Citation: Yang Shijie, Xu Xiangqun, Cheng Xinbing, Wang Xinmeng, Chen Jinxiu, Xiao Ye, Yuan Hong, Liu He, Chen Aibing, Zhu Wancheng, Huang Jiaqi, Zhang Qiang. Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200705. doi: 10.3866/PKU.WHXB202007058 shu

Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive

  • Corresponding author: Cheng Xinbing, cxb12@mails.tsinghua.edu.cn Yuan Hong, yuanhong@bit.edu.cn
  • Received Date: 23 July 2020
    Revised Date: 21 August 2020
    Accepted Date: 31 August 2020
    Available Online: 4 September 2020

    Fund Project: the National Natural Science Foundation of China 21808124The project was supported by the National Key Research and Development Program of China (2016YFA0202500, 2016YFA0200102), the National Natural Science Foundation of China (21805161, 21808124, U1932220)the National Natural Science Foundation of China U1932220the National Key Research and Development Program of China 2016YFA0200102the National Key Research and Development Program of China 2016YFA0202500the National Natural Science Foundation of China 21805161

  • With the booming growth market of electric vehicles and portable electronics, high-energy-density rechargeable lithium ion batteries are being extensively used to advance high-end devices. Lithium-ion batteries with graphite anodes approach the ceiling in energy density, but they cannot satisfy the current demand. Among the next-generation electrodes, lithium metal anodes are strong candidates because of their high theoretical capacity and the most negative electrochemical potential. However, lithium metal batteries have been abandoned because of their poor safety resulting from the growth of lithium dendrites during lithium deposition. Although several strategies have been proposed to suppress the generation of lithium dendrites as well as the side reactions between active lithium and the electrolyte, lithium metal anodes have not been practically applied so far. Various studies have been conducted on the factors influencing lithium deposition, with the aim of understanding the growth behavior of lithium dendrites. The electrolyte plays a crucial role in the performance of the working Li metal anode. In this study, a unique battery system is proposed to realize columnar lithium deposition, which is convenient for obtaining the length and diameter of lithium deposits. The influence of different electrolytes on lithium deposition was investigated by comparing the length-diameter (L/D) ratio of the lithium deposits in two kinds of electrolytes (1.0 mol·L-1 LiPF6-ethylene carbonate/diethyl carbonate (EC/DEC, 1 : 1 by volume) and 1.0 mol·L-1 LiPF6-5% (volume fraction) fluoroethylene carbonate (FEC)-EC/DEC (1 : 1 by volume)). The morphology of the lithium deposits was strongly affected by the electrolyte composition. In the electrolyte with the FEC additive, the diameter of columnar lithium increased from 0.3-0.6 μm to 0.7-1.3 μm, while the L/D ratio decreased from 12.5 to 5.6. The small L/D ratio can reduce the reactive area between the lithium metal anode and the electrolyte, which is beneficial for achieving high lithium utilization and a long lifespan. To probe the origin of this influence, the surface chemistry of the cycled lithium metal anode was investigated by X-ray photoelectron spectroscopy. The FEC additive can increase the proportion of lithium fluoride (LiF) in the solid electrolyte interphase, which is conducive for the rapid diffusion of lithium ions. As a result, fewer nucleation sites are formed, providing more space for the growth of lithium cores with a large diameter. Therefore, the addition of FEC leads to a decrease in the L/D ratio of columnar lithium.
  • 加载中
    1. [1]

      Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 132, 7817. doi: 10.1002/ange.202000375  doi: 10.1002/ange.202000375

    2. [2]

      Fan, Y.; Wang, T.; Legut, D.; Zhang, Q. J. Energy Chem. 2019, 39, 160. doi: 10.1016/j.jechem.2019.01.021  doi: 10.1016/j.jechem.2019.01.021

    3. [3]

      Liu, H.; Cheng, X. B.; Huang, J. Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G. L.; Xu, R.; Zhao, C. Z.; Hou, L. P.; et al. ACS Energy Lett. 2020, 5, 833. doi: 10.1021/acsenergylett.9b02660  doi: 10.1021/acsenergylett.9b02660

    4. [4]

      Qiao, Y.; Li, Q.; Cheng, X. B.; Liu, F. X.; Yang, Y.; Lu, Z. S.; Zhao, J.; Wu, J. W.; Liu, H.; Yang, S. T.; et al. ACS Appl. Mater. Interfaces 2020, 12, 5767. doi: 10.1021/acsami.9b18315  doi: 10.1021/acsami.9b18315

    5. [5]

      Shen, Y.; Zhang, Y.; Han, S.; Wang, J.; Peng, Z.; Chen, L. Joule 2018, 2, 1674. doi: 10.1016/j.joule.2018.06.021  doi: 10.1016/j.joule.2018.06.021

    6. [6]

      Feng, Y. Q.; Zheng, Z. J.; Wang, C. Y.; Yin, Y. X.; Ye, H.; Cao, F. F.; Guo, Y. G. Nano Energy 2020, 73, 104731. doi: 10.1016/j.nanoen.2020.104731  doi: 10.1016/j.nanoen.2020.104731

    7. [7]

      Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Nat. Nanotechnol. 2019, 14, 705. doi: 10.1038/s41565-019-0465-3  doi: 10.1038/s41565-019-0465-3

    8. [8]

      Ma, Y. Y.; Chen, D.; Yang, Q. L.; Yin, Y. X.; Bai, X. P.; Zhen, S. Y.; Fan, C.; Sun, K. N. J. Energy Chem. 2020, 42, 49. doi: 10.1016/j.jechem.2019.06.008  doi: 10.1016/j.jechem.2019.06.008

    9. [9]

      Liu, Y.; Zheng, L.; Gu, W.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2021, 37, 2004058.  doi: 10.3866/PKU.WHXB202004058

    10. [10]

      Liang, Y.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu, D.; Liu, Y.; Titirici, M. M.; Chueh, Y. L.; et al. InfoMat. 2019, 1, 6. doi: 10.1002/inf2.12000  doi: 10.1002/inf2.12000

    11. [11]

      Kong, L.; Yan, C.; Huang, J. Q.; Zhao, M. Q.; Titirici, M. M.; Xiang, R.; Zhang, Q. Energy Environ. Mater. 2018, 1, 100. doi: 10.1002/eem2.12012  doi: 10.1002/eem2.12012

    12. [12]

      Yan, C.; Cheng, X. B.; Tian, Y.; Chen, X.; Zhang, X. Q.; Li, W. J.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2018, 30, 1707629. doi: 10.1002/adma.201707629  doi: 10.1002/adma.201707629

    13. [13]

      Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Adv. Mater. 2019, 31, 1807131. doi: 10.1002/adma.201807131  doi: 10.1002/adma.201807131

    14. [14]

      Xu, R.; Xiao, Y.; Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Zhang, X. Q.; Yan, C.; Zhang, Q.; Huang, J. Q. Adv. Mater. 2019, 31, 1808392. doi: 10.1002/adma.201808392  doi: 10.1002/adma.201808392

    15. [15]

      Tong, B.; Chen, X.; Chen, L.; Zhou, Z.; Peng, Z. ACS Appl. Energy Mater. 2018, 1, 4426. doi: 10.1021/acsaem.8b00821  doi: 10.1021/acsaem.8b00821

    16. [16]

      Ye, H.; Zhang, Y.; Yin, Y. X.; Cao, F. F.; Guo, Y. G. ACS Cent. Sci. 2020, 6, 661. doi: 10.1021/acscentsci.0c00351  doi: 10.1021/acscentsci.0c00351

    17. [17]

      Zhang, W.; Wu, Q.; Huang, J.; Fan, L.; Shen, Z.; He, Y.; Feng, Q.; Zhu, G.; Lu, Y. Adv. Mater. 2020, 32, 2001740. doi: 10.1002/adma.202001740  doi: 10.1002/adma.202001740

    18. [18]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365.  doi: 10.3866/PKU.WHXB201903008

    19. [19]

      Yue, X. Y.; Ma, C.; Bao, J.; Yang, S. Y.; Chen, D.; Wu, X. J.; Zhou, Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012.  doi: 10.3866/PKU.WHXB202005012

    20. [20]

      Wang, G.; Xiong, X.; Xie, D.; Fu, X.; Ma, X.; Li, Y.; Liu, Y.; Lin, Z.; Yang, C.; Liu, M. Energy Storage Mater. 2019, 23, 701. doi: 10.1016/j.ensm.2019.02.026  doi: 10.1016/j.ensm.2019.02.026

    21. [21]

      Zhang, R.; Shen, X.; Cheng, X. B.; Zhang, Q. Energy Storage Mater. 2019, 23, 556. doi: 10.1016/j.ensm.2019.03.029  doi: 10.1016/j.ensm.2019.03.029

    22. [22]

      Shi, P.; Cheng, X. B.; Li, T.; Zhang, R.; Liu, H.; Yan, C.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2019, 31, 1902785. doi: 10.1002/adma.201902785  doi: 10.1002/adma.201902785

    23. [23]

      Niu, C.; Lee, H.; Chen, S.; Li, Q.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. Nat. Energy 2019, 4, 551. doi: 10.1038/s41560-019-0390-6  doi: 10.1038/s41560-019-0390-6

    24. [24]

      Hobold, G. M.; Khurram, A.; Gallant, B. M. Chem. Mater. 2020, 32, 2341. doi: 10.1021/acs.chemmater.9b04550  doi: 10.1021/acs.chemmater.9b04550

    25. [25]

      Chen, Y.; Luo, Y.; Zhang, H.; Qu, C.; Zhang, H.; Li, X. Small Methods 2019, 3, 1800551. doi: 10.1002/smtd.201800551  doi: 10.1002/smtd.201800551

    26. [26]

      Yao, Y. X.; Zhang, X. Q.; Li, B. Q.; Yan, C.; Chen, P. Y.; Huang, J. Q.; Zhang, Q. InfoMat 2020, 2, 379. doi: 10.1002/inf2.12046  doi: 10.1002/inf2.12046

    27. [27]

      Fan, H.; Gao, C.; Jiang, H.; Dong, Q.; Hong, B.; Lai, Y. J. Energy Chem. 2020, 49, 59. doi: 10.1016/j.jechem.2020.01.013  doi: 10.1016/j.jechem.2020.01.013

    28. [28]

      Liu, H.; Cheng, X. B.; Huang, J. Q.; Kaskel, S.; Chou, S.; Park, H. S.; Zhang, Q. ACS Mater. Lett. 2019, 1, 217. doi: 10.1021/acsmaterialslett.9b00118  doi: 10.1021/acsmaterialslett.9b00118

    29. [29]

      Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1605989. doi: 10.1002/adfm.201605989  doi: 10.1002/adfm.201605989

    30. [30]

      Chen, W. J.; Zhao, C. X.; Li, B. Q.; Jin, Q.; Zhang, X. Q.; Yuan, T. Q.; Zhang, X.; Jin, Z.; Kaskel, S.; Zhang, Q. Energy Environ. Mater. 2020, 3, 160. doi: 10.1002/eem2.12073  doi: 10.1002/eem2.12073

    31. [31]

      He, Y.; Zhang, Y.; Yu, P.; Ding, F.; Li, X.; Wang, Z.; Lv, Z.; Wang, X.; Liu, Z.; Huang, X. J. Energy Chem. 2020, 45, 1. doi: 10.1016/j.jechem.2019.09.033  doi: 10.1016/j.jechem.2019.09.033

    32. [32]

      Chen, J. X.; Zhang, X. Q.; Li, B. Q.; Wang, X. M.; Shi, P.; Zhu, W. C.; Chen, A. B.; Jin, Z. H.; Xiang, R.; Huang, J. Q.; Zhang, Q. J. Energy Chem. 2020, 47, 128. doi: 10.1016/j.jechem.2019.11.024  doi: 10.1016/j.jechem.2019.11.024

    33. [33]

      Yang, Q. L.; Li, W. L.; Dong, C.; Ma, Y. Y.; Yin, Y. X.; Wu, Q. B.; Xu, Z. T.; Ma, W.; Fan, C.; Sun, K. N. J. Energy Chem. 2020, 42, 83. doi: 10.1016/j.jechem.2019.06.012  doi: 10.1016/j.jechem.2019.06.012

    34. [34]

      Li, C.; Liu, S.; Shi, C.; Liang, G.; Lu, Z.; Fu, R.; Wu, D. Nat. Commun. 2019, 10, 1363. doi: 10.1038/s41467-019-09211-z  doi: 10.1038/s41467-019-09211-z

    35. [35]

      Wei, Z.; Ren, Y.; Sokolowski, J.; Zhu, X.; Wu, G. InfoMat 2020, 2, 483. doi: 10.1002/inf2.12097  doi: 10.1002/inf2.12097

    36. [36]

      Liu, H.; Chen, X.; Cheng, X. B.; Li, B. Q.; Zhang, R.; Wang, B.; Chen, X.; Zhang, Q. Small Methods 2019, 3, 1800354. doi: 10.1002/smtd.201800354  doi: 10.1002/smtd.201800354

    37. [37]

      Shen, X.; Cheng, X.; Shi, P.; Huang, J.; Zhang, X.; Yan, C.; Li, T.; Zhang, Q. J. Energy Chem. 2019, 37, 29. doi: 10.1016/j.jechem.2018.11.016  doi: 10.1016/j.jechem.2018.11.016

    38. [38]

      Shang, Y.; Chu, T.; Shi, B.; Fu, K. Energy Environ. Mater. 2020. doi: 10.1002/eem2.12099  doi: 10.1002/eem2.12099

    39. [39]

      Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A.; et al. Adv. Energy Mater. 2015, 5, 1702322. doi: 10.1002/aenm.201400993  doi: 10.1002/aenm.201400993

    40. [40]

      Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P. ACS Cent. Sci. 2016, 2, 790. doi: 10.1021/acscentsci.6b00260  doi: 10.1021/acscentsci.6b00260

    41. [41]

      Yin, X.; Tang, W.; Jung, I. D.; Phua, K. C.; Adams, S.; Lee, S. W.; Zheng, G. W. Nano Energy 2018, 50, 659. doi: 10.1016/j.nanoen.2018.06.003  doi: 10.1016/j.nanoen.2018.06.003

    42. [42]

      Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. Angew. Chem. Int. Ed. 2019, 58, 11364. doi: 10.1002/anie.201905251  doi: 10.1002/anie.201905251

    43. [43]

      Rodriguez, R.; Loeffler, K. E.; Edison, R. A.; Stephens, R. M.; Dolocan, A.; Heller, A.; Mullins, C. B. ACS Appl. Energy Mater. 2018, 1, 5830. doi: 10.1021/acsaem.8b01194  doi: 10.1021/acsaem.8b01194

    44. [44]

      Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; et al. Nano Lett. 2014, 14, 6889. doi: 10.1021/nl5039117  doi: 10.1021/nl5039117

    45. [45]

      Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; Zhang, R.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 14207. doi: 10.1002/anie.201707093  doi: 10.1002/anie.201707093

    46. [46]

      Qian, J.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y.; Zhang, J. G. Nano Energy 2015, 15, 135. doi: 10.1016/j.nanoen.2015.04.009  doi: 10.1016/j.nanoen.2015.04.009

    47. [47]

      Cheng, X. B.; Zhao, M. Q.; Chen, C.; Pentecost, A.; Maleski, K.; Mathis, T.; Zhang, X. Q.; Zhang, Q.; Jiang, J.; Gogotsi, Y. Nat. Commun. 2017, 8, 336. doi: 10.1038/s41467-017-00519-2  doi: 10.1038/s41467-017-00519-2

    48. [48]

      Michan, A. L.; Parimalam, B. S.; Leskes, M.; Kerber, R. N.; Yoon, T.; Grey, C. P.; Lucht, B. L. Chem. Mater. 2016, 28, 8149. doi: 10.1021/acs.chemmater.6b02282  doi: 10.1021/acs.chemmater.6b02282

    49. [49]

      Nie, M.; Demeaux, J.; Young, B. T.; Heskett, D. R.; Chen, Y.; Bose, A.; Woicik, J. C.; Lucht, B. L. J. Electrochem. Soc. 2015, 162, A7008. doi: 10.1149/2.0021513jes  doi: 10.1149/2.0021513jes

    50. [50]

      Heine, J.; Hilbig, P.; Qi, X.; Niehoff, P.; Winter, M.; Bieker, P. J. Electrochem. Soc. 2015, 162, A1094. doi: 10.1149/2.0011507jes  doi: 10.1149/2.0011507jes

    51. [51]

      Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L. Energy Environ. Sci. 2018, 11, 2600. doi: 10.1039/c8ee00364e  doi: 10.1039/c8ee00364e

    52. [52]

      Ko, J.; Yoon, Y. S. Ceram. Int. 2019, 45, 30. doi: 10.1016/j.ceramint.2018.09.287  doi: 10.1016/j.ceramint.2018.09.287

    53. [53]

      Lang, J.; Long, Y.; Qu, J.; Luo, X.; Wei, H.; Huang, K.; Zhang, H.; Qi, L.; Zhang, Q.; Li, Z.; Wu, H. Energy Storage Mater. 2019, 16, 85. doi: 10.1016/j.ensm.2018.04.024  doi: 10.1016/j.ensm.2018.04.024

    54. [54]

      Shin, H.; Park, J.; Han, S.; Sastry, A. M.; Lu, W. J. Power Sources 2015, 277, 169. doi: 10.1016/j.jpowsour.2014.11.120  doi: 10.1016/j.jpowsour.2014.11.120

    55. [55]

      Jones, J.; Anouti, M.; Caillon-Caravanier, M.; Willmann, P.; Lemordant, D. Fluid Phase Equilib. 2009, 285, 62. doi: 10.1016/j.fluid.2009.07.020  doi: 10.1016/j.fluid.2009.07.020

    56. [56]

      He, M.; Guo, R.; Hobold, G. M.; Gao, H.; Gallant, B. M. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 73. doi: 10.1073/pnas.1911017116  doi: 10.1073/pnas.1911017116

    57. [57]

      Yang, G.; Li, Y.; Liu, S.; Zhang, S.; Wang, Z.; Chen, L. Energy Storage Mater. 2019, 23, 350. doi: 10.1016/j.ensm.2019.04.041  doi: 10.1016/j.ensm.2019.04.041

    58. [58]

      Lee, Y.; Lee, T. K.; Kim, S.; Lee, J.; Ahn, Y.; Kim, K.; Ma, H.; Park, G.; Lee, S. M.; Kwak, S. K.; Choi, N. S. Nano Energy 2020, 67, 104309. doi: 10.1016/j.nanoen.2019.104309  doi: 10.1016/j.nanoen.2019.104309

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    9. [9]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    10. [10]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(15)
  • Abstract views(1900)
  • HTML views(439)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return