Citation: Lv Lin, Zhang Liyang, He Xuebing, Yuan Hong, Ouyang Shuxin, Zhang Tierui. Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200707. doi: 10.3866/PKU.WHXB202007079 shu

Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode

  • Corresponding author: Ouyang Shuxin, oysx@mail.ccnu.edu.cn
  • Received Date: 28 July 2020
    Revised Date: 22 August 2020
    Accepted Date: 4 September 2020
    Available Online: 14 September 2020

    Fund Project: the China Postdoctoral Science Foundation 2019M660184the National Natural Science Foundation of China 21972052the Natural Science Foundation of Hubei Province, China 2020CFB446This work was supported by the China Postdoctoral Science Foundation (2019M660184), the Natural Science Foundation of Hubei Province, China (2020CFB446), and the National Natural Science Foundation of China (21972052). S.O. thanks the financial support from the "Guizi Scholar" Program of Central China Normal University, China

  • With the rapid development of human society, clean energy forms are imperative to sustain the normal operations of various mechanical and electrical facilities under a cozy environment. Hydrogen is considered among the most promising clean energy sources for the future. Recently, electrochemical water splitting has been considered as one of the most efficient approaches to harvest hydrogen energy, which generates only non-pollutant water on combustion. However, the sluggish anodic oxygen evolution reaction significantly restricts the efficiency of water splitting and requires a relatively high cell voltage to drive the electrolysis. Therefore, seeking a thermodynamically favorable anodic reaction to replace the sluggish oxygen evolution reaction by utilizing highly active bifunctional electrocatalysts for the anodic reaction and hydrogen evolution are crucial for achieving energy-efficient hydrogen production for industrial applications. Nevertheless, it is known that the oxygen evolution reaction can be replaced with other useful and thermodynamically favorable reactions to reduce the electrolysis voltage for realizing energy-efficient hydrogen production. Therefore, in this study, we present a bifunctional nickel nanoparticle-embedded carbon (Ni@C) prism-like microrod electrocatalyst synthesized via a two-step method involving the synthesis of a precursor metal-organic framework-74 and subsequent carbonization treatment for methanol oxidation and hydrogen evolution. The interfacial structure consisting of a nickel and carbon skeleton was realized via in situ carbonization. However, the dispersed nickel nanoparticles do not easily aggregate owing to the partition by the surrounding carbon as it would sufficiently expose the active Ni sites to the electrolytes, ensuring fast charge transfer between the catalyst and electrolytes by accelerating the electrochemical kinetics. In the anodic methanol oxidation, the products were detected as carbon dioxide and formate with faradaic efficiencies of 36.2% and 62.5%, respectively, at an applied potential of 1.55 V. Meanwhile, the Ni@C microrod catalyst demonstrated high activity and durability (2.7% current decay after 12 h of continuous operation) toward methanol oxidation, which demonstrates that methanol oxidation precedes oxidation under voltage forces. Notably, the bifunctional catalyst not only exhibits excellent performance toward methanol oxidation but also yields a low overpotential of 155 mV to drive 10 mA∙cm−2 toward hydrogen evolution in 1.0 mol∙L−1 KOH aqueous solution with 0.5 mol∙L−1 methanol at room temperature, which guarantees the hydrogen production efficiency. More importantly, the constructed two-electrode electrolyzer produced a current density of 10 mA∙cm−2 at a low cell voltage of 1.6 V, which decreased by 240 mV after replacing the oxygen evolution reaction with methanol oxidation.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    2. [2]

      York, R. Nat. Clim. Change 2012, 2, 441. doi: 10.1038/nclimate1451  doi: 10.1038/nclimate1451

    3. [3]

      Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. Phys. Today 2004, 57, 39.

    4. [4]

      Jacobson, M. Z.; Colella, W.; Golden, D. Science 2005, 308, 1901. doi: 10.1126/science.1109157  doi: 10.1126/science.1109157

    5. [5]

      Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334, 1383. doi: 10.1126/science.1212858  doi: 10.1126/science.1212858

    6. [6]

      Hong, W. T.; Stoerzinger, K. A.; Lee, Y. -L.; Giordano, L.; Grimaud, A.; Johnson, A. M.; Hwang, J.; Crumlin, E. J.; Yang, W.; Shao-Horn, Y. Energy Environ. Sci. 2017, 10, 2190. doi: 10.1039/C7EE02052J  doi: 10.1039/C7EE02052J

    7. [7]

      Bambagioni, V.; Bevilacqua, M.; Bianchini, C.; Filippi, J.; Lavacchi, A.; Marchionni, A.; Vizza, F.; Shen, P. K. ChemSusChem 2010, 3, 851. doi: 10.1002/cssc.201000103  doi: 10.1002/cssc.201000103

    8. [8]

      Yu, Z.-Y.; Lang, C. -C.; Gao, M. -R.; Chen, Y.; Fu, Q. -Q.; Duan, Y.; Yu, S. -H. Energy Environ. Sci. 2018, 11, 1890. doi: 10.1039/C8EE00521D  doi: 10.1039/C8EE00521D

    9. [9]

      Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2017, 56, 842. doi: 10.1002/anie.201608899  doi: 10.1002/anie.201608899

    10. [10]

      Jiang, N.; You, B.; Boonstra, R.; Terrero Rodriguez, I. M.; Sun, Y. ACS Energy Lett. 2016, 1, 386. doi: 10.1021/acsenergylett.6b00214  doi: 10.1021/acsenergylett.6b00214

    11. [11]

      Liu, Y.; Yong, X.; Liu, Z.; Chen, Z.; Kang, Z.; Lu, S. Adv. Sustainable Syst. 2019, 3, 1800161. doi: 10.1002/anie.201913910  doi: 10.1002/anie.201913910

    12. [12]

      Tomboc, G. M.; Abebe, M. W.; Baye, A. F.; Kim, H. J. Energy Chem. 2019, 29, 136. doi: 10.1016/j.jechem.2018.08.009  doi: 10.1016/j.jechem.2018.08.009

    13. [13]

      Zhang, H.; Ren, W.; Guan, C.; Cheng, C. J. Mater. Chem. A 2017, 5, 22004. doi: 10.1039/C7TA07340B  doi: 10.1039/C7TA07340B

    14. [14]

      Sarno, M.; Ponticorvo, E.; Scarpa, D. Chem. Eng. J. 2019, 377, 120600. doi: 10.1016/j.cej.2018.12.060  doi: 10.1016/j.cej.2018.12.060

    15. [15]

      Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L. Angew. Chem. Int. Ed. 2020, 59, 1718. doi: 10.1002/anie.201913910  doi: 10.1002/anie.201913910

    16. [16]

      Li, W.; Wei, Z.; Wang, B.; Liu, Y.; Song, H.; Tang, Z.; Yang, B.; Lu, S. Mater. Chem. Front. 2020, 4, 277. doi: 10.1039/C9QM00618D  doi: 10.1039/C9QM00618D

    17. [17]

      Yousaf, A. B.; Imran, M.; Zeb, A.; Wen, T.; Xie, X.; Jiang, Y. -F.; Yuan, C. -Z.; Xu, A. -W. Electrochim. Acta 2016, 197, 117. doi: 10.1016/j.electacta.2016.03.067  doi: 10.1016/j.electacta.2016.03.067

    18. [18]

      Dong, B.; Li, W.; Huang, X.; Ali, Z.; Zhang, T.; Yang, Z.; Hou, Y. Nano Energy 2019, 55, 37. doi: 10.1016/j.nanoen.2018.10.050  doi: 10.1016/j.nanoen.2018.10.050

    19. [19]

      Yang, W.; Yang, X.; Jia, J.; Hou, C.; Gao, H.; Mao, Y.; Wang, C.; Lin, J.; Luo, X. Appl. Catal. B 2019, 244, 1096. doi: 10.1016/j.apcatb.2018.12.038  doi: 10.1016/j.apcatb.2018.12.038

    20. [20]

      Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Adv. Funct. Mater. 2017, 27, 1703455. doi: 10.1002/adfm.201703455  doi: 10.1002/adfm.201703455

    21. [21]

      Tu, Y.; Ren, P.; Deng, D.; Bao, X. Nano Energy 2018, 52, 494. doi: 10.1016/j.nanoen.2018.07.062  doi: 10.1016/j.nanoen.2018.07.062

    22. [22]

      Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X. Energy Environ. Sci. 2016, 9, 123. doi: 10.1039/C5EE03316K  doi: 10.1039/C5EE03316K

    23. [23]

      Lv, L.; Zha, D.; Ruan, Y.; Li, Z.; Ao, X.; Zheng, J.; Jiang, J.; Chen, H.; M.; Chiang, W. -H.; Chen, J. ACS Nano 2018, 12, 3042. doi: 10.1021/acsnano.8b01056  doi: 10.1021/acsnano.8b01056

    24. [24]

      Li, M.; Wang, C.; Hu, S.; Wu, H.; Feng, C.; Zhang, Y. Ionics 2019, 25, 4295. doi: 10.1007/s11581-019-02976-9  doi: 10.1007/s11581-019-02976-9

    25. [25]

      Yan, X.; Tian, L.; Chen, X. J. Power Sources 2015, 300, 336. doi: 10.1016/j.jpowsour.2015.09.089  doi: 10.1016/j.jpowsour.2015.09.089

    26. [26]

      Lai, H.; Wu, Q.; Zhao, J.; Shang, L.; Li, H.; Che, R.; Lyu, Z.; Xiong, J.; Yang, L.; Wang, X. Energy Environ. Sci. 2016, 9, 2053. doi: 10.1039/C6EE00603E  doi: 10.1039/C6EE00603E

    27. [27]

      Kim, I. T.; Shin, S.; Shin, M. W. Carbon 2018, 135, 35. doi: 10.1016/j.carbon.2018.04.019  doi: 10.1016/j.carbon.2018.04.019

    28. [28]

      Nie, Y. F.; Wang, Q.; Chen, X. Y.; Zhang, Z. J. J. Power Sources 2016, 320, 140. doi: 10.1016/j.jpowsour.2016.04.093  doi: 10.1016/j.jpowsour.2016.04.093

    29. [29]

      Xu, K.; Ning, S.; Chen, H.; Ouyang, S.; Wang, J.; Song, L.; Lv, J.; Ye, J. Sol. RRL 2020, 2000116. doi: 10.1002/solr.202000116  doi: 10.1002/solr.202000116

    30. [30]

      Chen, S.; Duan, J.; Ran, J.; Jaroniec, M.; Qiao, S. Z. Energy Environ. Sci. 2013, 6, 3693. doi: 10.1039/C3EE42383B  doi: 10.1039/C3EE42383B

    31. [31]

      Song, F.; Hu, X. J. Am. Chem. Soc. 2014, 136, 16481. doi: 10.1021/ja5096733  doi: 10.1021/ja5096733

    32. [32]

      Lv, L.; Li, Z.; Xue, K. -H.; Ruan, Y.; Ao, X.; Wan, H.; Miao, X.; Zhang, B.; Jiang, J.; Wang, C. Nano Energy 2018, 47, 275. doi: 10.1016/j.nanoen.2018.03.010  doi: 10.1016/j.nanoen.2018.03.010

    33. [33]

      Pieta, I. S.; Rathi, A.; Pieta, P.; Nowakowski, R.; Hołdynski, M.; Pisarek, M.; Kaminska, A.; Gawande, M. B.; Zboril, R. Appl. Catal. B 2019, 244, 272. doi: 10.1016/j.apcatb.2018.10.072  doi: 10.1016/j.apcatb.2018.10.072

    34. [34]

      Jian, J.; Shi, Y.; Syväjärvi, M.; Yakimova, R.; Sun, J. Sol. RRL 2020, 4, 1900364. doi: 10.1002/solr.201900364  doi: 10.1002/solr.201900364

  • 加载中
    1. [1]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    2. [2]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    3. [3]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    4. [4]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    7. [7]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    8. [8]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    9. [9]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    10. [10]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    11. [11]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    12. [12]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    13. [13]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    14. [14]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    15. [15]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    16. [16]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    17. [17]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    18. [18]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    19. [19]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    20. [20]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

Metrics
  • PDF Downloads(20)
  • Abstract views(625)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return