Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode
- Corresponding author: Ouyang Shuxin, oysx@mail.ccnu.edu.cn
Citation: Lv Lin, Zhang Liyang, He Xuebing, Yuan Hong, Ouyang Shuxin, Zhang Tierui. Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200707. doi: 10.3866/PKU.WHXB202007079
Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475
doi: 10.1038/nature11475
York, R. Nat. Clim. Change 2012, 2, 441. doi: 10.1038/nclimate1451
doi: 10.1038/nclimate1451
Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. Phys. Today 2004, 57, 39.
Jacobson, M. Z.; Colella, W.; Golden, D. Science 2005, 308, 1901. doi: 10.1126/science.1109157
doi: 10.1126/science.1109157
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334, 1383. doi: 10.1126/science.1212858
doi: 10.1126/science.1212858
Hong, W. T.; Stoerzinger, K. A.; Lee, Y. -L.; Giordano, L.; Grimaud, A.; Johnson, A. M.; Hwang, J.; Crumlin, E. J.; Yang, W.; Shao-Horn, Y. Energy Environ. Sci. 2017, 10, 2190. doi: 10.1039/C7EE02052J
doi: 10.1039/C7EE02052J
Bambagioni, V.; Bevilacqua, M.; Bianchini, C.; Filippi, J.; Lavacchi, A.; Marchionni, A.; Vizza, F.; Shen, P. K. ChemSusChem 2010, 3, 851. doi: 10.1002/cssc.201000103
doi: 10.1002/cssc.201000103
Yu, Z.-Y.; Lang, C. -C.; Gao, M. -R.; Chen, Y.; Fu, Q. -Q.; Duan, Y.; Yu, S. -H. Energy Environ. Sci. 2018, 11, 1890. doi: 10.1039/C8EE00521D
doi: 10.1039/C8EE00521D
Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2017, 56, 842. doi: 10.1002/anie.201608899
doi: 10.1002/anie.201608899
Jiang, N.; You, B.; Boonstra, R.; Terrero Rodriguez, I. M.; Sun, Y. ACS Energy Lett. 2016, 1, 386. doi: 10.1021/acsenergylett.6b00214
doi: 10.1021/acsenergylett.6b00214
Liu, Y.; Yong, X.; Liu, Z.; Chen, Z.; Kang, Z.; Lu, S. Adv. Sustainable Syst. 2019, 3, 1800161. doi: 10.1002/anie.201913910
doi: 10.1002/anie.201913910
Tomboc, G. M.; Abebe, M. W.; Baye, A. F.; Kim, H. J. Energy Chem. 2019, 29, 136. doi: 10.1016/j.jechem.2018.08.009
doi: 10.1016/j.jechem.2018.08.009
Zhang, H.; Ren, W.; Guan, C.; Cheng, C. J. Mater. Chem. A 2017, 5, 22004. doi: 10.1039/C7TA07340B
doi: 10.1039/C7TA07340B
Sarno, M.; Ponticorvo, E.; Scarpa, D. Chem. Eng. J. 2019, 377, 120600. doi: 10.1016/j.cej.2018.12.060
doi: 10.1016/j.cej.2018.12.060
Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L. Angew. Chem. Int. Ed. 2020, 59, 1718. doi: 10.1002/anie.201913910
doi: 10.1002/anie.201913910
Li, W.; Wei, Z.; Wang, B.; Liu, Y.; Song, H.; Tang, Z.; Yang, B.; Lu, S. Mater. Chem. Front. 2020, 4, 277. doi: 10.1039/C9QM00618D
doi: 10.1039/C9QM00618D
Yousaf, A. B.; Imran, M.; Zeb, A.; Wen, T.; Xie, X.; Jiang, Y. -F.; Yuan, C. -Z.; Xu, A. -W. Electrochim. Acta 2016, 197, 117. doi: 10.1016/j.electacta.2016.03.067
doi: 10.1016/j.electacta.2016.03.067
Dong, B.; Li, W.; Huang, X.; Ali, Z.; Zhang, T.; Yang, Z.; Hou, Y. Nano Energy 2019, 55, 37. doi: 10.1016/j.nanoen.2018.10.050
doi: 10.1016/j.nanoen.2018.10.050
Yang, W.; Yang, X.; Jia, J.; Hou, C.; Gao, H.; Mao, Y.; Wang, C.; Lin, J.; Luo, X. Appl. Catal. B 2019, 244, 1096. doi: 10.1016/j.apcatb.2018.12.038
doi: 10.1016/j.apcatb.2018.12.038
Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Adv. Funct. Mater. 2017, 27, 1703455. doi: 10.1002/adfm.201703455
doi: 10.1002/adfm.201703455
Tu, Y.; Ren, P.; Deng, D.; Bao, X. Nano Energy 2018, 52, 494. doi: 10.1016/j.nanoen.2018.07.062
doi: 10.1016/j.nanoen.2018.07.062
Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X. Energy Environ. Sci. 2016, 9, 123. doi: 10.1039/C5EE03316K
doi: 10.1039/C5EE03316K
Lv, L.; Zha, D.; Ruan, Y.; Li, Z.; Ao, X.; Zheng, J.; Jiang, J.; Chen, H.; M.; Chiang, W. -H.; Chen, J. ACS Nano 2018, 12, 3042. doi: 10.1021/acsnano.8b01056
doi: 10.1021/acsnano.8b01056
Li, M.; Wang, C.; Hu, S.; Wu, H.; Feng, C.; Zhang, Y. Ionics 2019, 25, 4295. doi: 10.1007/s11581-019-02976-9
doi: 10.1007/s11581-019-02976-9
Yan, X.; Tian, L.; Chen, X. J. Power Sources 2015, 300, 336. doi: 10.1016/j.jpowsour.2015.09.089
doi: 10.1016/j.jpowsour.2015.09.089
Lai, H.; Wu, Q.; Zhao, J.; Shang, L.; Li, H.; Che, R.; Lyu, Z.; Xiong, J.; Yang, L.; Wang, X. Energy Environ. Sci. 2016, 9, 2053. doi: 10.1039/C6EE00603E
doi: 10.1039/C6EE00603E
Kim, I. T.; Shin, S.; Shin, M. W. Carbon 2018, 135, 35. doi: 10.1016/j.carbon.2018.04.019
doi: 10.1016/j.carbon.2018.04.019
Nie, Y. F.; Wang, Q.; Chen, X. Y.; Zhang, Z. J. J. Power Sources 2016, 320, 140. doi: 10.1016/j.jpowsour.2016.04.093
doi: 10.1016/j.jpowsour.2016.04.093
Xu, K.; Ning, S.; Chen, H.; Ouyang, S.; Wang, J.; Song, L.; Lv, J.; Ye, J. Sol. RRL 2020, 2000116. doi: 10.1002/solr.202000116
doi: 10.1002/solr.202000116
Chen, S.; Duan, J.; Ran, J.; Jaroniec, M.; Qiao, S. Z. Energy Environ. Sci. 2013, 6, 3693. doi: 10.1039/C3EE42383B
doi: 10.1039/C3EE42383B
Song, F.; Hu, X. J. Am. Chem. Soc. 2014, 136, 16481. doi: 10.1021/ja5096733
doi: 10.1021/ja5096733
Lv, L.; Li, Z.; Xue, K. -H.; Ruan, Y.; Ao, X.; Wan, H.; Miao, X.; Zhang, B.; Jiang, J.; Wang, C. Nano Energy 2018, 47, 275. doi: 10.1016/j.nanoen.2018.03.010
doi: 10.1016/j.nanoen.2018.03.010
Pieta, I. S.; Rathi, A.; Pieta, P.; Nowakowski, R.; Hołdynski, M.; Pisarek, M.; Kaminska, A.; Gawande, M. B.; Zboril, R. Appl. Catal. B 2019, 244, 272. doi: 10.1016/j.apcatb.2018.10.072
doi: 10.1016/j.apcatb.2018.10.072
Jian, J.; Shi, Y.; Syväjärvi, M.; Yakimova, R.; Sun, J. Sol. RRL 2020, 4, 1900364. doi: 10.1002/solr.201900364
doi: 10.1002/solr.201900364
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160