Microscopic Mechanism on Giant Photoeffect in Proton Transport Through Graphene Membranes
- Corresponding author: Gong Jian Ru, gongjr@nanoctr.cn †These authors contributed equally to this work.
Citation:
Guan Liming, Guo Beidou, Jia Xinrui, Xie Guancai, Gong Jian Ru. Microscopic Mechanism on Giant Photoeffect in Proton Transport Through Graphene Membranes[J]. Acta Physico-Chimica Sinica,
;2021, 37(11): 200706.
doi:
10.3866/PKU.WHXB202007067
Achtyl, J. L.; Unocic, R. R.; Xu, L.; Cai, Y.; Raju, M.; Zhang, W.; Sacci, R. L.; Vlassiouk, I. V.; Fulvio, P. F.; Ganesh, P.; et al. Nat. Commun. 2015, 6, 6539. doi: 10.1038/ncomms7539
doi: 10.1038/ncomms7539
Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A.; et al. Nature 2014, 516, 227. doi: 10.1038/nature14015
doi: 10.1038/nature14015
Lozada-Hidalgo, M.; Hu, S.; Marshall, O.; Mishchenko, A.; Grigorenko, A. N.; Dryfe, R. A.; Radha, B.; Grigorieva, I. V.; Geim, A. K. Science 2016, 351, 68. doi: 10.1126/science.aac9726
doi: 10.1126/science.aac9726
Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K. Nat. Commun. 2017, 8, 15215. doi: 10.1038/ncomms15215
doi: 10.1038/ncomms15215
Kroes, J. M.; Fasolino, A.; Katsnelson, M. I. Phys. Chem. Chem. Phys. 2017, 19, 5813. doi: 10.1039/c6cp08923b
doi: 10.1039/c6cp08923b
Seel, M.; Pandey, R. 2D Materials 2016, 3, 025004. doi: 10.1088/2053-1583/3/2/025004
doi: 10.1088/2053-1583/3/2/025004
Shi, L.; Xu, A.; Chen, G.; Zhao, T. J. Phys. Chem. Lett. 2017, 8, 4354. doi: 10.1021/acs.jpclett.7b01999
doi: 10.1021/acs.jpclett.7b01999
Bartolomei, M.; Hernández, M. I.; Campos-Martínez, J.; Hernández-Lamoneda, R. Carbon 2019, 144, 724. doi: 10.1016/j.carbon.2018.12.086
doi: 10.1016/j.carbon.2018.12.086
Feng, Y.; Chen, J.; Fang, W.; Wang, E. G.; Michaelides, A.; Li, X. J. Phys. Chem. Lett. 2017, 8, 6009. doi: 10.1021/acs.jpclett.7b02820
doi: 10.1021/acs.jpclett.7b02820
Poltavsky, I.; Zheng, L.; Mortazavi, M.; Tkatchenko, A. J. Chem. Phys. 2018, 148, 204707. doi: 10.1063/1.5024317
doi: 10.1063/1.5024317
Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Kravets, V. G.; Rodriguez, F. J.; Berdyugin, A.; Grigorenko, A.; Geim, A. K. Nat. Nanotechnol. 2018, 13, 300. doi: 10.1038/s41565-017-0051-5
doi: 10.1038/s41565-017-0051-5
Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911. doi: 10.1038/nmat3151
doi: 10.1038/nmat3151
Brongersma, M. L.; Halas, N. J.; Nordlander, P. Nat. Nanotechnol. 2015, 10, 25. doi: 10.1038/nnano.2014.311
doi: 10.1038/nnano.2014.311
Miao, M.; Nardelli, M. B.; Wang, Q.; Liu, Y. Phys. Chem. Chem. Phys. 2013, 15, 16132. doi: 10.1039/c3cp52318g
doi: 10.1039/c3cp52318g
Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano Lett. 2008, 8, 2458. doi: 10.1021/nl801457b
doi: 10.1021/nl801457b
Xia, F.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Nat. Nanotechnol. 2009, 4, 839. doi: 10.1038/nnano.2009.292
doi: 10.1038/nnano.2009.292
Gimbert-Surinach, C.; Albero, J.; Stoll, T.; Fortage, J.; Collomb, M. N.; Deronzier, A.; Palomares, E.; Llobet, A. J. Am. Chem. Soc. 2014, 136, 7655. doi: 10.1021/ja501489h
doi: 10.1021/ja501489h
Hisatomi, T.; Takanabe, K.; Domen, K. Catal. Lett. 2014, 145, 95. doi: 10.1007/s10562-014-1397-z
doi: 10.1007/s10562-014-1397-z
Kronik, L. Surf. Sci. Rep. 1999, 37, 1. doi: 10.1016/s0167-5729(99)00002-3
doi: 10.1016/s0167-5729(99)00002-3
Moglestue, C. J. Appl. Phys. 1986, 59, 3175. doi: 10.1063/1.336898.
doi: 10.1063/1.336898
Gong, C.; Lee, G.; Shan, B.; Vogel, E. M.; Wallace, R. M.; Cho, K. J. Appl. Phys. 2010, 108, 123711. doi: 10.1063/1.3524232
doi: 10.1063/1.3524232
Zhu, H.; Zhou, C.; Wu, Y.; Lin, W.; Yang, W.; Cheng, Z.; Cai, X. Surf. Sci. 2017, 661, 1. doi: 10.1016/j.susc.2017.02.013
doi: 10.1016/j.susc.2017.02.013
Zhang, H. X.; Zhu, Y. F.; Zhao, M. Appl. Surf. Sci. 2017, 420, 105. doi: 10.1016/j.apsusc.2017.05.142
doi: 10.1016/j.apsusc.2017.05.142
Xie, G.; Guan, L.; Zhang, L.; Guo, B.; Batool, A.; Xin, Q.; Boddula, R.; Jan, S. U.; Gong, J. R. Nano Lett. 2019, 19, 1234. doi: 10.1021/acs.nanolett.8b04768
doi: 10.1021/acs.nanolett.8b04768
Tung, R. T. Phys. Rev. B 2001, 64, 205310. doi: 10.1103/PhysRevB.64.205310
doi: 10.1103/PhysRevB.64.205310
Ran, Q.; Gao, M.; Guan, X.; Wang, Y.; Yu, Z. Appl. Phys. Lett. 2009, 94, 103511. doi: 10.1063/1.3095438
doi: 10.1063/1.3095438
Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. Phys. Rev. B 2009, 79, 195425. doi: 10.1103/PhysRevB.79.195425
doi: 10.1103/PhysRevB.79.195425
Hupalo, M.; Liu, X.; Wang, C. Z.; Lu, W. C.; Yao, Y. X.; Ho, K. M.; Tringides, M. C. Adv. Mater. 2011, 23, 2082. doi: 10.1002/adma.201100412
doi: 10.1002/adma.201100412
Gong, C.; Hinojos, D.; Wang, W.; Nijem, N.; Shan, B.; Wallace, R. M.; Cho, K.; Chabal, Y. J. ACS Nano 2012, 6, 5381. doi: 10.1021/nn301241p
doi: 10.1021/nn301241p
Pandey, P. A.; Bell, G. R.; Rourke, J. P.; Sanchez, A. M.; Elkin, M. D.; Hickey, B. J.; Wilson, N. R. Small 2011, 7, 3202. doi: 10.1002/smll.201101430
doi: 10.1002/smll.201101430
Lenz Baldez, R. N.; Piquini, P.; Schmidt, A. A.; Kuroda, M. A. Phys. Chem. Chem. Phys. 2017, 19, 22153. doi: 10.1039/c7cp04615d
doi: 10.1039/c7cp04615d
Mittendorfer, F.; Garhofer, A.; Redinger, J.; Klimeš, J.; Harl, J.; Kresse, G. Phys. Rev. B 2011, 84, 201401. doi: 10.1103/PhysRevB.84.201401
doi: 10.1103/PhysRevB.84.201401
Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Phys. Rev. Lett. 2008, 101, 026803. doi: 10.1103/PhysRevLett.101.026803
doi: 10.1103/PhysRevLett.101.026803
Jaynes, E. T.; Cummings, F. W. Proc. IEEE 1963, 51, 89. doi: 10.1109/proc.1963.1664
doi: 10.1109/proc.1963.1664
Sheldon, M. T.; van de Groep, J.; Brown, A. M.; Polman, A.; Atwater, H. A. Science 2014, 346, 828. doi: 10.1126/science.1258405
doi: 10.1126/science.1258405
Sobhani, A.; Knight, M. W.; Wang, Y.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z.; Nordlander, P.; Halas, N. J. Nat. Commun. 2013, 4, 1643. doi: 10.1038/ncomms2642
doi: 10.1038/ncomms2642
Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Nat. Mater. 2010, 9, 193. doi: 10.1038/nmat2630
doi: 10.1038/nmat2630
Xu, Y. F.; Rao, H. S.; Chen, B. X.; Lin, Y.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Adv. Sci. 2015, 2, 1500049. doi: 10.1002/advs.201500049
doi: 10.1002/advs.201500049
Wang, W.; Guo, B.; Dai, H.; Zhao, C.; Xie, G.; Ma, R.; Akram, M. Z.; Shan, H.; Cai, C.; Fang, Z.; et al. Nano Lett. 2019, 19, 6133. doi: 10.1021/acs.nanolett.9b02122
doi: 10.1021/acs.nanolett.9b02122
Bistritzer, R.; MacDonald, A. H. Phys. Rev. Lett. 2009, 102, 206410. doi: 10.1103/PhysRevLett.102.206410
doi: 10.1103/PhysRevLett.102.206410
Winzer, T.; Knorr, A.; Malic, E. Nano Lett. 2010, 10, 4839. doi: 10.1021/nl1024485
doi: 10.1021/nl1024485
Song, J. C.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Nano Lett. 2011, 11, 4688. doi: 10.1021/nl202318u
doi: 10.1021/nl202318u
Gabor, N. M.; Song, J. C.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Science 2011, 334, 648. doi: 10.1126/science.1211384
doi: 10.1126/science.1211384
Tielrooij, K. J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; van Hulst, N. F.; et al. Nat. Nanotechnol. 2015, 10, 437. doi: 10.1038/nnano.2015.54
doi: 10.1038/nnano.2015.54
Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X. Nat. Nanotechnol. 2012, 7, 114. doi: 10.1038/nnano.2011.243
doi: 10.1038/nnano.2011.243
Park, J.; Ahn, Y. H.; Ruiz-Vargas, C. Nano Lett. 2009, 9, 1742. doi: 10.1021/nl8029493
doi: 10.1021/nl8029493
Mueller, T.; Xia, F.; Avouris, P. Nat. Photonics 2010, 4, 297. doi: 10.1038/nphoton.2010.40
doi: 10.1038/nphoton.2010.40
Nazin, G.; Zhang, Y.; Zhang, L.; Sutter, E.; Sutter, P. Nat. Phys. 2010, 6, 870. doi: 10.1038/nphys1745
doi: 10.1038/nphys1745
Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Nano Lett. 2010, 10, 562. doi: 10.1021/nl903451y
doi: 10.1021/nl903451y
Lemme, M. C.; Koppens, F. H.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Nano Lett. 2011, 11, 4134. doi: 10.1021/nl2019068
doi: 10.1021/nl2019068
Wang, D.; Sheng, T.; Chen, J.; Wang, H. F.; Hu, P. Nat. Catal. 2018, 1, 291. doi: 10.1038/s41929-018-0055-z
doi: 10.1038/s41929-018-0055-z
Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J. R. Adv. Mater. 2013, 25, 3820. doi: 10.1002/adma.201301207
doi: 10.1002/adma.201301207
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326
doi: 10.1021/cr1002326
Du, C.; Yang, X.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. Angew. Chem. Int. Ed. 2013, 52, 12692. doi: 10.1002/anie.201306263
doi: 10.1002/anie.201306263
Waegele, M. M.; Gunathunge, C. M.; Li, J.; Li, X. J. Chem. Phys. 2019, 151, 160902. doi: 10.1063/1.5124878
doi: 10.1063/1.5124878
Ali, H.; Golnak, R.; Seidel, R.; Winter, B.; Xiao, J. ACS Appl. Nano Mater. 2019, 3, 264. doi: 10.1021/acsanm.9b01939
doi: 10.1021/acsanm.9b01939
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329