Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media
- Corresponding author: Li Li, liliracial@cqu.edu.cn Wei Zidong, zdwei@cqu.edu.cn
Citation: Li Mengting, Zheng Xingqun, Li Li, Wei Zidong. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200705. doi: 10.3866/PKU.WHXB202007054
Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332. doi: 10.1038/35104599
doi: 10.1038/35104599
Dincer, I.; Acar, C. Int. J. Hydrogen Energy 2015, 40, 11094. doi: 10.1016/j.ijhydene.2014.12.035
doi: 10.1016/j.ijhydene.2014.12.035
Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P. Energy Policy 2008, 36, 4356. doi: 10.1016/j.enpol.2008.09.036
doi: 10.1016/j.enpol.2008.09.036
Hosseini, S. E.; Wahid, M. A. Renew. Sust. Energ. Rev. 2016, 57, 850. doi: 10.1016/j.rser.2015.12.112
doi: 10.1016/j.rser.2015.12.112
Yang, T. Y.; Cui, C.; Rong, H. P.; Zhang, J. T.; Wang, D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047
Juarez, F.; Salmazo, D.; Quaino, P.; Schmickler, W. Electrocatalysis 2019, 10, 584. doi: 10.1007/s12678-019-00546-1
doi: 10.1007/s12678-019-00546-1
Yang, F. L.; Bao, X.; Li, P.; Wang, X. W.; Cheng, G. Z.; Chen, S. L.; Luo, W. Angew. Chem. Int. Ed. 2019, 58, 1. doi: 10.1002/anie.201908194
doi: 10.1002/anie.201908194
Chang, J. F.; Xiao, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32, 1556.
doi: 10.3866/PKU.WHXB201604291
Wang, J.; Wei, Z. D. Acta Phys. -Chim. Sin. 2017, 33, 886.
doi: 10.3866/PKU.WHXB201702092
Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. J. Electrochem. Soc. 2010, 157, B1529. doi: 10.1149/1.3483106
doi: 10.1149/1.3483106
Huang, J.; Li, P.; Chen, S. L. J. Phys. Chem. C 2019, 123, 17325. doi: 10.1021/acs.jpcc.9b03639
doi: 10.1021/acs.jpcc.9b03639
Tian, X. Y.; Zhao, P. C.; Sheng, W. C. Adv. Mater. 2019, 31, e1808066. doi: 10.1002/adma.201808066
doi: 10.1002/adma.201808066
Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. ACS Catal. 2018, 8, 6665. doi: 10.1021/acscatal.8b00689
doi: 10.1021/acscatal.8b00689
Campos-Roldán, C. A.; Alonso-Vante, N. Electrochem. Energy Rev. 2019, 2, 312. doi: 10.1007/s41918-019-00034-6
doi: 10.1007/s41918-019-00034-6
Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Adv. Sci. 2018, 5, 1700464. doi: 10.1002/advs.201700464
doi: 10.1002/advs.201700464
Shao, Q.; Wang, P.; Huang, X. Adv. Funct. Mater. 2019, 29, 1806419. doi: 10.1002/adfm.201806419
doi: 10.1002/adfm.201806419
Morales-Guio, C. G.; Stern, L. A.; Hu, X. Chem. Soc. Rev. 2014, 43, 6555. doi: 10.1039/c3cs60468c
doi: 10.1039/c3cs60468c
Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. Angew. Chem. Int. Ed. 2018, 57, 7568. doi: 10.1002/anie.201710556
doi: 10.1002/anie.201710556
Jia, Q. Y.; Liu, E. S.; Jiao, L.; Li, J. K.; Mukerjee, S. Curr. Opin. Electrochem. 2018, 12, 209. doi: 10.1016/j.coelec.2018.11.017
doi: 10.1016/j.coelec.2018.11.017
Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Sci. Rep. 2015, 5, 13801. doi: 10.1038/srep13801
doi: 10.1038/srep13801
St. John, S.; Atkinson, R. W.; Unocic, R. R.; Zawodzinski, T. A.; Papandrew, A. B. J. Phys. Chem. C 2015, 119, 13481. doi: 10.1021/acs.jpcc.5b03284
doi: 10.1021/acs.jpcc.5b03284
Montero, M. A.; Gennero de Chialvo, M. R.; Chialvo, A. C. J. Power Sources 2015, 283, 181. doi: 10.1016/j.jpowsour.2015.02.133
doi: 10.1016/j.jpowsour.2015.02.133
Montero, M. A.; de Chialvo, M. R. G.; Chialvo, A. C. J. Electroanal. Chem. 2016, 767, 153. doi: 10.1016/j.jelechem.2016.02.024
doi: 10.1016/j.jelechem.2016.02.024
Markovic, N. M.; Grgur, B. N.; Ross, P. N. J. Phys. Chem. B 1997, 101, 5405. doi: 10.1021/jp970930d
doi: 10.1021/jp970930d
Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. ACS Nano 2018, 12, 9635. doi: 10.1021/acsnano.8b07700
doi: 10.1021/acsnano.8b07700
Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Sci. Adv. 2016, 2, e1501602. doi: 10.1126/sciadv.1501602
doi: 10.1126/sciadv.1501602
Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics, 97th.; CRC Press: Boca Raton-London-New York, 2016; pp. 6 (259)–6 (262).
Rheinländer, P. J.; Herranz, J.; Durst, J.; Gasteiger, H. A. J. Electrochem. Soc. 2014, 161, F1448. doi: 10.1149/2.0501414jes
doi: 10.1149/2.0501414jes
Zheng, J.; Yan, Y. S.; Xu, B. J. J. Electrochem. Soc. 2015, 162, F1470. doi: 10.1149/2.0501514jes
doi: 10.1149/2.0501514jes
Simon, C.; Hasché, F.; Gasteiger, H. A. J. Electrochem. Soc. 2017, 164, F591. doi: 10.1149/2.0691706jes
doi: 10.1149/2.0691706jes
Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Angew. Chem. Int. Ed. 2014, 53, 5427. doi: 10.1002/anie.201402646
doi: 10.1002/anie.201402646
Durst, J.; Simon, C.; Hasché, F.; Gasteiger, H. A. J. Electrochem. Soc. 2014, 162, F190. doi: 10.1149/2.0981501jes
doi: 10.1149/2.0981501jes
Conway, B. E.; Bai, L. J. Electroanal. Chem. 1986, 198, 149. doi: 10.1016/0022-0728(86)90033-1
doi: 10.1016/0022-0728(86)90033-1
Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Nat. Chem. 2013, 5, 1. doi: 10.1038/nchem.1574
doi: 10.1038/nchem.1574
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi: 10.1038/nmat3313
doi: 10.1038/nmat3313
Li, J. K.; Ghoshal, S.; Bates, M. K.; Miller, T. E.; Davies, V.; Stavitski, E.; Attenkofer, K.; Mukerjee, S.; Ma Z. F.; Jia, Q. Y. Angew. Chem. Int. Ed. 2017, 56, 15594. doi: 10.1002/anie.201708484
doi: 10.1002/anie.201708484
Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Science 2011, 334, 1256. doi: 10.1126/science.1211934
doi: 10.1126/science.1211934
Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Angew. Chem. Int. Ed. 2012, 51, 12663. doi: 10.1002/anie.201204842
doi: 10.1002/anie.201204842
Peng, L. S.; Liao, M. S.; Zheng, X. Q.; Nie, Y.; Zhang, L.; Wang, M. J.; Xiang, R.; Wang, J.; Li, L.; Wei, Z. D. Chem. Sci. 2020, 11, 2487. doi: 10.1039/C9SC04603H
doi: 10.1039/C9SC04603H
Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. Energy Environ. Sci. 2014, 7, 2255. doi: 10.1039/c4ee00440j
doi: 10.1039/c4ee00440j
Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Nat. Energy 2017, 2. 1. doi: 10.1038/nenergy.2017.31
Angerstein-Kozlowska, H.; Conway, B. E.; Hamelin, A. J. Electroanal. Chem. 1990, 277, 233. doi: 10.1016/0022-0728(90)85105-E
doi: 10.1016/0022-0728(90)85105-E
Alesker, M.; Page, M.; Shviro, M.; Paska, Y.; Gershinsky, G.; Dekel, D. R.; Zitoun, D. J. Power Sources 2016, 304, 332. doi: 10.1016/j.jpowsour.2015.11.026
doi: 10.1016/j.jpowsour.2015.11.026
Alia, S. M.; Pivovar, B. S.; Yan, Y. S. J. Am. Chem. Soc. 2013, 135, 13473. doi: 10.1021/ja405598a
doi: 10.1021/ja405598a
Ramaswamy, N.; Ghoshal, S.; Bates, M. K.; Jia, Q.; Li, J.; Mukerjee, S. Nano Energy 2017, 41, 765. doi: 10.1016/j.nanoen.2017.07.053
doi: 10.1016/j.nanoen.2017.07.053
Liu, L.; Liu, Y. Y.; Liu, C. G. J. Am. Chem. Soc. 2020, 142, 4985. doi: 10.1021/jacs.9b13694
doi: 10.1021/jacs.9b13694
Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Energy Environ. Sci. 2013, 6, 1509. doi: 10.1039/c3ee00045a
doi: 10.1039/c3ee00045a
Sheng, W. C; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Nat. Commun. 2015, 6, 5848. doi: 10.1038/ncomms6848
doi: 10.1038/ncomms6848
Rossmeisl, J.; Nørskov, J. K.; Taylor, C. D.; Janik, M. J.; Neurock, M. J. Phys. Chem. B 2006, 110, 21833. doi: 10.1021/jp0631735
doi: 10.1021/jp0631735
van der Niet, M. J. T. C.; Garcia-Araez, N.; Hernández, J.; Feliu, J. M.; Koper, M. T. M. Catal. Today 2013, 202, 105. doi: 10.1016/j.cattod.2012.04.059
doi: 10.1016/j.cattod.2012.04.059
Zheng, J.; Nash, J.; Xu, B. J.; Yan, Y. S. J. Electrochem. Soc. 2018, 165, H27. doi: 10.1149/2.0881802jes
doi: 10.1149/2.0881802jes
Cheng, T.; Wang, L.; Merinov, B. V.; Goddard, W. A. J. Am. Chem. Soc. 2018, 140, 7787. doi: 10.1021/jacs.8b04006
doi: 10.1021/jacs.8b04006
Zheng, J.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. ACS Catal. 2015, 5, 4449. doi: 10.1021/acscatal.5b00247
doi: 10.1021/acscatal.5b00247
Lu, S. Q.; Zhuang, Z. B. J. Am. Chem. Soc. 2017, 139, 5156. doi: 10.1021/jacs.7b00765
doi: 10.1021/jacs.7b00765
Liu, E. S.; Li, J. K.; Jiao, L.; Doan, H. T. T.; Liu, Z. Y.; Zhao, Z. P.; Huang, Y.; Abraham, K. M.; Mukerjee, S.; Jia, Q. Y. J. Am. Chem. Soc. 2019, 141, 3232. doi: 10.1021/jacs.8b13228
doi: 10.1021/jacs.8b13228
Schwämmlein, J. N.; Stühmeier, B. M.; Wagenbauer, K.; Dietz, H.; Tileli, V.; Gasteiger, H. A.; El-Sayed, H. A. J. Electrochem. Soc. 2018, 165, H229. doi: 10.1149/2.0791805jes
doi: 10.1149/2.0791805jes
Han, B. C.; van der Ven, A.; Ceder, G.; Hwang, B. J. Phys. Rev. B 2005, 72, 205409. doi: 10.1103/PhysRevB.72.205409
doi: 10.1103/PhysRevB.72.205409
McCrum, I. T.; Janik, M. J. J. Phys. Chem. C 2015, 120, 457. doi: 10.1021/acs.jpcc.5b10979
doi: 10.1021/acs.jpcc.5b10979
Strmcnik, D.; Kodama, K.; van der Vliet, D.; Greeley, J.; Stamenkovic, V. R.; Markovic, N. M. Nat. Chem. 2009, 1, 466. doi: 10.1038/nchem.330
doi: 10.1038/nchem.330
Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Energy Environ. Sci. 2015, 8, 177. doi: 10.1039/c4ee02564d
doi: 10.1039/c4ee02564d
Peng, L. S.; Zheng, X. Q.; Li, L.; Zhang, L.; Yang, N.; Xiong, K.; Chen, H. M.; Li, J.; Wei, Z. D. Appl. Catal. B 2019, 245, 122. doi: 10.1016/j.apcatb.2018.12.035
doi: 10.1016/j.apcatb.2018.12.035
Jiang, J. X.; Tao, S. C.; He, Q.; Wang, J.; Zhou, Y. Y.; Xie, Z. Y.; Ding, W.; Wei, Z. D. J. Mater. Chem. A 2020, 8, 10168. doi: 10.1039/D0TA02528C
doi: 10.1039/D0TA02528C
Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Nat. Catal. 2020, 3, 454. doi: 10.1038/s41929-020-0446-9
doi: 10.1038/s41929-020-0446-9
Feng, Z. P.; Li, L.; Zheng, X. Q.; Li, J.; Yang, N.; Ding, W.; Wei, Z. D. J. Phys. Chem. C 2019, 123, 23931. doi: 10.1021/acs.jpcc.9b04731
doi: 10.1021/acs.jpcc.9b04731
Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Norskov, J. K. Nat. Mater. 2006, 5, 909. doi: 10.1038/nmat1752
doi: 10.1038/nmat1752
Skúlason, E.; Tripkovic, V.; Bjúrketun, M. E.; Gudmundsdóttir, S. D.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. J. Phys. Chem. C 2010, 114, 18182. doi: 10.1021/jp1048887
doi: 10.1021/jp1048887
Qi, X. Q.; Wei, Z. D.; Li, L.; Ji, M. B.; Li, L. L.; Zhang, Q.; Xia, M. R.; Chen, S. G.; Yang, L. J. Comput. Theor. Chem. 2012, 979, 96. doi: 10.1016/j.comptc.2011.10.021
doi: 10.1016/j.comptc.2011.10.021
Vasić, D. D.; Pašti, I. A.; Mentus, S. V. Int. J. Hydrogen Energy 2013, 38, 5009. doi: 10.1016/j.ijhydene.2013.02.020
doi: 10.1016/j.ijhydene.2013.02.020
Liang, Z.; Zhong, X. L.; Li, T. Q.; Chen, M.; Feng, G. ChemElectroChem 2019, 6, 260. doi: 10.1002/celc.201800601
doi: 10.1002/celc.201800601
Bjorneholm, O.; Hansen, M. H.; Hodgson, A.; Liu, L. M.; Limmer, D. T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; et al. Chem. Rev. 2016, 116, 7698. doi: 10.1021/acs.chemrev.6b00045
doi: 10.1021/acs.chemrev.6b00045
Le, J. B.; Iannuzzi, M.; Cuesta, A.; Cheng, J. Phys. Rev. Lett. 2017, 119, 016801. doi: 10.1103/PhysRevLett.119.016801
doi: 10.1103/PhysRevLett.119.016801
Kristoffersen, H. H.; Vegge, T.; Hansen, H. A. Chem Sci 2018, 9, 6912. doi: 10.1039/c8sc02495b
doi: 10.1039/c8sc02495b
Le, J. B.; Cuesta, A.; Cheng, J. J. Electroanal. Chem. 2018, 819, 87. doi: 10.1016/j.jelechem.2017.09.002
doi: 10.1016/j.jelechem.2017.09.002
Sakong, S.; Gross, A. J. Chem. Phys. 2018, 149, 084705. doi: 10.1063/1.5040056
doi: 10.1063/1.5040056
Groß, A.; Sakong, S. Curr. Opin. Electrochem. 2019, 14, 1. doi: 10.1016/j.coelec.2018.09.005
doi: 10.1016/j.coelec.2018.09.005
Mogelhoj, A.; Kelkkanen, A. K.; Wikfeldt, K. T.; Schiotz, J.; Mortensen, J. J.; Pettersson, L. G.; Lundqvist, B. I.; Jacobsen, K. W.; Nilsson, A.; Norskov, J. K. J. Phys. Chem. B 2011, 115, 14149. doi: 10.1021/jp2040345
doi: 10.1021/jp2040345
Pedroza, L. S.; Poissier, A.; Fernandez-Serra, M. V. J. Chem. Phys. 2015, 142, 034706. doi: 10.1063/1.4905493
doi: 10.1063/1.4905493
Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 4200. doi: 10.1073/pnas.1301596110
doi: 10.1073/pnas.1301596110
Cao, Z.; Kumar, R.; Peng, Y.; Voth, G. A. J. Phys. Chem. C 2015, 119, 14675. doi: 10.1021/jp5129244
doi: 10.1021/jp5129244
Limmer, D. T.; Willard, A. P.; Madden, P. A.; Chandler, D. J. Phys. Chem. C 2015, 119, 24016. doi: 10.1021/acs.jpcc.5b08137
doi: 10.1021/acs.jpcc.5b08137
Willard, A. P.; Limmer, D. T.; Madden, P. A.; Chandler, D. J. Chem. Phys. 2013, 138, 184702. doi: 10.1063/1.4803503
doi: 10.1063/1.4803503
Schnur, S.; Groß, A. New J. Phys. 2009, 11, 125003. doi: 10.1088/1367-2630/11/12/125003
doi: 10.1088/1367-2630/11/12/125003
Sundararaman, R.; Goddard, W. A., 3rd; Arias, T. A. J. Chem. Phys. 2017, 146, 114104. doi: 10.1063/1.4978411
Andreussi, O.; Fisicaro, G. Int. J. Quantum. Chem. 2019, 119, e25725. doi: 10.1002/qua.25725
doi: 10.1002/qua.25725
Roudgar, A.; Groß, A. Chem. Phys. Lett. 2005, 409, 157. doi: 10.1016/j.cplett.2005.04.103
doi: 10.1016/j.cplett.2005.04.103
Michaelides, A. Appl. Phys. A 2006, 85, 415. doi: 10.1007/s00339-006-3695-9
doi: 10.1007/s00339-006-3695-9
Skulason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jonsson, H.; Norskov, J. K. Phys. Chem. Chem. Phys. 2007, 9, 3241. doi: 10.1039/b700099e
doi: 10.1039/b700099e
Hansen, M. H.; Jin, C.; Thygesen, K. S.; Rossmeisl, J. J. Phys. Chem. C 2016, 120, 13485. doi: 10.1021/acs.jpcc.6b00721
doi: 10.1021/acs.jpcc.6b00721
Szabová, L.; Camellone, M. F.; Ribeiro, F. N.; Matolín, V.; Tateyama, Y.; Fabris, S. J. Phys. Chem. C 2018, 122, 27507. doi: 10.1021/acs.jpcc.8b09154
doi: 10.1021/acs.jpcc.8b09154
Bellarosa, L.; García-Muelas, R.; Revilla-López, G.; López, N. ACS Cent. Sci. 2016, 2, 109. doi: 10.1021/acscentsci.5b00349
doi: 10.1021/acscentsci.5b00349
Uudsemaa, M.; Tamm, T. J. Phys. Chem. A 2003, 107, 9997. doi: 10.1021/jp0362741
doi: 10.1021/jp0362741
Morawietz, T.; Singraber, A.; Dellago, C.; Behler, J. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 8368. doi: 10.1073/pnas.1602375113
doi: 10.1073/pnas.1602375113
Lozovoi, A. Y.; Alavi, A.; Kohanoff, J.; Lynden-Bell, R. M. J. Chem. Phys. 2001, 115, 1661. doi: 10.1063/1.4978411
doi: 10.1063/1.4978411
Bonnet, N.; Morishita, T.; Sugino, O.; Otani, M. Phys. Rev. Lett. 2012, 109, 266101. doi: 10.1103/PhysRevLett.109.266101
doi: 10.1103/PhysRevLett.109.266101
Bouzid, A.; Pasquarello, A. J. Chem. Theory Comput. 2017, 13, 1769. doi: 10.1021/acs.jctc.6b01232
doi: 10.1021/acs.jctc.6b01232
Bouzid, A.; Pasquarello, A. J. Phys. Chem. Lett. 2018, 9, 1880. doi: 10.1021/acs.jpclett.8b00573
doi: 10.1021/acs.jpclett.8b00573
Cheng, J.; Sprik, M. Phys. Chem. Chem. Phys. 2012, 14, 11245. doi: 10.1039/c2cp41652b
doi: 10.1039/c2cp41652b
Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys. 2014, 140, 084106. doi: 10.1063/1.4865107
doi: 10.1063/1.4865107
Lamoureux, P. S.; Singh, A. R.; Chan, K. ACS Catal. 2019, 9, 6194. doi: 10.1021/acscatal.9b00268
doi: 10.1021/acscatal.9b00268
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094