Citation: Yao Chen, Haoyang Dong, Yuanyuan Li, Jinping Liu. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(12): 200707. doi: 10.3866/PKU.WHXB202007075 shu

Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries

  • Corresponding author: Yuanyuan Li, liyynano@hust.edu.cn Jinping Liu, liujp@whut.edu.cn
  • Received Date: 26 July 2020
    Revised Date: 18 August 2020
    Accepted Date: 18 August 2020
    Available Online: 24 August 2020

    Fund Project: the National Natural Science Foundation of China 51972257the National Natural Science Foundation of China 51872104the National Natural Science Foundation of China 51672205the National Key R&D Program of China 2016YFA0202602

  • Lithium-ion batteries have achieved tremendous success in the fields of portable mobile devices, electric vehicles, and large-scale energy storage owing to their high working voltage, high energy density, and long-term lifespan. However, lithium-ion batteries are ultimately unable to satisfy increasing industrial demands due to the shortage and rising cost of lithium resources. Sodium is another alkali metal that has similar physical and chemical properties to those of lithium, but is more abundant. Therefore, sodium-ion batteries (SIBs) are promising candidates for next-generation energy storage devices. Nevertheless, SIBs generally exhibit inferior electrochemical reaction kinetics, cycling performance, and energy density to those of lithium-ion batteries owing to the larger ion radius and higher standard potential of Na+ compared to those of Li+. To address these issues, significant effort has been made toward developing electrode materials with large sodiation/desodiation channels, robust structural stability, and high theoretical capacity. As electrode performance is closely related to its architecture, constructing an advanced electrode structure is crucial for achieving high-performance SIBs. Conventional electrodes are generally prepared by mixing a slurry of active materials, conductive carbon, and binders, followed by casting on a metal current collector. Electrodes prepared this way are subject to shape deformation, causing the active materials to easily peel off the current collector during charge/discharge processes. This leads to rapid capacity decay and short cycle life. Moreover, binders and other additives increase the weight and volume of the electrodes, which reduces the overall energy density of the batteries. Therefore, binder-free, three-dimensional (3D) array electrodes with satisfactory electronic conductivity and low ion-path tortuosity have been proposed. In addition to solving the aforementioned issues, this type of electrode significantly reduces contact resistance through the strong adhesion between the array and the substrate. Furthermore, electrolyte infiltration is greatly facilitated by the abundant interspacing between individual nanostructures, which promotes fast electron transport and shortens ion diffusion, thus enabling the electrode reaction. The array structure can also readily accommodate substantial volume variations that occur during repeated sodiation/desodiation processes and release the generated stress. Therefore, it is of great interest to explore binder-free array electrodes for sodium-ion storage applications. This review summarizes the recent advances in various 3D array anode materials for SIBs, including elemental anodes, transition metal oxides, sulfides, phosphides, and titanates. The preparation methods, structure/morphology characteristics, and electrochemical performance of various array anodes are discussed, and future opportunities and challenges from employing array electrodes in SIBs are proposed.
  • 加载中
    1. [1]

      Zheng, J. Y.; Wang, R.; Li, H. Acta Phys. -Chim. Sin. 2014, 30, 1855.  doi: 10.3866/PKU.WHXB201407151

    2. [2]

      Wang, H. G.; Li, W.; Liu, D. P.; Feng, X. L.; Wang, J.; Yang, X. Y.; Zhang, X. B.; Zhu, Y. J.; Zhang, Y. Adv. Mater. 2017, 29, 1703012. doi: 10.1002/adma.201703012  doi: 10.1002/adma.201703012

    3. [3]

      Zhuang, L. Acta Phys. -Chim. Sin. 2017, 33, 1271.  doi: 10.3866/PKU.WHXB201705031

    4. [4]

      Li, H. X.; Wang, J. W.; Jiao, L. F.; Tao, Z. L.; Liang, J. Acta Phys. -Chim. Sin. 2020, 36, 1904017.  doi: 10.3866/PKU.WHXB201904017

    5. [5]

      Jin, T.; Han, Q. Q.; Jiao, L. F. Adv. Mater. 2020, 32, 1806304. doi: 10.1002/adma.201806304  doi: 10.1002/adma.201806304

    6. [6]

      Xu, Y.; Zhou, M.; Lei, Y. Adv. Energy Mater. 2016, 6, 1502514. doi: 10.1002/aenm.201502514  doi: 10.1002/aenm.201502514

    7. [7]

      Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Adv. Mater. 2012, 24, 5166. doi: 10.1002/adma.201202146  doi: 10.1002/adma.201202146

    8. [8]

      Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Nanoscale 2011, 3, 45. doi: 10.1039/c0nr00472c  doi: 10.1039/c0nr00472c

    9. [9]

      Xiao, L.; Li, E. W.; Yi, J. Y.; Meng, W.; Deng, B. H.; Liu, J. P. Rare Metals 2018, 37, 527. doi: 10.1007/s12598-018-1033-y  doi: 10.1007/s12598-018-1033-y

    10. [10]

      Zheng, L. M.; Wang, Z. Q.; Wu, M. S.; Xu, B.; Ouyang, C. Y. J. Mater. Chem. A 2019, 7, 6053. doi: 10.1039/C8TA11955D  doi: 10.1039/C8TA11955D

    11. [11]

      Zhang, R. H.; Lu, Z. B.; Yang, Y. C.; Shi, W. Curr. Appl. Phys. 2018, 18, 1431. doi: 10.1016/j.cap.2018.08.011  doi: 10.1016/j.cap.2018.08.011

    12. [12]

      Liang, L. W.; Sun, X.; Denis, D. K.; Zhang, J. Y.; Hou, L. R.; Liu, Y.; Yuan, C. Z. ACS Appl. Mater. Interfaces 2019, 11, 4037. doi: 10.1021/acsami.8b20149  doi: 10.1021/acsami.8b20149

    13. [13]

      Wang, Y. S.; Cui, P. X.; Zhu, W.; Feng, Z. M.; Vigeant, M. J.; Demers, H.; Guerfi, A.; Zaghib, K. J. Power Sources 2019, 435, 226760. doi: 10.1016/j.jpowsour.2019.226760  doi: 10.1016/j.jpowsour.2019.226760

    14. [14]

      Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard Ⅲ, W. A.; Kang, K. Energy Environ. Sci. 2015, 8, 540. doi: 10.1039/c4ee03215b  doi: 10.1039/c4ee03215b

    15. [15]

      Wang, C. C.; Du, D. F.; Song, M. M.; Wang, Y. H.; Li, F. J.; Adv. Energy Mater. 2019, 9, 1900022. doi: 10.1002/aenm.201900022  doi: 10.1002/aenm.201900022

    16. [16]

      Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. Small 2018, 14, 1702864. doi: 10.1002/smll.201702864  doi: 10.1002/smll.201702864

    17. [17]

      Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Chem. Commun. 2012, 48, 6544. doi: 10.1039/C2CC31777J  doi: 10.1039/C2CC31777J

    18. [18]

      Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Adv. Energy Mater. 2012, 2, 410. doi: 10.1002/aenm.201100655  doi: 10.1002/aenm.201100655

    19. [19]

      Chen, B. C.; Qin, H. Y.; Li, K.; Zhang, B.; Liu, E. Z.; Zhao, N. Q.; Shi, C. S.; He, C. N. Nano Energy 2019, 66, 104133. doi: 10.1016/j.nanoen.2019.104133  doi: 10.1016/j.nanoen.2019.104133

    20. [20]

      Hou, H. S.; Jing, M. J.; Yang, Y. C.; Zhang, Y.; Zhu, Y. R.; Song, W. X.; Yang, X. M.; Ji, X. B. J. Mater. Chem. A 2015, 3, 2971. doi: 10.1039/C4TA06476C  doi: 10.1039/C4TA06476C

    21. [21]

      Yang, F. H.; Yu, F.; Zhang, Z. A.; Zhang, K.; Lai, Y. Q.; Li, J. Chem. Eur. J. 2016, 22, 2333. doi: 10.1002/chem.201503272  doi: 10.1002/chem.201503272

    22. [22]

      Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nano Res. 2017, 10, 2156. doi: 10.1007/s12274-016-1408-z  doi: 10.1007/s12274-016-1408-z

    23. [23]

      Rubio, S.; Maca, R. R.; Aragon, M. J.; Cabello, M.; Castillorodriguez, M.; Lavela, P.; Tirado, J. L.; Etacheri, V.; Ortiz, G. F. J. Power Sources 2019, 432, 82. doi: 10.1016/j.jpowsour.2019.05.070  doi: 10.1016/j.jpowsour.2019.05.070

    24. [24]

      Xie, F. X.; Zhang, L.; Su, D, W.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2017, 24, 1700989. doi: 10.1002/adma.201700989  doi: 10.1002/adma.201700989

    25. [25]

      Li, D.; Zhou, J. S.; Chen, X. H.; Song, H. H. ACS Appl. Mater. Interfaces 2016, 8, 30899. doi: 10.1021/acsami.6b09444  doi: 10.1021/acsami.6b09444

    26. [26]

      Liu, Y. G.; Cheng, Z. Y.; Sun, H. Y.; Arandiyan, H.; Li, J. P.; Ahmad, M. J. Power Sources 2015, 273, 878. doi: 10.1016/j.jpowsour.2014.09.121  doi: 10.1016/j.jpowsour.2014.09.121

    27. [27]

      Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X. Adv. Mater. 2017, 29, 1700622. doi: 10.1002/adma.201700622  doi: 10.1002/adma.201700622

    28. [28]

      Wang, M.; Yang, Z. Z.; Wang, J. Q.; Li, W. H.; Gu, L.; Yu, Y. Small 2015, 11, 5381. doi: 10.1002/smll.201501313  doi: 10.1002/smll.201501313

    29. [29]

      Liu, S. N.; Luo, Z. G.; Guo, J. H.; Pan, A. Q.; Cai, Z. Y.; Liang S. Q. Electrochem. Commun. 2017, 81, 10. doi: 10.1016/j.elecom.2017.05.011  doi: 10.1016/j.elecom.2017.05.011

    30. [30]

      Wang, L. B.; Wang, C. C.; Li, F. J.; Cheng, F. Y.; Chen, J. Chem. Commun. 2018, 54, 38. doi: 10.1039/C7CC08341F  doi: 10.1039/C7CC08341F

    31. [31]

      Li, X. Y.; Sun, M. L.; Ni, J. F.; Li, L. Adv. Energy Mater. 2019, 9, 1901096. doi: 10.1002/aenm.201901096  doi: 10.1002/aenm.201901096

    32. [32]

      Zhao, W. J.; Chen, J. X.; Lei, Y.; Du, N.; Yang, D. R. J. Alloy. Compd. 2020, 815, 152281. doi: 10.1016/j.jallcom.2019.152281  doi: 10.1016/j.jallcom.2019.152281

    33. [33]

      Lou, S. F.; Zhao, Y.; Wang, J. J.; Yin, G. P.; Du, C. Y.; Sun, X. L. Small 2019, 15, 1904740. doi: 10.1002/smll.201904740  doi: 10.1002/smll.201904740

    34. [34]

      Ni, J. F.; Fu, S. D.; Yuan, Y. F.; Ma, L.; Jiang, Y.; Li, L.; Lu, J. Adv. Mater. 2018, 30, 1704337. doi: 10.1002/adma.201704337  doi: 10.1002/adma.201704337

    35. [35]

      Liu, Q.; Wang, J. Y.; Li, X. L.; Wang, Z. P. Mater. Lett. 2019, 248, 123. doi: 10.1016/j.matlet.2019.04.020  doi: 10.1016/j.matlet.2019.04.020

    36. [36]

      Gu, X. L.; Wang, S. S.; Wang, L. L.; Wu, C.; Xu, K. B.; Zhao, L. Y.; Liu, Q.; Ding, M.; Xu, J. L. J. Nanosci. Nanotechnol. 2019, 19, 226. doi: 10.1166/jnn.2019.16459  doi: 10.1166/jnn.2019.16459

    37. [37]

      Huang, Y.; Li, Y. W.; Huang, R. S.; Yao, J. H. J. Phys. Chem. C 2019, 123, 12614. doi: 10.1021/acs.jpcc.9b02132  doi: 10.1021/acs.jpcc.9b02132

    38. [38]

      Yun, S.; Bak, S.; Kim, S.; Yeon, J. S.; Kim, M. G.; Yang, X. Q.; Braun, P. V.; Park, H. S. Adv. Energy Mater. 2019, 9, 1802816. doi: 10.1002/aenm.201802816  doi: 10.1002/aenm.201802816

    39. [39]

      Fang, Y. J.; Chen, Z. X.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Small. 2018, 14, 1703116. doi: 10.1002/smll.201703116  doi: 10.1002/smll.201703116

    40. [40]

      Qi, S. H.; Xu, B. L.; Tiong, V. T.; Hu, J.; Ma, J. M. Chem. Eng. J. 2020, 379, 122261. doi: 10.1016/j.cej.2019.122261  doi: 10.1016/j.cej.2019.122261

    41. [41]

      Zhao, D. P.; Xie, D.; Liu, H. Q.; Hu, F.; Wu, X. Funct. Mater. Lett. 2018, 11, 1840002. doi: 10.1142/S1793604718400027  doi: 10.1142/S1793604718400027

    42. [42]

      Ni, J. F.; Sun, M. L.; Li, L. Adv. Mater. 2019, 31, 1902603. doi: 10.1002/adma.201902603  doi: 10.1002/adma.201902603

    43. [43]

      Sun, M. L.; Wang, Z. Z.; Ni, J. F.; Li, L. Adv. Funct. Mater. 2020, 30, 1910043. doi: 10.1002/adfm.201910043  doi: 10.1002/adfm.201910043

    44. [44]

      Chen, C. C.; Dong, Y. Y.; Li, S. Y.; Jiang, Z. H.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T.; J. Power Sources 2016, 320, 20. doi: 10.1016/j.jpowsour.2016.04.063  doi: 10.1016/j.jpowsour.2016.04.063

    45. [45]

      Fang, S.; Bresser, D.; Passerini, S. Adv. Energy Mater. 2020, 10, 1902485. doi: 10.1002/aenm.201902485  doi: 10.1002/aenm.201902485

    46. [46]

      Ni, J. F.; Jiang, Y.; Wu, F. X.; Maier, J.; Yu, Y.; Li, L. Adv. Funct. Mater. 2018, 28, 1707179. doi: 10.1002/adfm.201707179  doi: 10.1002/adfm.201707179

    47. [47]

      Li, Y. J.; Zhang, M. L.; Qian, J.; Ma, Y. T.; Li, Y.; Li, W. L.; Wang, F. J.; Li, L.; Wu, F.; Chen, R. J.; Energy Technol. 2019, 7, 1900252. doi: 10.1002/ente.201900252  doi: 10.1002/ente.201900252

    48. [48]

      Su, Y.; Liu, T.; Zhang, P.; Zheng, P. Thin Solid Films 2019, 690, 137522. doi: 10.1016/j.tsf.2019.137522  doi: 10.1016/j.tsf.2019.137522

    49. [49]

      Xu, M.; Xia, Q. Y.; Yue, J. J.; Zhu, X. H.; Guo, Q. B.; Zhu, J. W.; Xia, H.; Adv. Funct. Mater. 2019, 29, 1807377. doi: 10.1002/adfm.201807377  doi: 10.1002/adfm.201807377

    50. [50]

      Li, L.; Wang, Q. M.; Zhang, X. Y.; Fang, L. D.; Li, X. H.; Zhang, W. M.; Appl. Surf. Sci. 2020, 508, 145295. doi: 10.1016/j.apsusc.2020.145295  doi: 10.1016/j.apsusc.2020.145295

    51. [51]

      Wu, K.; Geng, B. J.; Zhang, C.; Shen, W. W.; Yang, D. W.; Li, Z.; Yang, Z. B.; Pan, D. Y. J. Alloy. Compd. 2020, 820, 153296. doi: 10.1016/j.jallcom.2019.153296  doi: 10.1016/j.jallcom.2019.153296

    52. [52]

      Chen, H. H.; Deng, L. B.; Luo, S.; Ren, X. Z.; Li, Y. L.; Sun, L. N.; Zhang, P. X.; Chen, G. Q.; Gao, Y. J. Electrochem. Soc. 2018, 165, 152281. doi: 10.1149/2.0721816jes  doi: 10.1149/2.0721816jes

    53. [53]

      Liu, Y. Z.; Yang, C. H.; Zhang, Q. Y.; Liu, M. L. Energy Storage Mater. 2019, 22, 66. doi: 10.1016/j.ensm.2019.01.001  doi: 10.1016/j.ensm.2019.01.001

    54. [54]

      Zhao, L. P.; Meng, W. S.; Wang, H. Y.; Qi, L. Acta Phys. -Chim. Sin. 2017, 33, 787.  doi: 10.3866/PKU.WHXB201612152

    55. [55]

      Sun, D.; Ye, D. L.; Liu, P.; Tang, Y. G.; Guo, J.; Wang, L. Z.; Wang, H. Y. Adv. Energy Mater. 2018, 8, 1702383. doi: 10.1002/aenm.201702383  doi: 10.1002/aenm.201702383

    56. [56]

      Liang, X. Q.; Chen, M.H.; Shen, S. H.; Xia, X. H. Mater. Technol. 2018, 33, 1. doi: 10.1080/10667857.2018.1470959  doi: 10.1080/10667857.2018.1470959

    57. [57]

      Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Adv. Funct. Mater. 2017, 27, 1702116. doi: 10.1002/adfm.201702116  doi: 10.1002/adfm.201702116

    58. [58]

      Zhang, Y. Q.; Tao, H. C.; Li, T.; Du, S. L.; Li, J. H.; Zhang, Y. K.; Yang, X. L. ACS Appl. Mater. Interfaces 2018, 10, 35206. doi: 10.1021/acsami.8b12079  doi: 10.1021/acsami.8b12079

    59. [59]

      Zhan, J.; Wu, K.; Yu, X.; Yang, M. J.; Cao, X.; Lei, B.; Pan, D. Y.; Jiang, H.; Wu, M. H. Small 2019, 15, 1901083. doi: 10.1002/smll.201901083  doi: 10.1002/smll.201901083

    60. [60]

      Liu, B.; Kong, D. Z.; Wang, Y.; Lim, Y. V.; Huang, S. Z.; Yang, H. Y. FlatChem. 2018, 10, 14. doi: 10.1016/j.flatc.2018.07.002  doi: 10.1016/j.flatc.2018.07.002

    61. [61]

      Tang, W. J.; Wang, X.L.; Xie, D.; Xia, X. H.; Gu, C. D.; Tu, J. P. J. Mater. Chem. A 2018, 6, 18318. doi: 10.1039/C8TA06905K  doi: 10.1039/C8TA06905K

    62. [62]

      Liang, S. Z.; Cheng, Y. J.; Zhu, J.; Xia, Y. G.; Müller-Buschbaum, P. Small Methods 2020, 4, 2000218. doi: 10.1002/smtd.202000218  doi: 10.1002/smtd.202000218

    63. [63]

      Zhou, P.; Wang, X.; Guan, W. H.; Zhang, D.; Fang, L. B.; Jiang, Y. Z. ACS Appl. Mater. Interfaces 2017, 9, 6979. doi: 10.1021/acsami.6b13613  doi: 10.1021/acsami.6b13613

    64. [64]

      Wang, L. Q.; Yuan, J. R.; Zhao, Q. Q.; Wang, Z. T.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. Electrochim. Acta 2019, 308, 174. doi: 10.1016/j.electacta.2019.04.019  doi: 10.1016/j.electacta.2019.04.019

    65. [65]

      Ren, Z. L.; Wen, J.; Liu, W.; Jiang, X. P.; Dong, Y. H.; Guo, X. L.; Zhao, Q. N.; Ji, G. P.; Wang, R. H.; Hu, N.; et al. Nano-Micro Lett. 2019, 11, 66. doi: 10.1007/s40820-019-0297-6  doi: 10.1007/s40820-019-0297-6

    66. [66]

      Wang, L. Q.; Zhao, Q. Q.; Wang, Z. T.; Wu, Y. J.; Ma, X. L.; Zhu, Y. Q.; Cao, C. B. Nanoscale 2020, 12, 248. doi: 10.1039/C9NR07849E  doi: 10.1039/C9NR07849E

    67. [67]

      Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Green Energy Environ. 2017, 3, 42. doi: 10.1016/j.gee.2017.09.005  doi: 10.1016/j.gee.2017.09.005

    68. [68]

      Lu, J. M.; Zhao, S. Y.; Fan, S. X.; Lv, Q.; Li, J.; Lv, R. T. Carbon 2019, 148, 525. doi: 10.1016/j.carbon.2019.03.022  doi: 10.1016/j.carbon.2019.03.022

    69. [69]

      Guan, S. D.; Wang, T. S.; Fu, X. L.; Fan, L. Z.; Peng, Z. J. Appl. Surf. Sci. 2020, 508, 145241. doi: 10.1016/j.apsusc.2019.145241  doi: 10.1016/j.apsusc.2019.145241

    70. [70]

      Wang, Y.; Kong, D. Z.; Huang, S. Z.; Shi, Y. M.; Ding, M.; Von Lim, Y.; Xu, T. T.; Chen, F. M.; Li, X. J.; Yang, H. Y. J. Mater. Chem. A 2018, 6, 10813. doi: 10.1039/C8TA02773K  doi: 10.1039/C8TA02773K

    71. [71]

      Xu, S. S.; Gao, X. M.; Hua, Y.; Neville, A.; Wang, Y. N.; Zhang, K. Energy Storage Mater. 2020, 26, 534. doi:10.1016/j.ensm.2019.11.026  doi: 10.1016/j.ensm.2019.11.026

    72. [72]

      Dinh, K. N.; Liang, Q. H.; Du, C. F.; Zhao, J.; Tok, A. I. Y.; Mao, H.; Yan, Q. G. Nano Today 2019, 25, 99. doi: 10.1016/j.nantod.2019.02.008  doi: 10.1016/j.nantod.2019.02.008

    73. [73]

      Sun, D.; Zhu, X. B.; Luo, B.; Zhang, Y.; Tang, Y. G.; Wang, H. Y.; Wang, L. Z. Adv. Energy Mater. 2018, 8, 1801197. doi: 10.1002/aenm.201801197  doi: 10.1002/aenm.201801197

    74. [74]

      Zhang, J.; Zhang, K.; Yang, J. H.; Lee, G.; Shin, J.; Lau, V. W.; Kang, Y. Adv. Energy Mater. 2018, 8, 1800283. doi: 10.1002/aenm.201800283  doi: 10.1002/aenm.201800283

    75. [75]

      Wang, Y.; Pan, Q.; Jia, K.; Wang, H. B.; Gao, J. J.; Xu, C. L.; Zhong, Y. J.; Alshehri, A. A.; Alzahrani, K. A.; Guo, X. D.; et al. Inorg. Chem. 2019, 58, 6579. doi: 10.1021/acs.inorgchem.9b00451  doi: 10.1021/acs.inorgchem.9b00451

    76. [76]

      Wang, Y.; Wu, C. J.; Wu, Z. G.; Cui, G. W.; Xie, F. Y.; Guo, X. D.; Sun, X. P. Chem. Commun. 2018, 54, 9341. doi: 10.1039/C8CC03827A  doi: 10.1039/C8CC03827A

    77. [77]

      Wang, L. G., Zhao, X. J.; Dai, S.; Shen, Y.; Wang, M. K. Electrochim. Acta. 2019, 314, 142. doi: 10.1016/j.electacta.2019.05.071  doi: 10.1016/j.electacta.2019.05.071

    78. [78]

      Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Adv. Funct. Mater. 2016, 26, 5019. doi: 10.1002/adfm.201601323  doi: 10.1002/adfm.201601323

    79. [79]

      Ni, J. F.; Fu, S. D.; Wu, C.; Zhao, Y.; Maier, J.; Yu, Y.; Li, L. Adv. Energy Mater. 2016, 6, 1502568. doi: 10.1002/aenm.201502568  doi: 10.1002/aenm.201502568

    80. [80]

      Li, H.; Fei, H. L.; Liu, X.; Yang, J.; Wei, M. D. Chem. Commun. 2015, 51, 9298. doi: 10.1039/C5CC02612A  doi: 10.1039/C5CC02612A

    81. [81]

      Li, Z. H.; Shen, W.; Wang, C.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y. J. Mater. Chem. A 2016, 4, 17111. doi: 10.1039/C6TA08416H  doi: 10.1039/C6TA08416H

    82. [82]

      Kong, D. Z.; Wang, Y.; Huang, S. Z.; Von Lim, Y.; Zhang, J.; Sun, L. F.; Liu, B.; Chen, T. P.; Alvaradoa, P. V.; Yang, H. Y. J. Mater. Chem. A 2019, 7, 12751. doi: 10.1039/C9TA01641D  doi: 10.1039/C9TA01641D

    83. [83]

      Chen, Z. H.; Zhang, Q. X.; Lu, L.; Chen, X. Y.; Wang, S.; Xin, C. Z.; Xing, B. L.; Zhang, C. X. Energy Fuels 2020, 34, 3901. doi: 10.1021/acs.energyfuels.9b04307  doi: 10.1021/acs.energyfuels.9b04307

    84. [84]

      Gui, Q. Y.; Ba, D. L.; Zhao, Z. S.; Mao, Y. F.; Zhu, W. H.; Lei, T. Y.; Tan, J. F.; Deng, B. H.; Xiao, L.; Li, Y. Y. Small Methods 2019, 3, 1800371. doi: 10.1002/smtd.201800371  doi: 10.1002/smtd.201800371

    85. [85]

      Que, L. F.; Yu, F. D.; Zheng, L. L.; Wang, Z. B.; Gu, D. M. Nano Energy 2018, 45, 337. doi: 10.1016/j.nanoen.2018.01.014  doi: 10.1016/j.nanoen.2018.01.014

    86. [86]

      Chao, D. L.; Lai, C. M.; Liang, P.; Wei, Q. L.; Wang, Y. S.; Zhu, C. R.; Deng, G.; Doan-Nguyen, V. V. T.; Lin, J. Y.; Mai, L. Q.; Fan, H. J.; et al. Adv. Energy Mater. 2018, 8, 1800058. doi: 10.1002/aenm.201800058  doi: 10.1002/aenm.201800058

    87. [87]

      Mao, Z. F.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Small 2019, 15, 1902466. doi: 10.1002/smll.201902466  doi: 10.1002/smll.201902466

    88. [88]

      Deng, B. H.; Yue, N.; Dong, H. Y.; Gui, Q. Y.; Xiao, L.; Liu, J. P.; Chin. Chem. Lett. 2021, 32, 826. doi: 10.1016/j.cclet.2020.04.054  doi: 10.1016/j.cclet.2020.04.054

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    3. [3]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    4. [4]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(31)
  • Abstract views(868)
  • HTML views(235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return