Citation: Zheng Chao, Liu Aqiang, Bi Chenghao, Tian Jianjun. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200708. doi: 10.3866/PKU.WHXB202007084 shu

SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots

  • Corresponding author: Tian Jianjun, tianjianjun@mater.ustb.edu.cn
  • Received Date: 28 July 2020
    Revised Date: 26 August 2020
    Accepted Date: 27 August 2020
    Available Online: 1 September 2020

    Fund Project: the National Key Research and Development Program of China 2017YFE0119700The project was supported by the National Natural Science Foundation of China (51961135107, 51774034), the Beijing Natural Science Foundation (2182039), the National Key Research and Development Program of China (2017YFE0119700)the National Natural Science Foundation of China 51961135107the Beijing Natural Science Foundation 2182039the National Natural Science Foundation of China 51774034

  • Inorganic halide CsPbI3 perovskite colloidal quantum dots (QDs) possess remarkable potential in photovoltaics and light-emitting devices owing to their excellent optoelectronic performance. However, the poor stability of CsPbI3 limits its practical applications. The ionic radius of SCN (217 pm) is comparable to that of I (220 pm), whereas it is marginally larger than that of Br (196 pm), which increases the Goldschmidt tolerance factor of CsPbI3 and improves its structural stability. Recent studies have shown that adding SCN in the precursor solution can enhance the crystallinity and moisture resistance of perovskite film solar cells; however, the photoelectric properties of the material post SCN doping remain unconfirmed. To date, it has not been clarified whether SCN doping occurs solely on the perovskite surfaces, or if it advances within their structures. In this study, we synthesized inorganic perovskite CsPbI3 QDs via a hot-injection method. Pb(SCN)2 was added to the precursor for obtaining SCN-doped CsPbI3 (SCN-CsPbI3). X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were conducted to demonstrate the doping of SCN ions within the perovskite structures. XRD and TEM indicated a lattice expansion within the perovskite, stemming from the large steric hindrance of the SCN ions, along with an enhancement in the lattice stability due to the strong bonding forces between SCN and Pb2+. Through XPS, we confirmed the existence of the S peak, and further affirmed that the bonding energy between Pb2+ and SCN was stronger than that between Pb2+ and I. The space charge limited current and time-resolved photoluminescence results demonstrated a decrease in the trap density of the perovskite after being doped with SCN; therefore, the doping process mitigated the defects of QDs, thereby increasing their optical performance, and further enhanced the bonding energy of Pb-X and crystal quality of QDs, thereby improving the stability of perovskite structure. Therefore, the photoluminescence quantum yield (PLQY) of the SCN-CsPbI3 QDs exceeded 90%, which was significantly higher than that of pristine QDs (68%). The high PLQY indicates low trap density of QDs, which is attributed to a decrease in the defects. Furthermore, the SCN-CsPbI3 QDs exhibited remarkable water-resistance performance, while maintaining 85% of their initial photoluminescence intensity under water for 4 h, whereas the undoped samples suffered complete fluorescence loss due to the phase transformations caused by water molecules. The SCN-CsPbI3 QDs photodetector measurements demonstrated a broad band range of 400–700 nm, along with a responsivity of 90 mA∙W−1 and detectivity exceeding 1011 Jones, which were considerably higher than the corresponding values of the control device (responsivity: 60 mA∙W−1 and detectivity: 1010 Jones). Finally, extending the doping of SCN into CsPbCl3 and CsPbBr3 QDs further enhanced their optical properties on a significant scale.
  • 加载中
    1. [1]

      Zhou, Y.; Zhao, Y. Energy Environ. Sci. 2019, 12, 1495. doi: 10.1039/c8ee03559h  doi: 10.1039/c8ee03559h

    2. [2]

      Huang, F.; Li, M.; Siffalovic, P.; Cao, G.; Tian, J. Energy Environ. Sci., 2019, 12, 518. doi: 10.1039/c8ee03025a  doi: 10.1039/c8ee03025a

    3. [3]

      Li, B.; Binks, D.; Cao, G.; Tian, J. Small 2019, 15, 1903613. doi: 10.1002/smll.201903613  doi: 10.1002/smll.201903613

    4. [4]

      Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Adv. Mater. 2015, 27, 7162. doi: 10.1002/adma.201502567  doi: 10.1002/adma.201502567

    5. [5]

      Wang, H.; Zhang, X.; Wu, Q.; Cao, F.; Yang, D.; Shang, Y.; Ning, Z.; Zhang, W.; Zheng, W.; Yan, Y.; et al. Nat. Commun. 2019, 10, 665. doi: 10.1038/s41467-019-08425-5  doi: 10.1038/s41467-019-08425-5

    6. [6]

      Wang, S.; Bi, C.; Yuan, J.; Zhang, L.; Tian, J. ACS Energy Lett. 2018, 3, 245. doi: 10.1021/acsenergylett.7b01243  doi: 10.1021/acsenergylett.7b01243

    7. [7]

      Ding, L.; Cheng, Y.; Tang, J. Acta Phys. -Chim. Sin. 2018, 34, 449.  doi: 10.3866/PKU.WHXB201710121

    8. [8]

      Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; et al. Science 2019, 365, 591. doi: 10.1126/science.aav8680  doi: 10.1126/science.aav8680

    9. [9]

      Bi, C.; Sun, X.; Huang, X.; Wang, S.; Wang, J. X.; Pullerits, T.; Tian, J. Chem. Mater. 2020, 32, 6105. doi: 10.1021/acs.chemmater.0c01750  doi: 10.1021/acs.chemmater.0c01750

    10. [10]

      Yuan, J.; Bi, C.; Wang, S.; Guo, R.; Shen, T.; Zhang, L.; Tian, J. Adv. Funct. Mater. 2019, 29, 1906615. doi: 10.1002/adfm.201906615  doi: 10.1002/adfm.201906615

    11. [11]

      Bi, C.; Kershaw, S. V.; Rogach, A. L.; Tian, J. Adv. Funct. Mater. 2019, 29, 1902446. doi: 10.1002/adfm.201902446  doi: 10.1002/adfm.201902446

    12. [12]

      Guo, R.; Huang, F.; Zheng, K.; Pullerits, T.; Tian, J. ACS Appl. Mater. Interfaces 2018, 10, 35656. doi: 10.1021/acsami.8b13777  doi: 10.1021/acsami.8b13777

    13. [13]

      Walker, B.; Kim, G. H.; Kim, J. Y. Adv. Mater. 2019, 31, e1807029. doi: 10.1002/adma.201807029  doi: 10.1002/adma.201807029

    14. [14]

      Wang, H. C.; Wang, W.; Tang, A. C.; Tsai, H. Y.; Bao, Z.; Ihara, T.; Yarita, N.; Tahara, H.; Kanemitsu, Y.; Chen, S.; Liu, R. S. Angew. Chem. Int. Ed. 2017, 56, 13650. doi: 10.1002/anie.201706860  doi: 10.1002/anie.201706860

    15. [15]

      Yin, J.; Ahmed, G. H.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. ACS Energy Lett. 2019, 4, 789. doi: 10.1021/acsenergylett.9b00209  doi: 10.1021/acsenergylett.9b00209

    16. [16]

      Mehta, A.; Im, J.; Kim, B. H.; Min, H.; Nie, R.; Seok, S. I. ACS Nano 2018, 12, 12129. doi: 10.1021/acsnano.8b05478  doi: 10.1021/acsnano.8b05478

    17. [17]

      Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2, 16099. doi: 10.1038/natrevmats.2016.99  doi: 10.1038/natrevmats.2016.99

    18. [18]

      Chen, Y.; Li, B.; Huang, W.; Gao, D.; Liang, Z. Chem. Commun. 2015, 51, 11997. doi: 10.1039/c5cc03615a  doi: 10.1039/c5cc03615a

    19. [19]

      Daub, M.; Hillebrecht, H. Angew. Chem. Int. Ed. 2015, 54, 11016. doi: 10.1002/anie.201506449  doi: 10.1002/anie.201506449

    20. [20]

      Iwadate, Y.; Kawamura, K.; Igarashi, K.; Mochinaga, J. J. Phys. Chem. 1982, 86, 5205. doi: 10.1021/j100223a028  doi: 10.1021/j100223a028

    21. [21]

      Halder, A.; Chulliyil, R.; Subbiah, A. S.; Khan, T.; Chattoraj, S.; Chowdhury, A.; Sarkar, S. K. J. Phys. Chem. Lett. 2015, 6, 3483. doi: 10.1021/acs.jpclett.5b01327  doi: 10.1021/acs.jpclett.5b01327

    22. [22]

      Lou, Y.; Niu, Y.; Yang, D.; Xu, Q.; Hu, Y.; Shen, Y.; Ming, J.; Chen, J.; Zhang, L.; Zhao, Y. Nano Res. 2018, 11, 2715. doi: 10.1007/s12274-017-1901-z  doi: 10.1007/s12274-017-1901-z

    23. [23]

      Zheng, C.; Bi, C.; Huang, F.; Binks, D.; Tian, J. ACS Appl. Mater. Interfaces 2019, 11, 25410. doi: 10.1021/acsami.9b07818  doi: 10.1021/acsami.9b07818

    24. [24]

      Zheng, X.; Yuan, S.; Liu, J.; Yin, J.; Yuan, F.; Shen, W. S.; Yao, K.; Wei, M.; Zhou, C.; Song, K.; et al. ACS Energy Lett. 2020, 5, 793. doi: 10.1021/acsenergylett.0c00057  doi: 10.1021/acsenergylett.0c00057

    25. [25]

      Bi, C.; Wang, S.; Wen, W.; Yuan, J.; Cao, G.; Tian, J. J. Phys. Chem. C 2018, 122, 5151. doi: 10.1021/acs.jpcc.7b12607  doi: 10.1021/acs.jpcc.7b12607

    26. [26]

      Bi, C.; Wang, S.; Li, Q.; Kershaw, S. V.; Tian, J.; Rogach, A. L. J. Phys. Chem. Lett. 2019, 10, 943. doi: 10.1021/acs.jpclett.9b00290  doi: 10.1021/acs.jpclett.9b00290

    27. [27]

      Jiang, Q.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T. Angew. Chem. Int. Ed. 2015, 54, 7617. doi: 10.1002/anie.201503038  doi: 10.1002/anie.201503038

    28. [28]

      Liu, F.; Zhang, Y.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T.; et al. ACS Nano 2017, 11, 10373. doi: 10.1021/acsnano.7b05442  doi: 10.1021/acsnano.7b05442

    29. [29]

      Yue, Y.; Zhu, D.; Zhang, N.; Zhu, G.; Su, Z. M. ACS Appl. Mater. Interfaces 2019, 11, 15898. doi: 10.1021/acsami.9b01059  doi: 10.1021/acsami.9b01059

    30. [30]

      Clever, H. L.; Johnston, F. J. J. Phys. Chem. 1980, 9, 751. doi: 10.1063/1.555628  doi: 10.1063/1.555628

    31. [31]

      Leonard, G. W.; Smith, M. E.; Hume, D. N. J. Phys. Chem. 1956, 60, 1493. doi: 10.1021/j150545a006  doi: 10.1021/j150545a006

    32. [32]

      Yang, D.; Li, X.; Zeng, H. Adv. Mater. Interfaces 2018, 5, 1701662. doi: 10.1002/admi.201701662  doi: 10.1002/admi.201701662

    33. [33]

      Ge, Y.; Mu, X.; Lu, Y.; Sui, M. Acta Phys. -Chim. Sin. 2020, 36, 1905039.  doi: 10.3866/PKU.WHXB201905039

    34. [34]

      Shen, T.; Li, B.; Zheng, K.; Pullerits, T.; Cao, G.; Tian, J. J. Phys. Chem. Lett. 2018, 9, 3285. doi: 10.1021/acs.jpclett.8b01255  doi: 10.1021/acs.jpclett.8b01255

    35. [35]

      Wang, S.; Bi, C.; Portniagin, A.; Yuan, J.; Ning, J.; Xiao, X.; Zhang, X.; Li, Y. Y.; Kershaw, S. V.; Tian, J.; Rogach, A. L. ACS Energy Lett. 2020, 5, 2401. doi: 10.1021/acsenergylett.0c01222  doi: 10.1021/acsenergylett.0c01222

    36. [36]

      Jiang, M.; Yuan, J.; Cao, G.; Tian, J. Chem. Eng. J. 2020, 402, 126152. doi: 10.1016/j.cej.2020.126152  doi: 10.1016/j.cej.2020.126152

  • 加载中
    1. [1]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    2. [2]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    3. [3]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    4. [4]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    7. [7]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    8. [8]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    9. [9]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    10. [10]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    13. [13]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    16. [16]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    17. [17]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    18. [18]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    19. [19]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    20. [20]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

Metrics
  • PDF Downloads(8)
  • Abstract views(205)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return