Citation: Liu Miaomiao, Yang Maomao, Shu XinXin, Zhang Jintao. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200707. doi: 10.3866/PKU.WHXB202007072 shu

Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells

  • Corresponding author: Zhang Jintao, jtzhang@sdu.edu.cn
  • Received Date: 26 July 2020
    Revised Date: 18 August 2020
    Accepted Date: 18 August 2020
    Available Online: 24 August 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21503116) and the Program for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province (2019KJC025)the Program for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province 2019KJC025the National Natural Science Foundation of China 21503116

  • Fuel cells have attracted much attention because of their high specific energy and low environmental load, but their commercial application is limited by the poor performance and high cost of the relevant electrode catalysts. The oxygen reduction reaction (ORR) is the key cathodic reaction in a fuel cell, and it plays an important role in the chemical energy conversion. However, the slow reaction kinetics, large reaction energy barrier, and low selectivity deteriorate the energy efficiency of fuel cells. Thus, rational design of low-cost electrocatalysts that show good activity is highly desirable for improving the performance of fuel cells. Although noble-metal-based electrocatalysts (e.g., Pt/C) show excellent catalytic activity for the ORR, their limited resources, high price, and low stability caused by the migration and agglomeration of nanoparticles on the surface of carbon supports have hindered their extensive application. Because of their excellent electrical conductivity and stability, carbon-based materials are widely used as substrates for electrode materials in the ORR. Heteroatom (e.g., nitrogen, phosphorus, sulfur)-doped carbon materials can influence the adsorption state of oxygen molecules and intermediates by changing the charge distribution of adjacent carbon atoms because of the difference in electronegativity and atomic radius between the heteroatoms and carbon atoms, thus promoting the ORR activity. Optimization of the structure and surface properties of carbon-based electrocatalysts has helped accelerate the four-electron reaction and reduce the overpotential in the ORR. Therefore, non-noble metal and heteroatom-doped carbon-based catalysts exhibit improved ORR activity. The dispersion of non-noble metals on carbon materials via the interaction of metal atoms with the neighboring nitrogen atoms or other heteroatoms produces high-density active sites in the carbon support, thus leading to high atomic utilization and significantly improving the electrocatalytic activity owing to the synergistic effect. This review focuses on the applications of carbon-based electrocatalysts in fuel cells, summarizing the design strategies and electrocatalytic activities of heteroatom-doped carbon-based catalysts with non-noble metals toward improving their ORR activity. Furthermore, the latest research progress in the field of carbon-based catalysts used as cathode catalysts in proton exchange membrane fuel cells (PEMFCs) and anion-exchange membrane fuel cells (AEMFCs) is integrated, and the direction of future development is addressed.
  • 加载中
    1. [1]

      Steele, B. C.; Heinzel, A. Nature 2001, 414, 345. doi: 10.1038/35104620  doi: 10.1038/35104620

    2. [2]

      Pozio, A.; Francesco, M. D.; Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power Sources 2002, 1, 13. doi: 10.1016/S0378-7753(01)00921-1  doi: 10.1016/S0378-7753(01)00921-1

    3. [3]

      He, P.; Yuan, F. L.; Wang, Z. F.; Tan, Z. A.; Fan, L. Z. Acta Phys. -Chim. Sin. 2018, 34, 1250.  doi: 10.3866/PKU.WHXB201804041

    4. [4]

      Hu, L.; Yu, F.; Wang, F.; Yang, S.; Peng, B.; Chen, L.; Wang, G.; Hou, J.; Dai, B.; Tian, Z. Q. Chin. Chem. Lett. 2020, 31, 1207. doi: 10.1016/j.cclet.2019.06.041  doi: 10.1016/j.cclet.2019.06.041

    5. [5]

      Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073.  doi: 10.3866/PKU.WHXB20100812

    6. [6]

      Zhu, Q.; Cai, D.; Lan, X.; Shi, G.; Jin, K.; Zhou, J.; Chen, W.; Yu, Y. Sci. Bull. 2018, 63, 152. doi: 10.1016/j.scib.2018.01.014  doi: 10.1016/j.scib.2018.01.014

    7. [7]

      Xu, Y.; Zhu, L.; Cui, X.; Zhao, M.; Li, Y.; Chen, L.; Jiang, W.; Jiang, T.; Yang, S.; Wang, Y. Nano Res. 2020, 13, 752. doi: 10.1007/s12274-020-2689-9  doi: 10.1007/s12274-020-2689-9

    8. [8]

      Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 1321. doi: 10.1021/nn901850u  doi: 10.1021/nn901850u

    9. [9]

      Chang, G.; Ren, J.; She, X.; Wang, K.; Komarneni, S.; Yang, D. Sci. Bull. 2018, 63, 155. doi: 10.1016/j.scib.2018.01.013  doi: 10.1016/j.scib.2018.01.013

    10. [10]

      Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. Nat. Nanotechnol. 2015, 10, 444. doi: 10.1038/nnano.2015.48  doi: 10.1038/nnano.2015.48

    11. [11]

      Chen, S.; Chen, S.; Zhang, B.; Zhang, J. ACS Appl. Mater. Interfaces 2019, 11, 16720. doi: 10.1021/acsami.9b02819  doi: 10.1021/acsami.9b02819

    12. [12]

      Wu, K.; Chen, X.; Liu, S.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R.; Chen, W.; Luo, J.; et al. Nano Res. 2018, 11, 6260. doi: 10.1007/s12274-018-2149-y  doi: 10.1007/s12274-018-2149-y

    13. [13]

      Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.; Ma, J.; Ma, Y.; Hu, Z. Angew. Chem. Int. Ed. 2011, 50, 7132. doi: 10.1002/anie.201101287  doi: 10.1002/anie.201101287

    14. [14]

      Wang , S.; Iyyamperumal , E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L. Angew. Chem. Int. Ed. 2011, 50, 11756. doi: 10.1002/anie.201105204  doi: 10.1002/anie.201105204

    15. [15]

      Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    16. [16]

      Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S.; Chen, Y. ACS Nano 2014, 8, 6856. doi: 10.1021/nn501506p  doi: 10.1021/nn501506p

    17. [17]

      Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Science 2016, 351, 361. doi: 10.1126/science.aad0832  doi: 10.1126/science.aad0832

    18. [18]

      Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Nat. Mater. 2011, 10, 780. doi: 10.1038/nmat3087  doi: 10.1038/nmat3087

    19. [19]

      Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009, 324, 71. doi: 10.1126/science.1170051  doi: 10.1126/science.1170051

    20. [20]

      Shu, X.; Chen, S.; Chen, S.; Pan, W.; Zhang, J. Carbon 2020, 157, 234. doi: 10.1016/j.carbon.2019.10.023  doi: 10.1016/j.carbon.2019.10.023

    21. [21]

      Wu, M.; Wang, Y.; Wei, Z.; Wang, L.; Zhuo, M.; Zhang, J.; Han, X.; Ma, J. J. Mater. Chem. A 2018, 6, 10918. doi: 10.1039/c8ta02416b  doi: 10.1039/c8ta02416b

    22. [22]

      Matter, P.; Zhang, L.; Ozkan, U. J. Catal. 2006, 239, 83. doi: 10.1016/j.jcat.2006.01.022  doi: 10.1016/j.jcat.2006.01.022

    23. [23]

      Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J.; et al. Nat. Chem. 2018, 10, 924. doi: 10.1038/s41557-018-0100-1  doi: 10.1038/s41557-018-0100-1

    24. [24]

      Liu, J.; Song, P.; Xu, W. Carbon 2017, 115, 763. doi: 10.1016/j.carbon.2017.01.080  doi: 10.1016/j.carbon.2017.01.080

    25. [25]

      Yuan, Y.; Wang, J.; Adimi, S.; Shen, H.; Thomas, T.; Ma, R.; Attfield, J. P.; Yang, M. Nat. Mater. 2020, 19, 282. doi: 10.1038/s41563-019-0535-9  doi: 10.1038/s41563-019-0535-9

    26. [26]

      Xue, L.; Li, Y.; Liu, X.; Liu, Q.; Shang, J.; Duan, H.; Dai, L.; Shui, J. Nat. Commun. 2018, 9, 3819. doi: 10.1038/s41467-018-06279-x  doi: 10.1038/s41467-018-06279-x

    27. [27]

      Xiao, M.; Zhu, J.; Ma, L.; Jin, Z.; Ge, J.; Deng, X.; Hou, Y.; He, Q.; Li, J.; Jia, Q.; et al. ACS Catal. 2018, 8, 2824. doi: 10.1021/acscatal.8b00138  doi: 10.1021/acscatal.8b00138

    28. [28]

      Peng, P.; Shi, L.; Huo, F.; Mi, C.; Wu, X.; Zhang, S.; Xiang, Z. Sci. Adv. 2019, 5, eaaw2322. doi: 10.1126/sciadv.aaw2322  doi: 10.1126/sciadv.aaw2322

    29. [29]

      Zhang, J.; Qu, L.; Shi, G.; Liu, J.; Chen, J.; Dai, L. Angew. Chem. Int. Ed. 2016, 55, 2230. doi: 10.1002/anie.201510495  doi: 10.1002/anie.201510495

    30. [30]

      Yang, M.; Shu, X.; Zhang, J. ChemCatChem 2020, 12, 4105. doi: 10.1002/cctc.202000363  doi: 10.1002/cctc.202000363

    31. [31]

      Wang, J.; Hao, J.; Liu, D.; Qin, S.; Portehault, D.; Li, Y.; Chen, Y.; Lei, W. ACS Energy Lett. 2017, 2, 306. doi: 10.1021/acsenergylett.6b00602  doi: 10.1021/acsenergylett.6b00602

    32. [32]

      Liu, J.; Xu, L.; Deng, Y.; Zhu, X.; Deng, J.; Lian, J.; Wu, J.; Qian, J.; Xu, H.; Yuan, S.; et al. J. Mater. Chem. A 2019, 7, 14291. doi: 10.1039/c9ta01234f  doi: 10.1039/c9ta01234f

    33. [33]

      Zan, Y.; Zhang, Z.; Dou, M.; Wang, F. Catal. Sci. Technol. 2019, 9, 5906. doi: 10.1039/c9cy01387c  doi: 10.1039/c9cy01387c

    34. [34]

      Liang, Z.; Liu, C.; Chen, M.; Qi, X.; U, P. K.; Peera, S. G.; Liu, J.; He, J.; Liang, T. New J. Chem. 2019, 43, 19308. doi: 10.1039/c9nj04808a  doi: 10.1039/c9nj04808a

    35. [35]

      Xue, X.; Yang, H.; Yang, T.; Yuan, P.; Li, Q.; Mu, S.; Zheng, X.; Chi, L.; Zhu, J.; Li, Y.; et al. J. Mater. Chem. A 2019, 7, 15271. doi: 10.1039/c9ta03828k  doi: 10.1039/c9ta03828k

    36. [36]

      Chen, B.; Wang, L.; Dai, W.; Shang, S.; Lv, Y.; Gao, S. ACS Catal. 2015, 5, 2788. doi: 10.1021/acscatal.5b00244  doi: 10.1021/acscatal.5b00244

    37. [37]

      Xiao, X.; Li, X.; Wang, Z.; Yan, G.; Guo, H.; Hu, Q.; Li, L.; Liu, Y.; Wang, J. Appl. Catal. B-Environ. 2020, 265, 118603. doi: 10.1016/j.apcatb.2020.118603  doi: 10.1016/j.apcatb.2020.118603

    38. [38]

      Li, X.; Guan, B. Y.; Gao, S.; Lou, X. W. Energy Environ. Sci. 2019, 12, 648. doi: 10.1039/c8ee02779j  doi: 10.1039/c8ee02779j

    39. [39]

      Ren, H.; Wang, Y.; Yang, Y.; Tang, X.; Peng, Y.; Peng, H.; Xiao, L.; Lu, J.; Abruña, H. D.; Zhuang, L. ACS Catal. 2017, 7, 6485. doi: 10.1021/acscatal.7b02340  doi: 10.1021/acscatal.7b02340

    40. [40]

      Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S.; Qi, X.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 5414. doi: 10.1021/jacs.5b00292  doi: 10.1021/jacs.5b00292

    41. [41]

      Luo, J.; Wang, K.; Hua, X.; Wang, W.; Li, J.; Zhang, S.; Chen, S. Small 2019, 15, e1805325. doi: 10.1002/smll.201805325  doi: 10.1002/smll.201805325

    42. [42]

      Gao, Y.; Xiao, Z.; Kong, D.; Iqbal, R.; Yang, Q. H.; Zhi, L. Nano Energy 2019, 64, 103879. doi: 10.1016/j.nanoen.2019.103879  doi: 10.1016/j.nanoen.2019.103879

    43. [43]

      Li, W.; Wang, D.; Zhang, Y.; Tao, L.; Wang, T.; Zou, Y.; Wang, Y.; Chen, R.; Wang, S. Adv. Mater. 2020, 32, 1907879. doi: 10.1002/adma.201907879  doi: 10.1002/adma.201907879

    44. [44]

      Chen, S.; Zhao, L.; Ma, J.; Wang, Y.; Dai, L.; Zhang, J. Nano Energy 2019, 60, 536. doi: 10.1016/j.nanoen.2019.03.084  doi: 10.1016/j.nanoen.2019.03.084

    45. [45]

      Yang, Q.; Xiao, Z.; Kong, D.; Zhang, T.; Duan, X.; Zhou, S.; Niu, Y.; Shen, Y.; Sun, H.; Wang, S.; Zhi, L. Nano Energy 2019, 66, 104096. doi: 10.1016/j.nanoen.2019.104096  doi: 10.1016/j.nanoen.2019.104096

    46. [46]

      Yuan, K.; Lützenkirchen-Hecht, D. F.; Li, L.; Shuai, L.; Li, Y.; Cao, R.; Qiu, M.; Zhuang, X.; Leung, M. K. H.; Chen, Y.; Scherf, U. J. Am. Chem. Soc. 2020, 142, 2404. doi: 10.1021/jacs.9b11852  doi: 10.1021/jacs.9b11852

    47. [47]

      Serov, A.; Robson, M. H.; Artyushkova, K.; Atanassov, P. Appl. Catal. B-Environ. 2012, 127, 300. doi: 10.1016/j.apcatb.2012.08.040  doi: 10.1016/j.apcatb.2012.08.040

    48. [48]

      Hu, B. C.; Wu, Z. Y.; Chu, S. Q.; Zhu, H. W.; Liang, H. W.; Zhang, J.; Yu, S. H. Energy Environ. Sci. 2018, 11, 2208. doi: 10.1039/c8ee00673c  doi: 10.1039/c8ee00673c

    49. [49]

      Chen, Y.; Gokhale, R.; Serov, A.; Artyushkova, K.; Atanassov, P. Nano Energy 2017, 38, 201. doi: 10.1016/j.nanoen.2017.05.059  doi: 10.1016/j.nanoen.2017.05.059

    50. [50]

      Chen, G.; Liu, P.; Liao, Z.; Sun, F.; He, Y.; Zhong, H.; Zhang, T.; Zschech, E.; Chen, M.; Wu, G.; et al. Adv. Mater. 2020, 32, e1907399. doi: 10.1002/adma.201907399  doi: 10.1002/adma.201907399

    51. [51]

      Ji, D.; Sun, J.; Tian, L.; Chinnappan, A.; Zhang, T.; Jayathilaka, W. A. D. M.; Gosh, R.; Baskar, C.; Zhang, Q.; Ramakrishna, S. Adv. Funct. Mater. 2020, 30, 1910568. doi: 10.1002/adfm.201910568  doi: 10.1002/adfm.201910568

    52. [52]

      Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Adv. Mater. 2019, 31, e1900617. doi: 10.1002/adma.201900617  doi: 10.1002/adma.201900617

    53. [53]

      Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. Nat. Energy 2016, 1, 15006. doi: 10.1038/nenergy.2015.6  doi: 10.1038/nenergy.2015.6

    54. [54]

      Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. Angew. Chem. Int. Ed. 2014, 53, 14235. doi: 10.1002/anie.201408990  doi: 10.1002/anie.201408990

    55. [55]

      Wu, M.; Wang, K.; Yi, M.; Tong, Y.; Wang, Y.; Song, S. ACS Catal. 2017, 7, 6082. doi: 10.1021/acscatal.7b01649  doi: 10.1021/acscatal.7b01649

    56. [56]

      Xue, J.; Li, Y.; Hu, J. J. Mater. Chem. A 2020, 8, 7145. doi: 10.1039/c9ta13471a  doi: 10.1039/c9ta13471a

    57. [57]

      He, Y.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J.; et al. Energy Environ. Sci. 2019, 12, 250. doi: 10.1039/c8ee02694g  doi: 10.1039/c8ee02694g

    58. [58]

      Hou, C. C.; Zou, L.; Sun, L.; Zhang, K.; Liu, Z.; Li, Y.; Li, C.; Zou, R.; Yu, J.; Xu, Q. Angew. Chem. Int. Ed. 2020, 59, 7384. doi: 10.1002/anie.202002665  doi: 10.1002/anie.202002665

    59. [59]

      Han, X.; Ling, X.; Wang, Y.; Ma, T.; Zhong, C.; Hu, W.; Deng, Y. Angew. Chem. Int. Ed. 2019, 58, 5359. doi: 10.1002/anie.201901109  doi: 10.1002/anie.201901109

    60. [60]

      Chen, M. X.; Zhu, M.; Zuo, M.; Chu, S. Q.; Zhang, J.; Wu, Y.; Liang, H. W.; Feng, X. Angew. Chem. Int. Ed. 2020, 59, 1627. doi: 10.1002/anie.201912275  doi: 10.1002/anie.201912275

    61. [61]

      Ramaswamy, N.; Tylus, U.; Jia, Q.; Mukerjee, S. J. Am. Chem. Soc. 2013, 135, 15443. doi: 10.1021/ja405149m  doi: 10.1021/ja405149m

    62. [62]

      Artyushkova, K.; Matanovic, I.; Halevi, B.; Atanassov, P. J. Phys. Chem. C 2017, 121, 2836. doi: 10.1021/acs.jpcc.6b11721  doi: 10.1021/acs.jpcc.6b11721

    63. [63]

      Li, J.; Chen, S.; Yang, N.; Deng, M.; Ibraheem, S.; Deng, J.; Li, J.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2019, 58, 7035. doi: 10.1002/anie.201902109  doi: 10.1002/anie.201902109

    64. [64]

      Xiao, M.; Zhang, H.; Chen, Y.; Zhu, J.; Gao, L.; Jin, Z.; Ge, J.; Jiang, Z.; Chen, S.; Liu, C.; Xing, W. Nano Energy 2018, 46, 396. doi: 10.1016/j.nanoen.2018.02.025  doi: 10.1016/j.nanoen.2018.02.025

    65. [65]

      Zhao, T.; Kumar, A.; Xiong, X.; Ma, M.; Wang, Y.; Zhang, Y.; Agnoli, S.; Zhang, G.; Sun, X. ACS Appl. Mater. Interfaces 2020, 12, 25832. doi: 10.1021/acsami.0c04169  doi: 10.1021/acsami.0c04169

    66. [66]

      Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Nat. Mater. 2015, 14, 937. doi: 10.1038/nmat4367  doi: 10.1038/nmat4367

    67. [67]

      Wang, X.; Jia, Y.; Mao, X.; Liu, D.; He, W.; Li, J.; Liu, J.; Yan, X.; Chen, J.; Song, L.; et al. Adv. Mater. 2020, 32, e2000966. doi: 10.1002/adma.202000966  doi: 10.1002/adma.202000966

    68. [68]

      Liu, K.; Wu, G.; Wang, G. J. Phys. Chem. C 2017, 121, 11319. doi: 10.1021/acs.jpcc.7b00913  doi: 10.1021/acs.jpcc.7b00913

    69. [69]

      Yang, L.; Cheng, D.; Xu, H.; Zeng, X.; Wan, X.; Shui, J.; Xiang, Z.; Cao, D. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 6626. doi: 10.1073/pnas.1800771115  doi: 10.1073/pnas.1800771115

    70. [70]

      Zhang, N.; Zhou, T.; Chen, M.; Feng, H.; Yuan, R.; Zhong, C. A.; Yan, W.; Tian, Y.; Wu, X.; Chu, W.; et al. Energy Environ. Sci. 2020, 13, 111. doi: 10.1039/c9ee03027a  doi: 10.1039/c9ee03027a

    71. [71]

      Zhang, J.; Zhu, W.; Pei, Y.; Liu, Y.; Qin, Y.; Zhang, X.; Wang, Q.; Yin, Y.; Guiver, M. D. ChemSusChem 2019, 12, 4165. doi: 10.1002/cssc.201901668  doi: 10.1002/cssc.201901668

    72. [72]

      Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M.; Feng, Z.; Wang, J.; Engelhard, M. H.; Zhang, H.; He, Y.; et al. Adv. Mater. 2018, 30, 1706758. doi: 10.1002/adma.201706758  doi: 10.1002/adma.201706758

    73. [73]

      Sun, X.; Li, K.; Yin, C.; Wang, Y.; Jiao, M.; He, F.; Bai, X.; Tang, H.; Wu, Z. Carbon 2016, 108, 541. doi: 10.1016/j.carbon.2016.07.051  doi: 10.1016/j.carbon.2016.07.051

    74. [74]

      Jia, Y.; Wang, Y.; Zhang, G.; Zhang, C.; Sun, K.; Xiong, X.; Liu, J.; Sun, X. J. Energy Chem. 2020, 49, 283. doi: 10.1016/j.jechem.2020.01.034  doi: 10.1016/j.jechem.2020.01.034

    75. [75]

      Ma, M.; Kumar, A.; Wang, D.; Wang, Y.; Jia, Y.; Zhang, Y.; Zhang, G.; Yan, Z.; Sun, X. Appl. Catal. B-Environ. 2020, 274, 119091. doi: 10.1016/j.apcatb.2020.119091  doi: 10.1016/j.apcatb.2020.119091

    76. [76]

      Han, X.; Ling, X.; Yu, D.; Xie, D.; Li, L.; Peng, S.; Zhong, C.; Zhao, N.; Deng, Y.; Hu, W. Adv. Mater. 2019, 31, e1905622. doi: 10.1002/adma.201905622  doi: 10.1002/adma.201905622

    77. [77]

      Li, Q.; Chen, W.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L.; Zheng, X.; Yan, W.; Cheong, W. C.; Shen, R.; et al. Adv. Mater. 2018, 30, e1800588. doi: 10.1002/adma.201800588  doi: 10.1002/adma.201800588

    78. [78]

      Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    79. [79]

      Zhan, Y.; Xie, F.; Zhang, H.; Jin, Y.; Meng, H.; Chen, J.; Sun, X. ACS Appl. Mater. Interfaces 2020, 12, 17481. doi: 10.1021/acsami.0c00126  doi: 10.1021/acsami.0c00126

    80. [80]

      Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2015, 44, 2060. doi: 10.1039/c4cs00470a  doi: 10.1039/c4cs00470a

    81. [81]

      Klingele, M.; Van Pham, C.; Fischer, A.; Thiele, S. Fuel Cells 2016, 16, 522. doi: 10.1002/fuce.201600113  doi: 10.1002/fuce.201600113

    82. [82]

      Zhu, J.; Xiao, M.; Song, P.; Fu, J.; Jin, Z.; Ma, L.; Ge, J.; Liu, C.; Chen, Z.; Xing, W. Nano Energy 2018, 49, 23. doi: 10.1016/j.nanoen.2018.04.021  doi: 10.1016/j.nanoen.2018.04.021

    83. [83]

      Shen, Y.; Li, Y.; Yang, G.; Zhang, Q.; Liang, H.; Peng, F. J. Energy Chem. 2020, 44, 106. doi: 10.1016/j.jechem.2019.09.019  doi: 10.1016/j.jechem.2019.09.019

    84. [84]

      Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J.; Jia, L.; Yao, W.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2018, 57, 15101. doi: 10.1002/anie.201808383  doi: 10.1002/anie.201808383

    85. [85]

      Charreteur, F.; Ruggeri, S.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2008, 53, 6881. doi: 10.1016/j.electacta.2007.12.051  doi: 10.1016/j.electacta.2007.12.051

    86. [86]

      Qiao, M.; Wang, Y.; Wang, Q.; Hu, G.; Mamat, X.; Zhang, S.; Wang, S. Angew. Chem. Int. Ed. 2020, 59, 2688. doi: 10.1002/anie.201914123  doi: 10.1002/anie.201914123

    87. [87]

      Wan, X.; Liu, X.; Li, Y.; Yu, R.; Zheng, L.; Yan, W.; Wang, H.; Xu, M.; Shui, J. Nat. Catal. 2019, 2, 259. doi: 10.1038/s41929-019-0237-3  doi: 10.1038/s41929-019-0237-3

    88. [88]

      Deng, Y.; Chi, B.; Li, J.; Wang, G.; Zheng, L.; Shi, X.; Cui, Z.; Du, L.; Liao, S.; Zang, K.; et al. Adv. Energy Mater. 2019, 9, 1802856. doi: 10.1002/aenm.201802856  doi: 10.1002/aenm.201802856

    89. [89]

      Li, J.; Zhang, H.; Samarakoon, W.; Shan, W.; Cullen, D. A.; Karakalos, S.; Chen, M.; Gu, D.; More, K. L.; Wang, G.; et al. Angew. Chem. Int. Ed. 2019, 58, 18971. doi: 10.1002/anie.201909312  doi: 10.1002/anie.201909312

    90. [90]

      Li, Y.; Liu, X.; Zheng, L.; Shang, J.; Wan, X.; Hu, R.; Guo, X.; Hong, S.; Shui, J. J. Mater. Chem. A 2019, 7, 26147. doi: 10.1039/c9ta08532g  doi: 10.1039/c9ta08532g

    91. [91]

      Li, J.; Chen, M.; Cullen, D. A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; et al. Nat. Catal. 2018, 1, 935. doi: 10.1038/s41929-018-0164-8  doi: 10.1038/s41929-018-0164-8

    92. [92]

      Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; et al. J. Am. Chem. Soc. 2017, 139, 17281. doi: 10.1021/jacs.7b10385  doi: 10.1021/jacs.7b10385

    93. [93]

      Zhang, H.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. Energy Environ. Sci. 2019, 12, 2548. doi: 10.1039/c9ee00877b  doi: 10.1039/c9ee00877b

    94. [94]

      Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Nat. Commun. 2011, 2, 416. doi: 10.1038/ncomms1427  doi: 10.1038/ncomms1427

    95. [95]

      Chenitz, R.; Kramm, U. I.; Lefèvre, M.; Glibin, V.; Zhang, G.; Sun, S.; Dodelet, J. P. Energy Environ. Sci. 2018, 11, 365. doi: 10.1039/c7ee02302b  doi: 10.1039/c7ee02302b

    96. [96]

      Fu, X.; Li, N.; Ren, B.; Jiang, G.; Liu, Y.; Hassan, F. M.; Su, D.; Zhu, J.; Yang, L.; Bai, Z.; et al. Adv. Energy Mater. 2019, 9, 1803737. doi: 10.1002/aenm.201803737  doi: 10.1002/aenm.201803737

    97. [97]

      Gottesfeld, S.; Dekel, D. R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y. S. J. Power Sources 2018, 375, 170. doi: 10.1016/j.jpowsour.2017.08.010  doi: 10.1016/j.jpowsour.2017.08.010

    98. [98]

      Xu, J.; Gao, P.; Zhao, T. S. Energy Environ. Sci. 2012, 5, 5333. doi: 10.1039/c1ee01431e  doi: 10.1039/c1ee01431e

    99. [99]

      Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; et al. Energy Environ. Sci. 2014, 7, 3135. doi: 10.1039/c4ee01303d  doi: 10.1039/c4ee01303d

    100. [100]

      Pham, C. V.; Britton, B.; Böhm, T.; Holdcroft, S.; Thiele, S. Adv. Mater. Interfaces 2018, 5, 1800184. doi: 10.1002/admi.201800184  doi: 10.1002/admi.201800184

    101. [101]

      Lu, Y.; Wang, L.; Preuß, K.; Qiao, M.; Titirici, M. M.; Varcoe, J.; Cai, Q. J. Power Sources 2017, 372, 82. doi: 10.1016/j.jpowsour.2017.10.037  doi: 10.1016/j.jpowsour.2017.10.037

    102. [102]

      Li, J. C.; Maurya, S.; Kim, Y. S.; Li, T.; Wang, L.; Shi, Q.; Liu, D.; Feng, S.; Lin, Y.; Shao, M. ACS Catal. 2020, 10, 2452. doi: 10.1021/acscatal.9b04621  doi: 10.1021/acscatal.9b04621

    103. [103]

      Peng, X.; Omasta, T. J.; Magliocca, E.; Wang, L.; Varcoe, J. R.; Mustain, W. E. Angew. Chem. Int. Ed. 2018, 131, 1058. doi: 10.1002/ange.201811099  doi: 10.1002/ange.201811099

    104. [104]

      Kim, Y.; Wang, Y.; France-Lanord, A.; Wang, Y.; Wu, Y. M.; Lin, S.; Li, Y.; Grossman, J. C.; Swager, T. M. J. Am. Chem. Soc. 2019, 141, 18152. doi: 10.1021/jacs.9b08749  doi: 10.1021/jacs.9b08749

    105. [105]

      Wang, Y.; Wang, G.; Li, G.; Huang, B.; Pan, J.; Liu, Q.; Han, J.; Xiao, L.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2015, 8, 177. doi: 10.1039/c4ee02564d  doi: 10.1039/c4ee02564d

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(46)
  • Abstract views(916)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return