Citation: Zhang Xuehua, Cao Yanwei, Chen Qiongyao, Shen Chaoren, He Lin. Recent Progress in Homogeneous Reductive Carbonylation of Carbon Dioxide with Hydrogen[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200705. doi: 10.3866/PKU.WHXB202007052 shu

Recent Progress in Homogeneous Reductive Carbonylation of Carbon Dioxide with Hydrogen

  • Corresponding author: He Lin, helin@licp.cas.cn
  • Received Date: 20 July 2020
    Revised Date: 3 August 2020
    Accepted Date: 3 August 2020
    Available Online: 6 August 2020

    Fund Project: Foundation research project of Jiangsu Province, China BK20180249the Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, the CAS DNL 201919the National Natural Science Foundation of China 21802151the Natural Science Foundation of the Jiangsu Higher Education Institutions of China 18KJB150033The project was supported by the National Natural Science Foundation of China (21802151), Foundation research project of Jiangsu Province, China (BK20180249), the Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, the CAS (DNL 201919) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB150033)

  • The efficient utilization of the greenhouse gas CO2 as a C1 feedstock can effectively reduce its emission and create economic value. Hence, the efficient chemical conversion of CO2 has been receiving intense attention. Due to the extremely low energy level of the CO2 molecule, the high energy barrier is the primary challenge for the chemical conversion of CO2. The chemical conversion of CO2 is mainly carried out through non-reductive transformation in industrial. Yet, the new route of chemical synthesis based on CO2 reductive transformation is an interesting topic to expand its resource utilization. In this context, homogeneous reductive carbonylation is a hot topic for the utilization of CO2 via reductive transformation. In this process, the metal hydride intermediate derived from the activation of the hydrogen source is crucial to the CO2 reduction. Hydrogen, a clean source with high atom economy, can be used as a reducing agent for the reductive conversion of inert CO2 through carbonylation, to construct C―O, C―N, and C―C bonds and to synthesize aldehyde/alcohol, carboxylic acid, ester, amide, and other chemicals. These expand the scope of CO2 high-value utilization and show great potential application in terms of resource utilization and environmental protection. This CO2 utilization process is thought to involve cascading catalytic reactions of CO2 reduction and carbonylation. The catalytic systems require the corresponding catalysts to efficiently promote each step and effectively inhibit undesired side reactions. Recently, considerable progress has been made in the homogeneous reductive carbonylation of CO2 with H2. However, this kind of reaction is mostly of the cascade type, and hence, requires harsh conditions and noble metal catalysts. The chemoselectivity is low because of the multiple competing reactions. In addition, due to the steric hindrance and electronic effects of the substrate, there are limitations on the types of substrates that can be employed. With the development of new characterization techniques and theoretical calculations, some progress has been made in revealing the reaction mechanism and in the activation of the carbon-oxygen bonds of CO2. Therefore, there is an urgent need to develop a more efficient catalytic system that requires mild conditions for reductive carbonylation. In this review, we provide an overview of the groundbreaking studies and the recent breakthroughs that have demonstrated the potential of metal catalysts to utilize the combination of CO2 and H2 as a C1 synthon, including olefin carbonylation, amine carbonylation, and alcohol/ether carbonylation, while highlighting the effect of different types of metal catalysts on the reaction. We conclude with a perspective on the future prospects of the homogeneous reductive carbonylation of CO2 with H2, providing readers a snapshot of this rapidly evolving field.
  • 加载中
    1. [1]

      Dowell, N. M.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243. doi: 10.1038/nclimate3231  doi: 10.1038/nclimate3231

    2. [2]

      Xu, Y. Y.; Ramanathan, V.; Victor, D. G. Nature 2018, 564, 30. doi: 10.1038/d41586-018-07586-5  doi: 10.1038/d41586-018-07586-5

    3. [3]

      Thomas, J. M.; Harris, K. D. M. Energy Environ. Sci. 2016, 9, 687. doi: 10.1039/c5ee03461b  doi: 10.1039/c5ee03461b

    4. [4]

      Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Raoul, M.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434. doi: 10.1021/acs.chemrev.7b00435  doi: 10.1021/acs.chemrev.7b00435

    5. [5]

      Zhou, Y.; Han, N.; Li, Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041.  doi: 10.3866/PKU.WHXB202001041

    6. [6]

      North, M.; Pasquale, R.; Young, C. Green Chem. 2010, 12, 1514. doi: 10.1039/C0GC00065E  doi: 10.1039/C0GC00065E

    7. [7]

      Lindsey, A. S.; Jeskey, H. Chem. Rev. 1957, 57, 583. doi: 10.1021/cr50016a001  doi: 10.1021/cr50016a001

    8. [8]

      Otto, A.; Grube, T.; Schiebahn, S.; Stolten, D. Energy Environ. Sci. 2015, 8, 3283. doi: 10.1039/C5EE02591E  doi: 10.1039/C5EE02591E

    9. [9]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2013, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    10. [10]

      Martin, C.; Fiorani, G.; Kleij, A. W. ACS Catal. 2015, 5, 1353. doi: 10.1021/cs5018997  doi: 10.1021/cs5018997

    11. [11]

      Li, Y.; Wang, Z., Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978. doi: 10.6023/cjoc201702038  doi: 10.6023/cjoc201702038

    12. [12]

      Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. doi: 10.1038/ncomms6933  doi: 10.1038/ncomms6933

    13. [13]

      Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Angew. Chem. Int. Ed. 2016, 55, 7296. doi: 10.1002/ange.201507458  doi: 10.1002/ange.201507458

    14. [14]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    15. [15]

      Wang, L.; Sun, W.; Liu, C. Chin. J. Chem. 2018, 36, 353. doi: 10.1002/cjoc.201700746  doi: 10.1002/cjoc.201700746

    16. [16]

      Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107, 2365. doi: 10.1021/cr068357u  doi: 10.1021/cr068357u

    17. [17]

      Wu, L.; Liu, Q.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 6310. doi: 10.1002/anie.201400793  doi: 10.1002/anie.201400793

    18. [18]

      Dabral, S.; Schaub, T. Adv. Synth. Catal. 2019, 361, 223. doi: 10.1002/adsc.201801215  doi: 10.1002/adsc.201801215

    19. [19]

      Liu, X.; Li, X.; He, L. Eur. J. Org. Chem. 2019, 14, 2437. doi: 10.1002/ejoc.201801833  doi: 10.1002/ejoc.201801833

    20. [20]

      Dong, K.; Razzaq, R.; Hu, Y.; Ding, K. Top. Curr. Chem. 2017, 375, 23. doi: 10.1007/s41061-017-0107-x  doi: 10.1007/s41061-017-0107-x

    21. [21]

      Zhou, W.; Guo, J.; Shen, S; Pan, J.; Tang, J.; Chen, L.; Au, C.; Yin, S. Acta Phys. -Chim. Sin. 2020, 36, 1906048.  doi: 10.3866/PKU.WHXB201906048

    22. [22]

      Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675. doi: 10.1021/cr3001803  doi: 10.1021/cr3001803

    23. [23]

      Vilches-Herrera, M.; Domke, L.; Börner, A. ACS Catal. 2014, 4, 1706. doi: 10.1021/cs500273d  doi: 10.1021/cs500273d

    24. [24]

      Pospech, J.; Fleischer, I.; Frank, R.; Buchholz, S.; Beller M. Angew. Chem. Int. Ed. 2013, 52, 2852. doi: 10.1002/anie.201208330  doi: 10.1002/anie.201208330

    25. [25]

      Cornils, B.; Herrmann, W. A.; Rasch, M. Angew. Chem. Int. Ed. 1994, 33, 2144. doi: 10.1002/anie.199423481  doi: 10.1002/anie.199423481

    26. [26]

      Yang, J.; Liu, J. W.; Helfried, H.; Franke, R.; Jackstell, R.; Beller, M. Science 2019, 366, 1514. doi: 10.1126/science.aaz1293  doi: 10.1126/science.aaz1293

    27. [27]

      Hood, D.; Johnson, R.; Carpenter, A.; Younker, J.; Vinyard, D.; Stanley, G. Science 2020, 367, 542. doi: 10.1126/science.aaw7742  doi: 10.1126/science.aaw7742

    28. [28]

      Wang, W.; Wang, S.; Ma, X.; Gong. J. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A  doi: 10.1039/C1CS15008A

    29. [29]

      Laine, R. M.; Rinker, R. G.; Ford, P. C. J. Am. Chem. Soc. 1977, 99, 252. doi: 10.1021/ja00443a049  doi: 10.1021/ja00443a049

    30. [30]

      Tominaga, K.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. J. Chem. Soc., Chem. Commun. 1993, 629. doi: 10.1039/C39930000629  doi: 10.1039/C39930000629

    31. [31]

      Tominaga, K.; Sasaki, Y.; Saito, M.; Hagihara, K.; Watanabe, T. J. Mol. Catal. 1994, 89, 51. doi: 10.1016/0304-5102(93)E0287-Q  doi: 10.1016/0304-5102(93)E0287-Q

    32. [32]

      Koinuma, H.; Yoshida, Y.; Hirai, H. Chem. Lett. 1975, 4, 1223. doi: 10.1246/cl.1975.1223  doi: 10.1246/cl.1975.1223

    33. [33]

      Cheng, C.; Hendriksen, D. E.; Eisenberg, R. J. Am. Chem. Soc. 1977, 99, 2791. doi: 10.1021/ja00450a062  doi: 10.1021/ja00450a062

    34. [34]

      Tominaga, K.; Sasaki, Y.; Watanabe, T.; Saito, M. J. Chem. Soc., Chem. Commun. 1995, 1489. doi: 10.1039/C39950001489  doi: 10.1039/C39950001489

    35. [35]

      Tsuchiya, K.; Huang, J. D.; Tominaga, K. ACS Catal. 2013, 3, 2865. doi: 10.1021/cs400809k  doi: 10.1021/cs400809k

    36. [36]

      Yasuda, T.; Uchiage, E.; Fujitani, T.; Tominaga. K.; Nishida, M. Appl. Catal. B: Environ. 2018, 232, 299. doi: 10.1016/j.apcatb.2018.03.057  doi: 10.1016/j.apcatb.2018.03.057

    37. [37]

      Tominaga, K.; Sasaki, Y. Catal. Commun. 2000, 1, 1. doi: 10.1016/S1566-7367(00)00006-6  doi: 10.1016/S1566-7367(00)00006-6

    38. [38]

      Tominaga, K.; Sasaki, Y. J. Mol. Catal. A: Chem. 2004, 220, 159. doi: 10.1016/j.molcata.2004.06.009  doi: 10.1016/j.molcata.2004.06.009

    39. [39]

      Tominaga, K. Catal. Today 2006, 115, 70. doi: 10.1016/j.cattod.2006.02.019  doi: 10.1016/j.cattod.2006.02.019

    40. [40]

      Jääskeläinen, S.; Haukka, M. Appl. Catal. A: Gen. 2003, 247, 9. doi: 10.1016/S0926-860X(03)00063-2  doi: 10.1016/S0926-860X(03)00063-2

    41. [41]

      Kontkanen, M.; Oresmaa, L.; Moreno, M. A.; Jänis, J.; Laurila, E.; Haukka, M. Appl. Catal. A: Gen. 2009, 365, 130. doi: 10.1016/j.apcata.2009.06.006  doi: 10.1016/j.apcata.2009.06.006

    42. [42]

      Liu, Q.; Wu, L.; Fleischer, I.; Selent, D.; Franke, R.; Beller, M. Chem. Eur. J. 2014, 20, 6888. doi: 10.1002/chem.201400358  doi: 10.1002/chem.201400358

    43. [43]

      Ali, M.; Gual, A.; Ebeling, G.; Dupont, J. ChemCatChem 2014, 6, 2224. doi: 10.1002/cctc.201402226  doi: 10.1002/cctc.201402226

    44. [44]

      Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem. Int. Ed. 2017, 56, 310. doi: 10.1002/ange.201608628  doi: 10.1002/ange.201608628

    45. [45]

      Zhang, X.; Tian, X.; Shen, C.; Xia, C.; He, L. ChemCatChem 2019, 11, 1986. doi: 10.1002/cctc.201802091  doi: 10.1002/cctc.201802091

    46. [46]

      Srivastava, V. K.; Eilbracht, P. Catal. Commun. 2009, 10, 1791. doi: 10.1016/j.catcom.2009.05.019  doi: 10.1016/j.catcom.2009.05.019

    47. [47]

      Ali, M.; Gual, A.; Ebeling, G.; Dupont, J. ChemSusChem 2016, 9, 2129. doi: 10.1002/cssc.201600385  doi: 10.1002/cssc.201600385

    48. [48]

      Uhe, D. A.; Hölscher, M.; Leitner, W. Chem. Eur. J. 2012, 18, 170. doi: 10.1002/chem.201102785  doi: 10.1002/chem.201102785

    49. [49]

      Ostapowicz, T. G.; Schmitz, M.; Krystof, M.; Klankermayer, J.; Leitner, W. Angew. Chem. Int. Ed. 2013, 52, 12119. doi: 10.1002/anie.201304529  doi: 10.1002/anie.201304529

    50. [50]

      Simonato, J. P. J Mol. Catal. A: Chem. 2003, 197, 61. doi: 10.1016/S1381-1169(02)00676-3  doi: 10.1016/S1381-1169(02)00676-3

    51. [51]

      Wu, L.; Liu, Q.; Fleischer, I.; Jackstell, R.; Beller, M. Nat. Commun. 2014, 5, 3091. doi: 10.1038/ncomms4091  doi: 10.1038/ncomms4091

    52. [52]

      Zhang, X.; Shen, C.; Xia, C.; Tian, X.; He, L. Green Chem. 2018, 20, 5533. doi: 10.1039/c8gc02289e  doi: 10.1039/c8gc02289e

    53. [53]

      Haynes, P.; Slaugh, L. H.; Kohnle, J. F. Tetrahedron Lett. 1970, 11, 365. doi: 10.1016/0040-4039(70)80086-7  doi: 10.1016/0040-4039(70)80086-7

    54. [54]

      Kiyoshi, K.; Heng, P.; Nobuyuki, S.; Yoshimasa, T. Chem. Lett. 1977, 6, 1495. doi: 10.1246/cl.1977.1495  doi: 10.1246/cl.1977.1495

    55. [55]

      Schreiner, S.; Yu, J. Y.; Vaska, L. Inorg. Chim. Acta 1988, 147, 139. doi: 10.1016/S0020-1693(00)83362-9  doi: 10.1016/S0020-1693(00)83362-9

    56. [56]

      Schreiner, S.; Yu, J. Y.; Vaska, L. J. Chem. Soc. Chem. Commun. 1988, 602. doi: 10.1039/C39880000602  doi: 10.1039/C39880000602

    57. [57]

      Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851. doi: 10.1021/ja00098a072  doi: 10.1021/ja00098a072

    58. [58]

      Johanssona, T.; Stawinski, J. Chem. Commum. 2001, 24, 2654. doi: 10.1039/B108857M  doi: 10.1039/B108857M

    59. [59]

      Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453. doi: 10.1039/A608150I  doi: 10.1039/A608150I

    60. [60]

      Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9777. doi: 10.1002/anie.201004263  doi: 10.1002/anie.201004263

    61. [61]

      Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701. doi: 10.1021/ja307924a  doi: 10.1021/ja307924a

    62. [62]

      Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem. Eur. J. 2012, 18, 72. doi: 10.1002/chem.201101343  doi: 10.1002/chem.201101343

    63. [63]

      Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed. 2015, 54, 6186. doi: 10.1002/anie.201500939  doi: 10.1002/anie.201500939

    64. [64]

      Munshi, P.; Heldebrant, D.; McKoon, E.; Kelly, P.; Tai, C.; Jessop, P. Tetrahedron Lett. 2003, 44, 2725. doi: 10.1016/S0040-4039(03)00384-8  doi: 10.1016/S0040-4039(03)00384-8

    65. [65]

      Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2017, 7, 2500. doi: 10.1021/acscatal.7b00116  doi: 10.1021/acscatal.7b00116

    66. [66]

      Liu, H.; Mei, Q.; Xu, Q.; Song, J.; Liu, H.; Han, B. Green Chem. 2017, 19, 196. doi: 10.1039/C6GC02243J  doi: 10.1039/C6GC02243J

    67. [67]

      Ke, Z.; Yang, Z.; Liu, Z.; Yu, B.; Zhao, Y.; Guo, S.; Wu, Y.; Liu, Z. Org. Lett. 2018, 20, 6622. doi: 10.1021/acs.orglett.8b02384  doi: 10.1021/acs.orglett.8b02384

    68. [68]

      Dubey, A.; Nencini, L.; Fayzullin, R. R.; Nervi, C.; Khusnutdinova, J. R. ACS Catal. 2017, 7, 3864. doi: 10.1021/acscatal.7b00943  doi: 10.1021/acscatal.7b00943

    69. [69]

      Jayarathne, U.; Hazari, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338. doi: 10.1021/acscatal.7b03834  doi: 10.1021/acscatal.7b03834

    70. [70]

      Schönherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256. doi: 10.1002/anie.201303207  doi: 10.1002/anie.201303207

    71. [71]

      Clarke, H. T.; Gillespie, H. B.; Weisshaus, S. Z. J. Am. Chem. Soc. 1933, 55, 4571. doi: 10.1021/ja01338a041  doi: 10.1021/ja01338a041

    72. [72]

      Gredig, S. V.; Koeppel, R. A.; Baiker, A. J. Chem. Soc. Chem. Commun., 1995, 73. doi: 10.1039/C39950000073  doi: 10.1039/C39950000073

    73. [73]

      Li, Y.; Cui, X.; Dong, K.; Junge, K.; Beller, M. ACS Catal. 2017, 7, 1077. doi: 10.1021/acscatal.6b02715  doi: 10.1021/acscatal.6b02715

    74. [74]

      Beydoun, K.; Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem. Int. Ed. 2013, 52, 9554. doi: 10.1002/anie.201304656  doi: 10.1002/anie.201304656

    75. [75]

      Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. Coord. Chem. Rev. 1992, 120, 193. doi: 10.1016/0010-8545(92)80051-R  doi: 10.1016/0010-8545(92)80051-R

    76. [76]

      Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2013, 52, 12156. doi: 10.1002/anie.201306850  doi: 10.1002/anie.201306850

    77. [77]

      Beydoun, K.; Thenert, K.; Streng, E. S.; Brosinski, S.; Leitner, W.; Klankermayer, J. ChemCatChem 2016, 8, 135. doi: 10.1002/cctc.201501116  doi: 10.1002/cctc.201501116

    78. [78]

      Yu, Bo.; Zhang, H.; Zhao, Y.; Chen, S.; Xu, J.; Huang, C.; Liu, Z. Green Chem. 2013, 15, 95. doi: 10.1039/C2GC36517K  doi: 10.1039/C2GC36517K

    79. [79]

      Ke, Z.; Yu, B.; Wang, H.; Xiang, J.; Han, J.; Wu, Y.; Liu, Z.; Yang, P.; Liu, Z. Green Chem. 2019, 21, 1695. doi: 10.1039/C9GC00095J  doi: 10.1039/C9GC00095J

    80. [80]

      Qian, Q.; Cui, M.; Zhang, J.; Xiang, J.; Song, J.; Yang, G.; Han, B. Green Chem. 2018, 20, 206. doi: 10.1039/C7GC02807E  doi: 10.1039/C7GC02807E

    81. [81]

      Wang, Y.; Zhang, J.; Qian, Q.; Bediako, B.; Cui, M.; Yang, G.; Yan, J.; Han, B. Green Chem. 2019, 21, 589. doi: 10.1039/c8gc03320j  doi: 10.1039/c8gc03320j

    82. [82]

      Bediako, B.; Qian, Q.; Zhang, J.; Wang, Y.; Shen, X.; Shi, J.; Cui, M.; Yang, G.; Wang, Z.; Tong, S.; et al. Green Chem. 2019, 21, 4152. doi: 10.1039/C9GC01185D  doi: 10.1039/C9GC01185D

    83. [83]

      Zhang, J.; Qian, Q.; Cui, M.; Chen, C.; Liu, S.; Han, B. Green Chem. 2017, 19, 4396. doi: 10.1039/C7GC01887H  doi: 10.1039/C7GC01887H

    84. [84]

      Qian, Q.; Zhang, J.; Cui, M.; Han, B. Nat. Commun. 2016, 7, 11481. doi: 10.1038/ncomms11481  doi: 10.1038/ncomms11481

    85. [85]

      Tominaga, K.; Sasaki, Y.; Watanabe, T.; Saito, M. Stud. Surf. Sci. Catal. 1998, 114, 49. doi: 10.1016/S0167-2991(98)80804-5  doi: 10.1016/S0167-2991(98)80804-5

    86. [86]

      Darensbourg, D. J.; Groetsch, G.; Wiegreffe, P.; Rheingold, A. L. Inorg. Chem. 1987, 26, 3827. doi: 10.1021/ic00269a043  doi: 10.1021/ic00269a043

    87. [87]

      Cui, M.; Qian, Q.; Zhang, J.; Chen, C.; Han, B. Green Chem. 2017, 19, 3558. doi: 10.1039/C7GC01391D  doi: 10.1039/C7GC01391D

    88. [88]

      Wang, Y.; Qian, Q.; Zhang, J.; Bediako, B.; Wang, Z.; Liu, H.; Han, B. Nat. Commun. 2019, 10, 5395. doi: 10.1038/s41467-019-13463-0  doi: 10.1038/s41467-019-13463-0

    89. [89]

      Liu, Z. Acta Phys. -Chim. Sin. 2020, 36, 1912045.  doi: 10.3866/PKU.WHXB201912045

    90. [90]

      Gao, Y.; Liu, S.; Zhao, Z.; Tao, H.; Sun, Z. Acta Phys. -Chim. Sin. 2018, 34, 858.  doi: 10.3866/PKU.WHXB201802061

    91. [91]

      Nieskens, D.; Ferrari, D.; Liu, Y.; Kolonko, R. Catal. Commum, 2011, 14, 111. doi: 10.1016/j.catcom.2011.07.020  doi: 10.1016/j.catcom.2011.07.020

    92. [92]

      Li, S.; Guo, H.; Luo, C.; Zhang, H.; Xiong, L.; Chen, X.; Ma, L. Catal. Lett. 2013, 143, 345. doi: 10.1007/s10562-013-0977-7  doi: 10.1007/s10562-013-0977-7

    93. [93]

      Qian, Q.; Cui, M.; He, Z.; Wu, C.; Zhu, Q.; Zhang, Z.; Ma, J.; Yang, G.; Zhang, J.; Han, B. Chem. Sci. 2015, 6, 5685. doi: 10.1039/C5SC02000J  doi: 10.1039/C5SC02000J

    94. [94]

      Cui, M.; Qian, Q.; He, Z.; Zhang, Z.; Ma, J.; Wu, T.; Yang, G.; Han, B. Chem. Sci. 2016, 7, 5205. doi: 10.1039/C6SC01314G  doi: 10.1039/C6SC01314G

    95. [95]

      Veibel, S.; Nielsen, J. I. Tetrahedron 1967, 23, 1723. doi: 10.1016/S0040-4020(01)82571-0  doi: 10.1016/S0040-4020(01)82571-0

    96. [96]

      Thomas, C.; Süss-Fink.; G. Coord. Chem. Rev. 2003, 243, 125. doi: 10.1016/S0010-8545(03)00051-1  doi: 10.1016/S0010-8545(03)00051-1

    97. [97]

      Fukuoka, A.; Gotoh, N.; Kobayashi, N.; Hirano, M.; Komiya, S. Chem. Lett. 1995, 24, 567. doi: 10.1246/cl.1995.567  doi: 10.1246/cl.1995.567

    98. [98]

      Maeda, C.; Miyazaki, Y.; Ema, T. Catal. Sci. Technol. 2014, 4, 1482. doi: 10.1039/C3CY00993A  doi: 10.1039/C3CY00993A

    99. [99]

      Li, Y.; Yan, T.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 10476. doi: 10.1002/anie.201405779  doi: 10.1002/anie.201405779

    100. [100]

      Shen, X.; Xin, Y.; Liu, H.; Han, B. ChemSusChem 2020, No. 13. doi: 10.1002/cssc.202001025  doi: 10.1002/cssc.202001025

    101. [101]

      Zhang, J.; Qian, Q.; Wang, Y.; Bediako, B.; Yan, J.; Han, B. Chem. Sci. 2019, 10, 10640. doi: 10.1039/c9sc03386f  doi: 10.1039/c9sc03386f

    102. [102]

      Shen, X.; Meng, Q.; Dong, M.; Xiang, J.; Li, S.; Liu, H.; Han, B. ChemSusChem, 2019, 12, 514. doi: 10.1002/cssc.201902404  doi: 10.1002/cssc.201902404

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(20)
  • Abstract views(651)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return