Project: the National Natural Science Foundation of China 21872106the Fundamental Research Funds for the Central Universities, China 2042019kf0019This work is financially supported by the National Natural Science Foundation of China (21872106) and the Fundamental Research Funds for the Central Universities, China (2042019kf0019)

  • Cu/ZrO2 catalysts have demonstrated effective in hydrogenation of CO2 to methanol, during which the Cu-ZrO2 interface plays a key role. Thus, maximizing the number of Cu-ZrO2 interface active sites is an effective strategy to develop ideal catalysts. This can be achieved by controlling the active metal size and employing porous supports. Metal-organic frameworks (MOFs) are valid candidates because of their rich, open-framework structures and tunable compositions. UiO-66 is a rigid metal-organic skeleton material with excellent hydrothermal and chemical stability that comprises Zr as the metal center and terephthalic acid (H2BDC) as the organic ligand. Herein, porous UiO-66 was chosen as the ZrO2 precursor, which can confine Cu nanoparticles within its pores/defects. As a result, we constructed a Cu-ZrO2 nanocomposite catalyst with high activity for CO2 hydrogenation to methanol. Many active interfaces could form when the catalysts were calcined at a moderate temperature, and the active interface was optimized by adjusting the calcination temperature and active metal size. Furthermore, the Cu-ZrO2 interface remained after CO2 hydrogenation to methanol, as confirmed by transmission electron microscopy (TEM), demonstrating the stability of the active interface. The catalyst structure and hydrogenation activity were influenced by the content of the active component and the calcination temperature; therefore, these parameters were explored to obtain an optimized catalyst. At 280 ℃ and 4.5 MPa, the optimized CZ-0.5-400 catalyst gave the highest methanol turnover frequency (TOF) of 13.4 h-1 with a methanol space-time yield (STY) of 587.8 g·kg-1·h-1 (calculated per kilogram of catalyst, the same below), a CO2 conversion of 12.6%, and a methanol selectivity of 62.4%. In situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) of CO adsorption over the optimized catalyst revealed a predominant, unreducible Cu+ species that was also identified by X-ray photoelectron spectroscopy (XPS). The favorable activity observed was due to this abundant Cu+ species coming from the Cu+-ZrO2 interface that served as the methanol synthesis active center and acted as a bridge for transporting hydrogen from the active Cu species to ZrO2. In addition, the oxygen vacancies of ZrO2 promoted the adsorption and activation of CO2. These vacancies and Cu+ trapped in the ZrO2 lattice are the active sites for methanol synthesis from CO2 hydrogenation. The X-ray diffraction (XRD) patterns of the catalyst before and after reaction revealed the stability of its structure, which was further verified by time-on-stream (TOS) tests. Furthermore, in situ DRIFTS and temperature-programmed surface reaction-mass spectroscopy (TPSR-MS) revealed the reaction mechanism of CO2 hydrogenation to methanol, which followed an HCOO-intermediated pathway.
  • 加载中
    1. [1]

      Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Joule 2019, 3 (4), 920. doi: 10.1016/j.joule.2019.03.003  doi: 10.1016/j.joule.2019.03.003

    2. [2]

      Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117 (14), 9804. doi: 10.1021/acs.chemrev.6b00816  doi: 10.1021/acs.chemrev.6b00816

    3. [3]

      Han, B. Acta Phys. -Chim. Sin. 2018, 34 (6), 555.  doi: 10.3866/PKU.WHXB201710302

    4. [4]

      Yin, Y.; Hu, B.; Liu, G.; Zhou, X.; Hong, X. Acta Phys. -Chim. Sin. 2019, 35 (3), 327.  doi: 10.3866/PKU.WHXB201803212

    5. [5]

      Ro, I.; Liu, Y.; Ball, M. R.; Jackson, D. H. K.; Chada, J. P.; Sener, C.; Kuech, T. F.; Madon, R. J.; Huber, G. W.; Dumesic, J. A. ACS Catal. 2016, 6 (10), 7040. doi: 10.1021/acscatal.6b01805  doi: 10.1021/acscatal.6b01805

    6. [6]

      Samson, K.; Sliwa, M.; Socha, R. P.; Gora-Marek, K.; Mucha, D.; Rutkowska-Zbik, D.; Paul, J. F.; Ruggiero-Mikolajczyk, M.; Grabowski, R.; Sloczynski, J. ACS Catal. 2014, 4 (10), 3730. doi: 10.1021/cs500979c  doi: 10.1021/cs500979c

    7. [7]

      Tada, S.; Katagiri, A.; Kiyota, K.; Honma, T.; Kamei, H.; Nariyuki, A.; Uchida, S.; Satokawa, S. J. Phys. Chem. C 2018, 122 (10), 5430. doi: 10.1021/acs.jpcc.7b11284  doi: 10.1021/acs.jpcc.7b11284

    8. [8]

      Witoon, T.; Chalorngtham, J.; Dumrongbunditkul, P.; Chareonpanich, M.; Limtrakul, J. Chem. Eng. J. 2016, 293, 327. doi: 10.1016/j.cej.2016.02.069  doi: 10.1016/j.cej.2016.02.069

    9. [9]

      Liu, Y.; Hu, B.; Yin, Y.; Liu, G.; Hong, X. Acta Phys. -Chim. Sin. 2019, 35 (2), 223.  doi: 10.3866/PKU.WHXB201802263

    10. [10]

      Ye, W. Acta Phys. -Chim. Sin. 2017, 33 (5), 857.  doi: 10.3866/PKU.WHXB201703172

    11. [11]

      Centi, G.; Perathoner, S. Catal. Today 2009, 148 (3-4), 191. doi: 10.1016/j.cattod.2009.07.075  doi: 10.1016/j.cattod.2009.07.075

    12. [12]

      Porosoff, M. D.; Yan, B.; Chen, J. G. Energy Environ. Sci. 2016, 9 (1), 62. doi: 10.1039/c5ee02657a  doi: 10.1039/c5ee02657a

    13. [13]

      Hu, B.; Yin, Y.; Zhong, Z.; Wu, D.; Liu, G.; Hong, X. Catal. Sci. Technol. 2019, 9 (10), 2673. doi: 10.1039/c8cy02546k  doi: 10.1039/c8cy02546k

    14. [14]

      Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355 (6331), 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    15. [15]

      Baltes, C.; Vukojevic, S.; Schueth, F. J. Catal. 2008, 258 (2), 334. doi: 10.1016/j.jcat.2008.07.004  doi: 10.1016/j.jcat.2008.07.004

    16. [16]

      Saito, M.; Fujitani, T.; Takeuchi, M.; Watanabe, T. Appl. Catal. A 1996, 138 (2), 311. doi: 10.1016/0926-860x(95)00305-3  doi: 10.1016/0926-860x(95)00305-3

    17. [17]

      Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjaer, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Science 2016, 352 (6288), 969. doi: 10.1126/science.aaf0718  doi: 10.1126/science.aaf0718

    18. [18]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kuehl, S.; Haevecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. -L.; et al. Science 2012, 336 (6083), 893. doi: 10.1126/science.1219831  doi: 10.1126/science.1219831

    19. [19]

      Gao, P.; Li, F.; Zhao, N.; Wang, H.; Wei, W.; Sun, Y. -H. Acta Phys. -Chim. Sin. 2014, 30 (6), 1155.  doi: 10.3866/PKU.WHXB201401252

    20. [20]

      Li, K.; Chen, J. G. ACS Catal. 2019, 9 (9), 7840. doi: 10.1021/acscatal.9b01943  doi: 10.1021/acscatal.9b01943

    21. [21]

      Li, W.; Nie, X.; Jiang, X.; Zhang, A.; Ding, F.; Liu, M.; Liu, Z.; Guo, X.; Song, C. Appl. Catal. B 2018, 220, 397. doi: 10.1016/j.apcatb.2017.08.048  doi: 10.1016/j.apcatb.2017.08.048

    22. [22]

      Tada, S.; Kayamori, S.; Honma, T.; Kamei, H.; Nariyuki, A.; Kon, K.; Toyao, T.; Shimizu, K. -I.; Satokawa, S. ACS Catal. 2018, 8 (9), 7809. doi: 10.1021/acscatal.8b01396  doi: 10.1021/acscatal.8b01396

    23. [23]

      Larmier, K.; Liao, W. -C.; Tada, S.; Lam, E.; Verel, R.; Bansode, A.; Urakawa, A.; Comas-Vives, A.; Coperet, C. Angew. Chem. Int. Ed. 2017, 56 (9), 2318. doi: 10.1002/anie.201610166  doi: 10.1002/anie.201610166

    24. [24]

      Rhodes, M. D.; Bell, A. T. J. Catal. 2005, 233 (1), 198. doi: 10.1016/j.jcat.2005.04.026  doi: 10.1016/j.jcat.2005.04.026

    25. [25]

      Liu, T.; Hong, X.; Liu, G. ACS Catal. 2020, 10 (1), 93. doi: 10.1021/acscatal.9b03738  doi: 10.1021/acscatal.9b03738

    26. [26]

      Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Fernandez Sanz, J.; et al. Science 2014, 345 (6196), 546. doi: 10.1126/science.1253057  doi: 10.1126/science.1253057

    27. [27]

      van de Water, L. G. A.; Wilkinson, S. K.; Smith, R. A. P.; Watson, M. J. J. Catal. 2018, 364, 57. doi: 10.1016/j.jcat.2018.04.026  doi: 10.1016/j.jcat.2018.04.026

    28. [28]

      Choi, E. J.; Lee, Y. H.; Lee, D. -W.; Moon, D. -J.; Lee, K. -Y. Mol. Catal. 2017, 434, 146. doi: 10.1016/j.mcat.2017.02.005  doi: 10.1016/j.mcat.2017.02.005

    29. [29]

      Ouyang, B.; Tan, W.; Liu, B. Catal. Commun. 2017, 95, 36. doi: 10.1016/j.catcom.2017.03.005  doi: 10.1016/j.catcom.2017.03.005

    30. [30]

      Sato, A. G.; Volanti, D. P.; Meira, D. M.; Damyanova, S.; Longo, E.; Bueno, J. M. C. J. Catal. 2013, 307, 1. doi: 10.1016/j.jcat.2013.06.022  doi: 10.1016/j.jcat.2013.06.022

    31. [31]

      Tang, Q. -L.; Hong, Q. -J.; Liu, Z. -P. J. Catal. 2009, 263 (1), 114. doi: 10.1016/j.jcat.2009.01.017  doi: 10.1016/j.jcat.2009.01.017

    32. [32]

      Therdthianwong, S.; Siangchin, C.; Therdthianwong, A. Fuel Process. Technol. 2008, 89 (2), 160. doi: 10.1016/j.fuproc.2007.09.003  doi: 10.1016/j.fuproc.2007.09.003

    33. [33]

      Wei, J. M.; Xu, B. Q.; Li, J. L.; Cheng, Z. X.; Zhu, Q. M. Appl. Catal., A 2000, 196 (2), L167. doi: 10.1016/s0926-860x(99)00504-9  doi: 10.1016/s0926-860x(99)00504-9

    34. [34]

      An, B.; Zhang, J.; Cheng, K.; Ji, P.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2017, 139 (10), 3834. doi: 10.1021/jacs.7b00058  doi: 10.1021/jacs.7b00058

    35. [35]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341 (6149), 974. doi: 10.1126/science.1230444  doi: 10.1126/science.1230444

    36. [36]

      Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somotjai, G. A. Nano Lett. 2016, 16 (12), 7645. doi: 10.1021/acs.nanolett.6b03637  doi: 10.1021/acs.nanolett.6b03637

    37. [37]

      Wang, X.; Zhou, J.; Fu, H.; Li, W.; Fan, X.; Xin, G.; Zheng, J.; Li, X. J. Mater. Chem. A 2014, 2 (34), 14064. doi: 10.1039/c4ta01506a  doi: 10.1039/c4ta01506a

    38. [38]

      Zhu, W.; Zhang, C.; Li, Q.; Xiong, L.; Chen, R.; Wan, X.; Wang, Z.; Chen, W.; Deng, Z.; Peng, Y. Appl. Catal. B 2018, 238, 339. doi: 10.1016/j.apcatb.2018.07.024  doi: 10.1016/j.apcatb.2018.07.024

    39. [39]

      Han, Y.; Xu, H.; Su, Y.; Xu, Z. -L.; Wang, K.; Wang, W. J. Catal. 2019, 370, 70. doi: 10.1016/j.jcat.2018.12.005  doi: 10.1016/j.jcat.2018.12.005

    40. [40]

      Hou, S. L.; Dong, J.; Jiang, X. L.; Jiao, Z. H.; Zhao, B. Angew. Chem. Int. Ed. 2019, 58 (2), 577. doi: 10.1002/anie.201811506  doi: 10.1002/anie.201811506

    41. [41]

      Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Chem. Mater. 2016, 28 (11), 3749. doi: 10.1021/acs.chemmater.6b00602  doi: 10.1021/acs.chemmater.6b00602

    42. [42]

      Aguila, G.; Guerrero, S.; Araya, P. Catal. Commun. 2008, 9 (15), 2550. doi: 10.1016/j.catcom.2008.07.011  doi: 10.1016/j.catcom.2008.07.011

    43. [43]

      Espinos, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.; Gonzalez-Elipe, A. R. J. Phys. Chem. B 2002, 106 (27), 6921. doi: 10.1021/jp014618m  doi: 10.1021/jp014618m

    44. [44]

      Ritzkopf, I.; Vukojevic, S.; Weidenthaler, C.; Grunwaldt, J. D.; Schuth, F. Appl. Catal. A 2006, 302 (2), 215. doi: 10.1016/j.apcata.2006.01.014  doi: 10.1016/j.apcata.2006.01.014

    45. [45]

      Oguchi, H.; Kanai, H.; Utani, K.; Matsumura, Y.; Imamura, S. Appl. Catal. A 2005, 293, 64. doi: 10.1016/j.apcata.2005.07.010  doi: 10.1016/j.apcata.2005.07.010

    46. [46]

      Evans, J. W.; Wainwright, M. S.; Bridgewater, A. J.; Young, D. J. Appl. Catal. 1983, 7 (1), 75. doi: 10.1016/0166-9834(83)80239-5  doi: 10.1016/0166-9834(83)80239-5

    47. [47]

      Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Appl. Catal. A 2008, 350 (1), 16. doi: 10.1016/j.apcata.2008.07.028  doi: 10.1016/j.apcata.2008.07.028

    48. [48]

      Tada, S.; Larmier, K.; Buchel, R.; Coperet, C. Catal. Sci. Technol. 2018, 8 (8), 2056. doi: 10.1039/c8cy00250a  doi: 10.1039/c8cy00250a

    49. [49]

      Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. J. Mol. Catal. A: Chem. 2011, 345 (1-2), 60. doi: 10.1016/j.molcata.2011.05.019  doi: 10.1016/j.molcata.2011.05.019

    50. [50]

      Zhang, Y.; Zhong, L.; Wang, H.; Gao, P.; Li, X.; Xiao, S.; Ding, G.; Wei, W.; Sun, Y. J. CO2 Util. 2016, 15, 72. doi: 10.1016/j.jcou.2016.01.005  doi: 10.1016/j.jcou.2016.01.005

    51. [51]

      Arena, F.; Mezzatesta, G.; Zafarana, G.; Trunfio, G.; Frusteri, F.; Spadaro, L. Catal. Today 2013, 210, 39. doi: 10.1016/j.cattod.2013.02.016  doi: 10.1016/j.cattod.2013.02.016

    52. [52]

      Angelo, L.; Kobl, K.; Tejada, L. M. M.; Zimmermann, Y.; Parkhomenko, K.; Roger, A. -C. C. R. Chim. 2015, 18 (3), 250. doi: 10.1016/j.crci.2015.01.001  doi: 10.1016/j.crci.2015.01.001

    53. [53]

      Fisher, I. A.; Bell, A. T. J. Catal. 1997, 172 (1), 222. doi: 10.1006/jcat.1997.1870  doi: 10.1006/jcat.1997.1870

    54. [54]

      Kattel, S.; Yan, B.; Yang, Y.; Chen, J. G.; Liu, P. J. Am. Chem. Soc. 2016, 138 (38), 12440. oi: 10.1021/jacs.6b05791

    55. [55]

      Guo, X.; Li, J.; Zhou, R. Fuel 2016, 163, 56. doi: 10.1016/j.fuel.2015.09.043  doi: 10.1016/j.fuel.2015.09.043

    56. [56]

      Xie, Y.; Yin, Y. L.; Zeng, S. H.; Gao, M. Y.; Su, H. Q. Catal. Commun. 2017, 99, 110. doi: 10.1016/j.catcom.2017.06.003  doi: 10.1016/j.catcom.2017.06.003

    57. [57]

      Li, H.; Su, Z.; Hu, S.; Yan, Y. Appl. Catal. B 2017, 207, 134. doi: 10.1016/j.apcatb.2017.02.013  doi: 10.1016/j.apcatb.2017.02.013

    58. [58]

      Dasireddy, V. D. B. C.; Likozar, B. Renewable Energy 2019, 140, 452. doi: 10.1016/j.renene.2019.03.073  doi: 10.1016/j.renene.2019.03.073

    59. [59]

      Cabilla, G. C.; Bonivardi, A. L.; Baltanas, M. A. J. Catal. 2001, 201 (2), 213. doi: 10.1006/jcat.2001.3253  doi: 10.1006/jcat.2001.3253

  • 加载中
    1. [1]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    2. [2]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    5. [5]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    6. [6]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    9. [9]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    13. [13]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    14. [14]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    17. [17]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    18. [18]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    19. [19]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    20. [20]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

Metrics
  • PDF Downloads(15)
  • Abstract views(600)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return