Citation: Guan Liming, Guo Beidou, Jia Xinrui, Xie Guancai, Gong Jian Ru. Microscopic Mechanism on Giant Photoeffect in Proton Transport Through Graphene Membranes[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 200706. doi: 10.3866/PKU.WHXB202007067 shu

Microscopic Mechanism on Giant Photoeffect in Proton Transport Through Graphene Membranes

  • Corresponding author: Gong Jian Ru, gongjr@nanoctr.cn
  • These authors contributed equally to this work.
  • Received Date: 25 July 2020
    Revised Date: 4 September 2020
    Accepted Date: 7 September 2020
    Available Online: 11 September 2020

    Fund Project: the National Basic Research Plan, China 2016YFA0201600The project was supported by the Strategic Priority Research Program of CAS (XDB36030000), the National Natural Science Foundation of China (21422303, 21573049, 21872043), the National Basic Research Plan, China (2016YFA0201600), the Beijing Natural Science Foundation, China (2142036), the Youth Innovation Promotion Association and the Special Program of "One Belt One Road" of CASthe National Natural Science Foundation of China 21422303the National Natural Science Foundation of China 21573049the Beijing Natural Science Foundation, China 2142036the Strategic Priority Research Program of CAS XDB36030000the National Natural Science Foundation of China 21872043

  • Graphene monolayers are permeable to thermal protons and impermeable to other atoms and molecules, exhibiting their potential applications in fuel cell technologies and hydrogen isotope separation. Furthermore, the giant photoeffect in proton transport through catalytically activated graphene membranes was reported by Geim et al. Their experiment showed that the synergy between illumination and the catalytically active metal plays a key role in this photoeffect. Geim et al. suggested that the local photovoltage created between metal nanoparticles and graphene could funnel protons and electrons toward the metal nanoparticles for the production of hydrogen, while repelling holes away from them, causing the giant photoeffect. However, based on static electric field theory, this explanation is not convincing and the work lacks an analysis on the microscopic mechanism of this effect. Herein, we provide the exact microscopic mechanism behind this phenomenon. In semi-metal pristine graphene, most photon excited hot electrons relax to lower energy states within a timescale of 10−12 s, while the typical timescale of a chemical reaction is 10−6 s. Thus, hot electrons excited by incident photons relax to lower energy states before reacting with protons through the graphene. When graphene is decorated with metal, electron transfer between the graphene and the metal, induced by different work functions, would result in the formation of interface dipoles. When using metals such as Pt, Pd, Ni, etc., which can strongly interact with graphene, local dipoles form. Protons are trapped around the negative poles of the local dipoles, while electrons are around the positive poles. Upon illumination, the electrons are excited to metastable excited states with higher energy levels. Due to the energy barriers around them, the free electrons in the metastable excited states will have a relatively longer lifetime, which facilitates the production of hydrogen through their effective reaction with protons that permeated through the graphene. The concentration of high-energy electrons under illumination was estimated, and the results showed that more electrons are energized to the excited state with strong illumination. According to the analysis, the giant photoeffect in proton transport through the catalytically activated graphene membrane is attributed to long-lived hot electrons and a fast proton transport rate. Since there is no change in the activation energy of the reaction, the metal catalyst increases the rate of the reaction by increasing the number of successful collisions between the reactants to produce the significant photoeffect. This might lead to a new microscopic mechanism that clarifies the role of the catalyst in improving the efficiency of photo(electro)catalytic reactions.
  • 加载中
    1. [1]

      Achtyl, J. L.; Unocic, R. R.; Xu, L.; Cai, Y.; Raju, M.; Zhang, W.; Sacci, R. L.; Vlassiouk, I. V.; Fulvio, P. F.; Ganesh, P.; et al. Nat. Commun. 2015, 6, 6539. doi: 10.1038/ncomms7539  doi: 10.1038/ncomms7539

    2. [2]

      Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A.; et al. Nature 2014, 516, 227. doi: 10.1038/nature14015  doi: 10.1038/nature14015

    3. [3]

      Lozada-Hidalgo, M.; Hu, S.; Marshall, O.; Mishchenko, A.; Grigorenko, A. N.; Dryfe, R. A.; Radha, B.; Grigorieva, I. V.; Geim, A. K. Science 2016, 351, 68. doi: 10.1126/science.aac9726  doi: 10.1126/science.aac9726

    4. [4]

      Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K. Nat. Commun. 2017, 8, 15215. doi: 10.1038/ncomms15215  doi: 10.1038/ncomms15215

    5. [5]

      Kroes, J. M.; Fasolino, A.; Katsnelson, M. I. Phys. Chem. Chem. Phys. 2017, 19, 5813. doi: 10.1039/c6cp08923b  doi: 10.1039/c6cp08923b

    6. [6]

      Seel, M.; Pandey, R. 2D Materials 2016, 3, 025004. doi: 10.1088/2053-1583/3/2/025004  doi: 10.1088/2053-1583/3/2/025004

    7. [7]

      Shi, L.; Xu, A.; Chen, G.; Zhao, T. J. Phys. Chem. Lett. 2017, 8, 4354. doi: 10.1021/acs.jpclett.7b01999  doi: 10.1021/acs.jpclett.7b01999

    8. [8]

      Bartolomei, M.; Hernández, M. I.; Campos-Martínez, J.; Hernández-Lamoneda, R. Carbon 2019, 144, 724. doi: 10.1016/j.carbon.2018.12.086  doi: 10.1016/j.carbon.2018.12.086

    9. [9]

      Feng, Y.; Chen, J.; Fang, W.; Wang, E. G.; Michaelides, A.; Li, X. J. Phys. Chem. Lett. 2017, 8, 6009. doi: 10.1021/acs.jpclett.7b02820  doi: 10.1021/acs.jpclett.7b02820

    10. [10]

      Poltavsky, I.; Zheng, L.; Mortazavi, M.; Tkatchenko, A. J. Chem. Phys. 2018, 148, 204707. doi: 10.1063/1.5024317  doi: 10.1063/1.5024317

    11. [11]

      Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Kravets, V. G.; Rodriguez, F. J.; Berdyugin, A.; Grigorenko, A.; Geim, A. K. Nat. Nanotechnol. 2018, 13, 300. doi: 10.1038/s41565-017-0051-5  doi: 10.1038/s41565-017-0051-5

    12. [12]

      Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911. doi: 10.1038/nmat3151  doi: 10.1038/nmat3151

    13. [13]

      Brongersma, M. L.; Halas, N. J.; Nordlander, P. Nat. Nanotechnol. 2015, 10, 25. doi: 10.1038/nnano.2014.311  doi: 10.1038/nnano.2014.311

    14. [14]

      Miao, M.; Nardelli, M. B.; Wang, Q.; Liu, Y. Phys. Chem. Chem. Phys. 2013, 15, 16132. doi: 10.1039/c3cp52318g  doi: 10.1039/c3cp52318g

    15. [15]

      Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano Lett. 2008, 8, 2458. doi: 10.1021/nl801457b  doi: 10.1021/nl801457b

    16. [16]

      Xia, F.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Nat. Nanotechnol. 2009, 4, 839. doi: 10.1038/nnano.2009.292  doi: 10.1038/nnano.2009.292

    17. [17]

      Gimbert-Surinach, C.; Albero, J.; Stoll, T.; Fortage, J.; Collomb, M. N.; Deronzier, A.; Palomares, E.; Llobet, A. J. Am. Chem. Soc. 2014, 136, 7655. doi: 10.1021/ja501489h  doi: 10.1021/ja501489h

    18. [18]

      Hisatomi, T.; Takanabe, K.; Domen, K. Catal. Lett. 2014, 145, 95. doi: 10.1007/s10562-014-1397-z  doi: 10.1007/s10562-014-1397-z

    19. [19]

      Kronik, L. Surf. Sci. Rep. 1999, 37, 1. doi: 10.1016/s0167-5729(99)00002-3  doi: 10.1016/s0167-5729(99)00002-3

    20. [20]

      Moglestue, C. J. Appl. Phys. 1986, 59, 3175. doi: 10.1063/1.336898.  doi: 10.1063/1.336898

    21. [21]

      Gong, C.; Lee, G.; Shan, B.; Vogel, E. M.; Wallace, R. M.; Cho, K. J. Appl. Phys. 2010, 108, 123711. doi: 10.1063/1.3524232  doi: 10.1063/1.3524232

    22. [22]

      Zhu, H.; Zhou, C.; Wu, Y.; Lin, W.; Yang, W.; Cheng, Z.; Cai, X. Surf. Sci. 2017, 661, 1. doi: 10.1016/j.susc.2017.02.013  doi: 10.1016/j.susc.2017.02.013

    23. [23]

      Zhang, H. X.; Zhu, Y. F.; Zhao, M. Appl. Surf. Sci. 2017, 420, 105. doi: 10.1016/j.apsusc.2017.05.142  doi: 10.1016/j.apsusc.2017.05.142

    24. [24]

      Xie, G.; Guan, L.; Zhang, L.; Guo, B.; Batool, A.; Xin, Q.; Boddula, R.; Jan, S. U.; Gong, J. R. Nano Lett. 2019, 19, 1234. doi: 10.1021/acs.nanolett.8b04768  doi: 10.1021/acs.nanolett.8b04768

    25. [25]

      Tung, R. T. Phys. Rev. B 2001, 64, 205310. doi: 10.1103/PhysRevB.64.205310  doi: 10.1103/PhysRevB.64.205310

    26. [26]

      Ran, Q.; Gao, M.; Guan, X.; Wang, Y.; Yu, Z. Appl. Phys. Lett. 2009, 94, 103511. doi: 10.1063/1.3095438  doi: 10.1063/1.3095438

    27. [27]

      Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. Phys. Rev. B 2009, 79, 195425. doi: 10.1103/PhysRevB.79.195425  doi: 10.1103/PhysRevB.79.195425

    28. [28]

      Hupalo, M.; Liu, X.; Wang, C. Z.; Lu, W. C.; Yao, Y. X.; Ho, K. M.; Tringides, M. C. Adv. Mater. 2011, 23, 2082. doi: 10.1002/adma.201100412  doi: 10.1002/adma.201100412

    29. [29]

      Gong, C.; Hinojos, D.; Wang, W.; Nijem, N.; Shan, B.; Wallace, R. M.; Cho, K.; Chabal, Y. J. ACS Nano 2012, 6, 5381. doi: 10.1021/nn301241p  doi: 10.1021/nn301241p

    30. [30]

      Pandey, P. A.; Bell, G. R.; Rourke, J. P.; Sanchez, A. M.; Elkin, M. D.; Hickey, B. J.; Wilson, N. R. Small 2011, 7, 3202. doi: 10.1002/smll.201101430  doi: 10.1002/smll.201101430

    31. [31]

      Lenz Baldez, R. N.; Piquini, P.; Schmidt, A. A.; Kuroda, M. A. Phys. Chem. Chem. Phys. 2017, 19, 22153. doi: 10.1039/c7cp04615d  doi: 10.1039/c7cp04615d

    32. [32]

      Mittendorfer, F.; Garhofer, A.; Redinger, J.; Klimeš, J.; Harl, J.; Kresse, G. Phys. Rev. B 2011, 84, 201401. doi: 10.1103/PhysRevB.84.201401  doi: 10.1103/PhysRevB.84.201401

    33. [33]

      Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Phys. Rev. Lett. 2008, 101, 026803. doi: 10.1103/PhysRevLett.101.026803  doi: 10.1103/PhysRevLett.101.026803

    34. [34]

      Jaynes, E. T.; Cummings, F. W. Proc. IEEE 1963, 51, 89. doi: 10.1109/proc.1963.1664  doi: 10.1109/proc.1963.1664

    35. [35]

      Sheldon, M. T.; van de Groep, J.; Brown, A. M.; Polman, A.; Atwater, H. A. Science 2014, 346, 828. doi: 10.1126/science.1258405  doi: 10.1126/science.1258405

    36. [36]

      Sobhani, A.; Knight, M. W.; Wang, Y.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z.; Nordlander, P.; Halas, N. J. Nat. Commun. 2013, 4, 1643. doi: 10.1038/ncomms2642  doi: 10.1038/ncomms2642

    37. [37]

      Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Nat. Mater. 2010, 9, 193. doi: 10.1038/nmat2630  doi: 10.1038/nmat2630

    38. [38]

      Xu, Y. F.; Rao, H. S.; Chen, B. X.; Lin, Y.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Adv. Sci. 2015, 2, 1500049. doi: 10.1002/advs.201500049  doi: 10.1002/advs.201500049

    39. [39]

      Wang, W.; Guo, B.; Dai, H.; Zhao, C.; Xie, G.; Ma, R.; Akram, M. Z.; Shan, H.; Cai, C.; Fang, Z.; et al. Nano Lett. 2019, 19, 6133. doi: 10.1021/acs.nanolett.9b02122  doi: 10.1021/acs.nanolett.9b02122

    40. [40]

      Bistritzer, R.; MacDonald, A. H. Phys. Rev. Lett. 2009, 102, 206410. doi: 10.1103/PhysRevLett.102.206410  doi: 10.1103/PhysRevLett.102.206410

    41. [41]

      Winzer, T.; Knorr, A.; Malic, E. Nano Lett. 2010, 10, 4839. doi: 10.1021/nl1024485  doi: 10.1021/nl1024485

    42. [42]

      Song, J. C.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Nano Lett. 2011, 11, 4688. doi: 10.1021/nl202318u  doi: 10.1021/nl202318u

    43. [43]

      Gabor, N. M.; Song, J. C.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Science 2011, 334, 648. doi: 10.1126/science.1211384  doi: 10.1126/science.1211384

    44. [44]

      Tielrooij, K. J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; van Hulst, N. F.; et al. Nat. Nanotechnol. 2015, 10, 437. doi: 10.1038/nnano.2015.54  doi: 10.1038/nnano.2015.54

    45. [45]

      Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X. Nat. Nanotechnol. 2012, 7, 114. doi: 10.1038/nnano.2011.243  doi: 10.1038/nnano.2011.243

    46. [46]

      Park, J.; Ahn, Y. H.; Ruiz-Vargas, C. Nano Lett. 2009, 9, 1742. doi: 10.1021/nl8029493  doi: 10.1021/nl8029493

    47. [47]

      Mueller, T.; Xia, F.; Avouris, P. Nat. Photonics 2010, 4, 297. doi: 10.1038/nphoton.2010.40  doi: 10.1038/nphoton.2010.40

    48. [48]

      Nazin, G.; Zhang, Y.; Zhang, L.; Sutter, E.; Sutter, P. Nat. Phys. 2010, 6, 870. doi: 10.1038/nphys1745  doi: 10.1038/nphys1745

    49. [49]

      Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Nano Lett. 2010, 10, 562. doi: 10.1021/nl903451y  doi: 10.1021/nl903451y

    50. [50]

      Lemme, M. C.; Koppens, F. H.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Nano Lett. 2011, 11, 4134. doi: 10.1021/nl2019068  doi: 10.1021/nl2019068

    51. [51]

      Wang, D.; Sheng, T.; Chen, J.; Wang, H. F.; Hu, P. Nat. Catal. 2018, 1, 291. doi: 10.1038/s41929-018-0055-z  doi: 10.1038/s41929-018-0055-z

    52. [52]

      Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J. R. Adv. Mater. 2013, 25, 3820. doi: 10.1002/adma.201301207  doi: 10.1002/adma.201301207

    53. [53]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326  doi: 10.1021/cr1002326

    54. [54]

      Du, C.; Yang, X.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. Angew. Chem. Int. Ed. 2013, 52, 12692. doi: 10.1002/anie.201306263  doi: 10.1002/anie.201306263

    55. [55]

      Waegele, M. M.; Gunathunge, C. M.; Li, J.; Li, X. J. Chem. Phys. 2019, 151, 160902. doi: 10.1063/1.5124878  doi: 10.1063/1.5124878

    56. [56]

      Ali, H.; Golnak, R.; Seidel, R.; Winter, B.; Xiao, J. ACS Appl. Nano Mater. 2019, 3, 264. doi: 10.1021/acsanm.9b01939  doi: 10.1021/acsanm.9b01939

  • 加载中
    1. [1]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    4. [4]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    5. [5]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    6. [6]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    7. [7]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    8. [8]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    12. [12]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    13. [13]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    14. [14]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    15. [15]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    16. [16]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    17. [17]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    18. [18]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    19. [19]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    20. [20]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

Metrics
  • PDF Downloads(16)
  • Abstract views(1331)
  • HTML views(308)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return