Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol
- Corresponding author: Liu Guoliang, liugl@whu.edu.cn Hong Xinlin, hongxl@whu.edu.cn
Citation: Wang Yanqiu, Zhong Zixin, Liu Tangkang, Liu Guoliang, Hong Xinlin. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200708. doi: 10.3866/PKU.WHXB202007089
Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Joule 2019, 3 (4), 920. doi: 10.1016/j.joule.2019.03.003
doi: 10.1016/j.joule.2019.03.003
Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117 (14), 9804. doi: 10.1021/acs.chemrev.6b00816
doi: 10.1021/acs.chemrev.6b00816
Han, B. Acta Phys. -Chim. Sin. 2018, 34 (6), 555.
doi: 10.3866/PKU.WHXB201710302
Yin, Y.; Hu, B.; Liu, G.; Zhou, X.; Hong, X. Acta Phys. -Chim. Sin. 2019, 35 (3), 327.
doi: 10.3866/PKU.WHXB201803212
Ro, I.; Liu, Y.; Ball, M. R.; Jackson, D. H. K.; Chada, J. P.; Sener, C.; Kuech, T. F.; Madon, R. J.; Huber, G. W.; Dumesic, J. A. ACS Catal. 2016, 6 (10), 7040. doi: 10.1021/acscatal.6b01805
doi: 10.1021/acscatal.6b01805
Samson, K.; Sliwa, M.; Socha, R. P.; Gora-Marek, K.; Mucha, D.; Rutkowska-Zbik, D.; Paul, J. F.; Ruggiero-Mikolajczyk, M.; Grabowski, R.; Sloczynski, J. ACS Catal. 2014, 4 (10), 3730. doi: 10.1021/cs500979c
doi: 10.1021/cs500979c
Tada, S.; Katagiri, A.; Kiyota, K.; Honma, T.; Kamei, H.; Nariyuki, A.; Uchida, S.; Satokawa, S. J. Phys. Chem. C 2018, 122 (10), 5430. doi: 10.1021/acs.jpcc.7b11284
doi: 10.1021/acs.jpcc.7b11284
Witoon, T.; Chalorngtham, J.; Dumrongbunditkul, P.; Chareonpanich, M.; Limtrakul, J. Chem. Eng. J. 2016, 293, 327. doi: 10.1016/j.cej.2016.02.069
doi: 10.1016/j.cej.2016.02.069
Liu, Y.; Hu, B.; Yin, Y.; Liu, G.; Hong, X. Acta Phys. -Chim. Sin. 2019, 35 (2), 223.
doi: 10.3866/PKU.WHXB201802263
Ye, W. Acta Phys. -Chim. Sin. 2017, 33 (5), 857.
doi: 10.3866/PKU.WHXB201703172
Centi, G.; Perathoner, S. Catal. Today 2009, 148 (3-4), 191. doi: 10.1016/j.cattod.2009.07.075
doi: 10.1016/j.cattod.2009.07.075
Porosoff, M. D.; Yan, B.; Chen, J. G. Energy Environ. Sci. 2016, 9 (1), 62. doi: 10.1039/c5ee02657a
doi: 10.1039/c5ee02657a
Hu, B.; Yin, Y.; Zhong, Z.; Wu, D.; Liu, G.; Hong, X. Catal. Sci. Technol. 2019, 9 (10), 2673. doi: 10.1039/c8cy02546k
doi: 10.1039/c8cy02546k
Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355 (6331), 1296. doi: 10.1126/science.aal3573
doi: 10.1126/science.aal3573
Baltes, C.; Vukojevic, S.; Schueth, F. J. Catal. 2008, 258 (2), 334. doi: 10.1016/j.jcat.2008.07.004
doi: 10.1016/j.jcat.2008.07.004
Saito, M.; Fujitani, T.; Takeuchi, M.; Watanabe, T. Appl. Catal. A 1996, 138 (2), 311. doi: 10.1016/0926-860x(95)00305-3
doi: 10.1016/0926-860x(95)00305-3
Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjaer, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Science 2016, 352 (6288), 969. doi: 10.1126/science.aaf0718
doi: 10.1126/science.aaf0718
Behrens, M.; Studt, F.; Kasatkin, I.; Kuehl, S.; Haevecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. -L.; et al. Science 2012, 336 (6083), 893. doi: 10.1126/science.1219831
doi: 10.1126/science.1219831
Gao, P.; Li, F.; Zhao, N.; Wang, H.; Wei, W.; Sun, Y. -H. Acta Phys. -Chim. Sin. 2014, 30 (6), 1155.
doi: 10.3866/PKU.WHXB201401252
Li, K.; Chen, J. G. ACS Catal. 2019, 9 (9), 7840. doi: 10.1021/acscatal.9b01943
doi: 10.1021/acscatal.9b01943
Li, W.; Nie, X.; Jiang, X.; Zhang, A.; Ding, F.; Liu, M.; Liu, Z.; Guo, X.; Song, C. Appl. Catal. B 2018, 220, 397. doi: 10.1016/j.apcatb.2017.08.048
doi: 10.1016/j.apcatb.2017.08.048
Tada, S.; Kayamori, S.; Honma, T.; Kamei, H.; Nariyuki, A.; Kon, K.; Toyao, T.; Shimizu, K. -I.; Satokawa, S. ACS Catal. 2018, 8 (9), 7809. doi: 10.1021/acscatal.8b01396
doi: 10.1021/acscatal.8b01396
Larmier, K.; Liao, W. -C.; Tada, S.; Lam, E.; Verel, R.; Bansode, A.; Urakawa, A.; Comas-Vives, A.; Coperet, C. Angew. Chem. Int. Ed. 2017, 56 (9), 2318. doi: 10.1002/anie.201610166
doi: 10.1002/anie.201610166
Rhodes, M. D.; Bell, A. T. J. Catal. 2005, 233 (1), 198. doi: 10.1016/j.jcat.2005.04.026
doi: 10.1016/j.jcat.2005.04.026
Liu, T.; Hong, X.; Liu, G. ACS Catal. 2020, 10 (1), 93. doi: 10.1021/acscatal.9b03738
doi: 10.1021/acscatal.9b03738
Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Fernandez Sanz, J.; et al. Science 2014, 345 (6196), 546. doi: 10.1126/science.1253057
doi: 10.1126/science.1253057
van de Water, L. G. A.; Wilkinson, S. K.; Smith, R. A. P.; Watson, M. J. J. Catal. 2018, 364, 57. doi: 10.1016/j.jcat.2018.04.026
doi: 10.1016/j.jcat.2018.04.026
Choi, E. J.; Lee, Y. H.; Lee, D. -W.; Moon, D. -J.; Lee, K. -Y. Mol. Catal. 2017, 434, 146. doi: 10.1016/j.mcat.2017.02.005
doi: 10.1016/j.mcat.2017.02.005
Ouyang, B.; Tan, W.; Liu, B. Catal. Commun. 2017, 95, 36. doi: 10.1016/j.catcom.2017.03.005
doi: 10.1016/j.catcom.2017.03.005
Sato, A. G.; Volanti, D. P.; Meira, D. M.; Damyanova, S.; Longo, E.; Bueno, J. M. C. J. Catal. 2013, 307, 1. doi: 10.1016/j.jcat.2013.06.022
doi: 10.1016/j.jcat.2013.06.022
Tang, Q. -L.; Hong, Q. -J.; Liu, Z. -P. J. Catal. 2009, 263 (1), 114. doi: 10.1016/j.jcat.2009.01.017
doi: 10.1016/j.jcat.2009.01.017
Therdthianwong, S.; Siangchin, C.; Therdthianwong, A. Fuel Process. Technol. 2008, 89 (2), 160. doi: 10.1016/j.fuproc.2007.09.003
doi: 10.1016/j.fuproc.2007.09.003
Wei, J. M.; Xu, B. Q.; Li, J. L.; Cheng, Z. X.; Zhu, Q. M. Appl. Catal., A 2000, 196 (2), L167. doi: 10.1016/s0926-860x(99)00504-9
doi: 10.1016/s0926-860x(99)00504-9
An, B.; Zhang, J.; Cheng, K.; Ji, P.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2017, 139 (10), 3834. doi: 10.1021/jacs.7b00058
doi: 10.1021/jacs.7b00058
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341 (6149), 974. doi: 10.1126/science.1230444
doi: 10.1126/science.1230444
Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somotjai, G. A. Nano Lett. 2016, 16 (12), 7645. doi: 10.1021/acs.nanolett.6b03637
doi: 10.1021/acs.nanolett.6b03637
Wang, X.; Zhou, J.; Fu, H.; Li, W.; Fan, X.; Xin, G.; Zheng, J.; Li, X. J. Mater. Chem. A 2014, 2 (34), 14064. doi: 10.1039/c4ta01506a
doi: 10.1039/c4ta01506a
Zhu, W.; Zhang, C.; Li, Q.; Xiong, L.; Chen, R.; Wan, X.; Wang, Z.; Chen, W.; Deng, Z.; Peng, Y. Appl. Catal. B 2018, 238, 339. doi: 10.1016/j.apcatb.2018.07.024
doi: 10.1016/j.apcatb.2018.07.024
Han, Y.; Xu, H.; Su, Y.; Xu, Z. -L.; Wang, K.; Wang, W. J. Catal. 2019, 370, 70. doi: 10.1016/j.jcat.2018.12.005
doi: 10.1016/j.jcat.2018.12.005
Hou, S. L.; Dong, J.; Jiang, X. L.; Jiao, Z. H.; Zhao, B. Angew. Chem. Int. Ed. 2019, 58 (2), 577. doi: 10.1002/anie.201811506
doi: 10.1002/anie.201811506
Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Chem. Mater. 2016, 28 (11), 3749. doi: 10.1021/acs.chemmater.6b00602
doi: 10.1021/acs.chemmater.6b00602
Aguila, G.; Guerrero, S.; Araya, P. Catal. Commun. 2008, 9 (15), 2550. doi: 10.1016/j.catcom.2008.07.011
doi: 10.1016/j.catcom.2008.07.011
Espinos, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.; Gonzalez-Elipe, A. R. J. Phys. Chem. B 2002, 106 (27), 6921. doi: 10.1021/jp014618m
doi: 10.1021/jp014618m
Ritzkopf, I.; Vukojevic, S.; Weidenthaler, C.; Grunwaldt, J. D.; Schuth, F. Appl. Catal. A 2006, 302 (2), 215. doi: 10.1016/j.apcata.2006.01.014
doi: 10.1016/j.apcata.2006.01.014
Oguchi, H.; Kanai, H.; Utani, K.; Matsumura, Y.; Imamura, S. Appl. Catal. A 2005, 293, 64. doi: 10.1016/j.apcata.2005.07.010
doi: 10.1016/j.apcata.2005.07.010
Evans, J. W.; Wainwright, M. S.; Bridgewater, A. J.; Young, D. J. Appl. Catal. 1983, 7 (1), 75. doi: 10.1016/0166-9834(83)80239-5
doi: 10.1016/0166-9834(83)80239-5
Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Appl. Catal. A 2008, 350 (1), 16. doi: 10.1016/j.apcata.2008.07.028
doi: 10.1016/j.apcata.2008.07.028
Tada, S.; Larmier, K.; Buchel, R.; Coperet, C. Catal. Sci. Technol. 2018, 8 (8), 2056. doi: 10.1039/c8cy00250a
doi: 10.1039/c8cy00250a
Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. J. Mol. Catal. A: Chem. 2011, 345 (1-2), 60. doi: 10.1016/j.molcata.2011.05.019
doi: 10.1016/j.molcata.2011.05.019
Zhang, Y.; Zhong, L.; Wang, H.; Gao, P.; Li, X.; Xiao, S.; Ding, G.; Wei, W.; Sun, Y. J. CO2 Util. 2016, 15, 72. doi: 10.1016/j.jcou.2016.01.005
doi: 10.1016/j.jcou.2016.01.005
Arena, F.; Mezzatesta, G.; Zafarana, G.; Trunfio, G.; Frusteri, F.; Spadaro, L. Catal. Today 2013, 210, 39. doi: 10.1016/j.cattod.2013.02.016
doi: 10.1016/j.cattod.2013.02.016
Angelo, L.; Kobl, K.; Tejada, L. M. M.; Zimmermann, Y.; Parkhomenko, K.; Roger, A. -C. C. R. Chim. 2015, 18 (3), 250. doi: 10.1016/j.crci.2015.01.001
doi: 10.1016/j.crci.2015.01.001
Fisher, I. A.; Bell, A. T. J. Catal. 1997, 172 (1), 222. doi: 10.1006/jcat.1997.1870
doi: 10.1006/jcat.1997.1870
Kattel, S.; Yan, B.; Yang, Y.; Chen, J. G.; Liu, P. J. Am. Chem. Soc. 2016, 138 (38), 12440. oi: 10.1021/jacs.6b05791
Guo, X.; Li, J.; Zhou, R. Fuel 2016, 163, 56. doi: 10.1016/j.fuel.2015.09.043
doi: 10.1016/j.fuel.2015.09.043
Xie, Y.; Yin, Y. L.; Zeng, S. H.; Gao, M. Y.; Su, H. Q. Catal. Commun. 2017, 99, 110. doi: 10.1016/j.catcom.2017.06.003
doi: 10.1016/j.catcom.2017.06.003
Li, H.; Su, Z.; Hu, S.; Yan, Y. Appl. Catal. B 2017, 207, 134. doi: 10.1016/j.apcatb.2017.02.013
doi: 10.1016/j.apcatb.2017.02.013
Dasireddy, V. D. B. C.; Likozar, B. Renewable Energy 2019, 140, 452. doi: 10.1016/j.renene.2019.03.073
doi: 10.1016/j.renene.2019.03.073
Cabilla, G. C.; Bonivardi, A. L.; Baltanas, M. A. J. Catal. 2001, 201 (2), 213. doi: 10.1006/jcat.2001.3253
doi: 10.1006/jcat.2001.3253
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415