Citation: Sun Yuheng, Gao Mingda, Li Hui, Xu Li, Xue Qing, Wang Xinran, Bai Ying, Wu Chuan. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200704. doi: 10.3866/PKU.WHXB202007048 shu

Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries

  • Corresponding author: Wang Xinran, wangxinran@bit.edu.cn Wu Chuan, chuanwu@bit.edu.cn
  • The authors contributed equally to this work.
  • Received Date: 20 July 2020
    Revised Date: 18 August 2020
    Accepted Date: 23 August 2020
    Available Online: 31 August 2020

    Fund Project: the Science and Technology Project of Global Energy Interconnection Research Institute Co. Ltd. SGGR0000WLJS1900858the Beijing Institute of Technology Research Fund Program for Young Scholars 2019CX04092the Beijing Natural Science Foundation L182023The project was supported by the National Natural Science Foundation of China (51804290), the Beijing Natural Science Foundation (L182023), the Science and Technology Project of Global Energy Interconnection Research Institute Co. Ltd. (SGGR0000WLJS1900858), and the Beijing Institute of Technology Research Fund Program for Young Scholars (2019CX04092)the National Natural Science Foundation of China 51804290

  • Lithium metal batteries (LMBs) are representative systems for high-energy-density batteries. The design of LMBs with high capacity and high cycle stability is imperative. However, the development of LMBs is hindered by typical interface-related problems such as lithium dendrite growth, incompatible separator interfaces, and unstable cathode interfaces because of the inhomogeneous ionic flux and composition distribution. The intrinsic instability significantly hinders electron/ion transfer at the interface, causing serious issues such as dendrite growth, volume changes, low coulombic efficiency, dead lithium, interface deterioration, capacity degradation, and loss of safety. Metal-organic frameworks (MOFs) are organic-inorganic hybrid materials with a stable highly porous structure, which can allow for highly efficient gas adsorption, separation and purification, catalysis, etc., in addition to facilitating their application in nanomedicine and other fields. In recent years, MOFs have attracted much attention in the field of LMBs as a possible solution to the typical interface problems abovementioned. The porous structure and open metal sites (OMs) of MOFs provide an excellent interface structure for uniform and high ionic conductivity. As additional bonus, the stable structure provides high mechanical strength with different functional groups and metal sites, resulting in significant versatility of functionality for interface stabilization. MOFs are usually synthesized by hydrothermal/solvothermal, microwave-assisted, electrochemical, and spray-drying methods. The excellent properties of MOFs have prompted researchers to pursue their rational design and modification. Much progress has been made in this direction, and exemplary investigations have been performed to solve the abovementioned interfacial problems encountered with LMBs. Consequently, metallic lithium deposition frameworks, artificial solid electrolyte interface films, electrolyte additives, separator materials, cathode materials for lithium-sulfur batteries, and lithium-air batteries have been developed. However, there is a long way to go before the commercialization of batteries based on MOF materials. In practical, more complex electrochemical reactions occur at the lithium-metal interface, and the operating conditions (temperature, over charging/discharging, external stress, etc.) vary widely. Moreover, MOFs as electrode materials have intrinsic drawbacks, including structural collapse, pore blockage, and low inherent conductivity during the cycles. Based on these interfacial challenges, in LMBs, it introduces the structural characterization and optimization of MOFs and the key chemical components that determines the MOFs of structure (central atom, organic ligand, etc.). Subsequently, we summarized the growth mechanism of lithium dendrites and discussed the applications of MOFs and their derivatives to battery cathodes, separators, anodes, and electrolytes.The manuscript contents would be a guide to solve the problem of unstable interfaces in LMBs by the use of MOFs. Furthermore, the prospects and rational design of MOF-based materials are discussed.
  • 加载中
    1. [1]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    2. [2]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    3. [3]

      Xu, R. C.; Xia, X. H.; Zhang, S. Z.; Xie, D.; Wang, X. L.; Tu, J. P. Electrochim. Acta 2018, 284, 177. doi: 10.1016/j.electacta.2018.07.191  doi: 10.1016/j.electacta.2018.07.191

    4. [4]

      Yu, X.; Manthiram, A. Acc. Chem. Res. 2017, 50, 2653. doi: 10.1021/acs.accounts.7b00460  doi: 10.1021/acs.accounts.7b00460

    5. [5]

      Chen, D.; Huang, S.; Zhong, L.; Wang, S.; Xiao, M.; Han, D.; Meng, Y. Adv. Funct. Mater, 2020, 30. doi: 10.1002/adfm.201907717  doi: 10.1002/adfm.201907717

    6. [6]

      Dong, D.; Zhang, H.; Zhou, B.; Sun, Y.; Zhang, H.; Cao, M.; Li, J.; Zhou, H.; Qian, H.; Lin, Z.; Chen, H. Chem. Commun. 2019, 55, 1458. doi: 10.1039/c8cc08725c  doi: 10.1039/c8cc08725c

    7. [7]

      Yang, X.; Dong, B.; Zhang, H.; Ge, R.; Gao, Y.; Zhang, H. RSC Adv. 2015, 5, 86137. doi: 10.1039/c5ra16235a  doi: 10.1039/c5ra16235a

    8. [8]

      Eddaoudi, M.; Kim, J.; Rosi, N. L.; David, V.; Joseph, W. Science 2002, 295, 469. doi: 10.1126/science.1067208  doi: 10.1126/science.1067208

    9. [9]

      Zhang, T.; Lin, W. B. Chem. Soc. Rev. 2014, 43, 5982. doi: 10.1039/C4CS00103F  doi: 10.1039/C4CS00103F

    10. [10]

      Petit, C. Curr. Opin. Chem. Eng, 2018, 20, 132. doi: 10.1016/j.coche.2018.04.004  doi: 10.1016/j.coche.2018.04.004

    11. [11]

      Uzun, A.; Keskin, S. Prog. Surf. Sci. 2014, 89, 56. doi: 10.1016/j.progsurf.2013.11.001  doi: 10.1016/j.progsurf.2013.11.001

    12. [12]

      Mu, W.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. Acta Phys. -Chim. Sin. 2010, 26, 1657.  doi: 10.3866/PKU.WHXB20100616

    13. [13]

      Adatoz, E.; Avci, A. K.; Keskin, S. Sep. Purif. Technol. 2015, 152, 207. doi: 10.1016/j.seppur.2015.08.020  doi: 10.1016/j.seppur.2015.08.020

    14. [14]

      Chen, Z.; Chen, J.; Li, Y. Chin. J. Catal. 2017, 38, 1108. doi: 10.1016/s1872-2067(17)62852-3  doi: 10.1016/s1872-2067(17)62852-3

    15. [15]

      Yang, L.; Zeng, X.; Wang, W.; Cao, D. Adv. Funct. Mater. 2018, 28, 1704537. doi: 10.1002/adfm.201704537  doi: 10.1002/adfm.201704537

    16. [16]

      Xuan, C. J.; Wang, J.; Zhu, J.; Wang, D. L. Acta Phys. -Chim. Sin. 2017, 33, 149.  doi: 10.3866/PKU.WHXB201609143

    17. [17]

      Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Liu, Y. Biomaterials 2020, 230, 119619. doi: 10.1016/j.biomaterials.2019.119619  doi: 10.1016/j.biomaterials.2019.119619

    18. [18]

      Liu, Y.; Zhao, Y.; Chen, X. Theranostics 2019, 9, 3122. doi: 10.7150/thno.31918  doi: 10.7150/thno.31918

    19. [19]

      Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. J. Mater. Chem. A 2019, 7, 3469. doi: 10.1039/C8TA11075A  doi: 10.1039/C8TA11075A

    20. [20]

      Li, H. L.; Eddaoudi, M. M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. doi: 10.1038/46248  doi: 10.1038/46248

    21. [21]

      Li, X.; Cheng, F.; Zhang, S.; Chen, J. J. Power Sources 2006, 160, 542. doi: 10.1016/j.jpowsour.2006.01.015  doi: 10.1016/j.jpowsour.2006.01.015

    22. [22]

      Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yaghi, O. M. Science 2010, 329, 424. doi: 10.1126/science.1192160  doi: 10.1126/science.1192160

    23. [23]

      Jiang, H. Q.; Liu, X.C.; Wu, Y.S.; Shu, Y. F.; Gong, X.; Ke, F. S.; Deng, H. X. Angew. Chem. Int. Ed. 2018, 57, 3916. doi: 10.1002/ange.201712872  doi: 10.1002/ange.201712872

    24. [24]

      Li, K.; Lv, X. X.; Shi, L. L.; Liu, L.; Li, B. L.; Wu, B. Dalton Trans. 2016, 45, 15078. doi: 10.1039/C6DT02895K  doi: 10.1039/C6DT02895K

    25. [25]

      Chen, Y. X.; Ni, D.; Yang, X. W.; Liu, C. C.; Yin, J. L.; Cai, K. F. Electrochim. Acta 2018, 278, 114. doi: 10.1016/j.electacta.2018.05.024  doi: 10.1016/j.electacta.2018.05.024

    26. [26]

      Martinez Joaristi, A.; Juan-Alcañiz, A.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Cryst. Growth Des. 2012, 12, 3489. doi: 10.1021/cg300552w  doi: 10.1021/cg300552w

    27. [27]

      Garcia Marquez, A.; Horcajada, P.; Grosso, D.; Ferey, G.; Serre, C.; Sanchez, C.; Boissiere, C. Chem. Commun. 2013, 49, 3848. doi: 10.1039/C3CC39191D  doi: 10.1039/C3CC39191D

    28. [28]

      Wang, B.; Côté, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Nature 2008, 453, 207. doi: 10.1038/nature06900  doi: 10.1038/nature06900

    29. [29]

      Anh, P.; Christian, J. D.; Rernando, J. U; Carolyn, B. K.; Michael, O.; Omar, M. Y. Acc. Chem. Res. 2010, 43, 58. doi: 10.1021/ar900116g  doi: 10.1021/ar900116g

    30. [30]

      Tanaka, D.; Nakagawa, K.; Giguchi, M.; Horike, S.; Kubota, Y.; Kobayashi, T. C.; Takata, M.; Kitagewa, S. Angew. Chem. Int. Ed. 2008, 47, 3914.doi: 10.1002/anie.200705822  doi: 10.1002/anie.200705822

    31. [31]

      Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Kobayashi, T. C.; Horike, S.; Takata. M. J. Am. Chem. Soc. 2004, 126, 14063. doi: 10.1021/ja046925m  doi: 10.1021/ja046925m

    32. [32]

      Serre, C.; Pelle, F.; Gardant, N.; Ferey, G. Chem. Mater. 2004, 16, 1177. doi: 10.1021/cm035045o  doi: 10.1021/cm035045o

    33. [33]

      Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, H. J. Am. Chem. Soc. 2007, 129, 1858. doi: 10.1021/ja0771639  doi: 10.1021/ja0771639

    34. [34]

      Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud K. P. J. Am. Chem. Soc. 2008, 130, 13850. doi: 10.1021/ja8057953  doi: 10.1021/ja8057953

    35. [35]

      Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/C8CS00829A  doi: 10.1039/C8CS00829A

    36. [36]

      Lin, S.; Bediako, J. K.; Cho, C.W.; Song, M. H.; Zhao, Y. F.; Kim, J. A.; Choi, J. W.; Yun, Y. S. Chem. Eng. J. 2018, 345, 337. doi: 10.1016/j.cej.2018.03.173  doi: 10.1016/j.cej.2018.03.173

    37. [37]

      Pauling, L. C. Proc. R. Soc. Lond. A 1949, 196, 343. doi: 10.1098/rspa.1949.0032  doi: 10.1098/rspa.1949.0032

    38. [38]

      Murugavel, R.; Karambelkar, V. V.; Anantharaman, G.; Walawalkar, M. G. Inorg. Chem. 2000, 39, 1381. doi: 10.1021/ic990895k  doi: 10.1021/ic990895k

    39. [39]

      Aulakh, D.; Nicoletta, A. P.; Varghese, J. R.; Wriedt, M. CrystEngComm 2016, 18, 2189. doi: 10.1039/C6CE00284F  doi: 10.1039/C6CE00284F

    40. [40]

      Chen, B.; Eddaoudi, M.; Reineke, T. M.; Kampf, J. W.; Keeffe, M. O.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 11559. doi: 10.1021/ja003159k  doi: 10.1021/ja003159k

    41. [41]

      Hall, J. N.; Bollini, P. React. Chem. Eng. 2019, 4, 207. doi: 10.1039/C8RE00228B  doi: 10.1039/C8RE00228B

    42. [42]

      Kokcam-Demir, U.; Goldman, A.; Esrafili, L.; Gharib, M.; Morsali, A.; Weingart, O.; Janiak, C. Chem. Soc. Rev. 2020, 49, 2751. doi: 10.1039/c9cs00609e  doi: 10.1039/c9cs00609e

    43. [43]

      Fu, Y. Y.; Yang, C. X.; Yan, X. P. Langmuir 2012, 28, 6794. doi: 10.1021/la300298  doi: 10.1021/la300298

    44. [44]

      Park, H.; Siegel, D. J. Chem. Mater. 2017, 29, 4932. doi: 10.1021/acs.chemmater.7b01166  doi: 10.1021/acs.chemmater.7b01166

    45. [45]

      Wu, D.; Guo, Z.; Yin, X.; Pang, Q.; Tu, B.; Zhang, L.; Wang, Y. G.; Li, Q. Adv Mater. 2014, 26, 3258. doi: 10.1002/adma.201305492  doi: 10.1002/adma.201305492

    46. [46]

      Zhang, C.; Shen, L.; Shen, J. Q.; Liu, F.; Chen, G.; Tao, R.; Ma, S. X.; Peng, Y. T.; Lu, Y. F. Adv Mater. 2019, 31, 1808338. doi: 10.1002/adma.201808338  doi: 10.1002/adma.201808338

    47. [47]

      Peng, Z., Yi, X., Liu, Z., Shang, J., Wang, D. ACS Appl. Mater. Interfaces 2016, 8, 14578. doi: 10.1021/acsami.6b03418  doi: 10.1021/acsami.6b03418

    48. [48]

      Zhong, H.; Ly, K. H.; Wang, M.; Krupskaya, Y.; Han, X.; Zhang, J.; Feng, X. Angew. Chem. Int. Ed.2019, 58, 10677. doi: 10.1002/anie.201907002  doi: 10.1002/anie.201907002

    49. [49]

      Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Energy Environ. Sci. 2015, 8, 1837. doi: 10.1039/c5ee00762c  doi: 10.1039/c5ee00762c

    50. [50]

      Wu, S.; Liu, J.; Wang, H.; Yan, H. Int. J. Energy Res. 2018, 43, 697. doi: 10.1002/er.4232  doi: 10.1002/er.4232

    51. [51]

      Zou, G.; Hou, H.; Ge, P.; Huang, Z.; Zhao, G.; Yin, D.; Ji, X. J. Energy Storage 2017, 14, 1702648. doi: 10.1002/smll.201702648  doi: 10.1002/smll.201702648

    52. [52]

      Tong, P.; Liang, J.; Jiang, X.; Li, J. Crit. Rev. Anal. Chem. 2020, 50, 376. doi: 10.1080/10408347.2019.1642732  doi: 10.1080/10408347.2019.1642732

    53. [53]

      Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R. Eur. J. Inorg. Chem.2010, 24, 3701. doi: 10.1002/ejic.201000473  doi: 10.1002/ejic.201000473

    54. [54]

      Dang, S.; Zhu, Q. L.; Xu, Q. Nat. Rev. Mater. 2017, 3, 17075. doi: 10.1038/natrevmats.2017.75  doi: 10.1038/natrevmats.2017.75

    55. [55]

      Yi, Q.; Du, M.; Shen, B.; Ji, J.; Dong, C.; Xing, M.; Zhang, J. Sci. Bull. 2020, 65, 233. doi: 10.1016/j.scib.2019.11.004  doi: 10.1016/j.scib.2019.11.004

    56. [56]

      Zhao, S.; Yin, H.; Du, L.; He, L.; Zhao, K.; Chang, L.; Tang, Z. ACS Nano 2014, 8, 12660. doi: 10.1021/nn505582e  doi: 10.1021/nn505582e

    57. [57]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    58. [58]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    59. [59]

      Aryanfar, A.; Brooks, D. J.; Colussi, A. J.; Merinov B. V.; Goddard Ⅲ, W. A.; Hoffmann, M. R. Phys. Chem. 2015, 17, 8000. doi: 10.1039/C4CP05786D  doi: 10.1039/C4CP05786D

    60. [60]

      Xu, C.; Ahmad, Z.; Aryanfar, A.; Viswanathan, V.; Greer, J. R. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 57. doi: 10.1073/pnas.1615733114  doi: 10.1073/pnas.1615733114

    61. [61]

      Pei, A.; Zheng, G.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    62. [62]

      Monroe, C.; Newman. J. J. Electrochem. Soc. 2003, 150, A1377. doi: 10.1149/1.1606686  doi: 10.1149/1.1606686

    63. [63]

      Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Nano Energy 2017, 32, 271. doi: 10.1016/j.nanoen.2016.12.001  doi: 10.1016/j.nanoen.2016.12.001

    64. [64]

      Wang, X.; Zeng, W.; Hong, L.; Xu, W. W.; Yang, H. K.; Wang, F.; Duan, H. G.; Tang, M.; Jiang, H. Q. Nat. Energy 2018, 3, 227. doi: 10.1038/s41560-018-0104-5  doi: 10.1038/s41560-018-0104-5

    65. [65]

      Wang, L.; Zhu, X.; Guan, Y. P.; Zhang, J. L.; Ai, F.; Zhang, W. F. Xiang, Y.; Vigayan, S.; Li, G. D.; Huang, Y. L.; et al. Energy Stor. Mater. 2018, 11, 191.doi: 10.1016/j.ensm.2017.10.016  doi: 10.1016/j.ensm.2017.10.016

    66. [66]

      Lyu, Z.; Lim, G. J. H.; Guo, R.; Pan, Z. H.; Zhang, X.; Zhang, H.; He, Z. M.; Adams, S.; Chen, W.; Ding, J. Energy Stor. Mater. 2020, 24, 336. doi: 10.1016/j.ensm.2019.07.041  doi: 10.1016/j.ensm.2019.07.041

    67. [67]

      Wang, T. S.; Liu, X.; Zhao, X.; He, P.; Nan, C. W.; Fan, L. Z. Adv. Funct. Mater. 2020, 30, 2000786. doi: 10.1002/adfm.202000786  doi: 10.1002/adfm.202000786

    68. [68]

      Zhao, F.; Zhou, X.; Deng, W.; Liu, Z. Nano Energy 2019, 62, 55. doi: 10.1016/j.nanoen.2019.04.087  doi: 10.1016/j.nanoen.2019.04.087

    69. [69]

      Zhou, T.; Shen, J.; Wang, Z.; Liu, J.; Hu, R.; Ouyang, L.; Zhu, M. Adv. Funct. Mater. 2020, 30, 1909159. doi: 10.1002/adfm.201909159  doi: 10.1002/adfm.201909159

    70. [70]

      Jiang, G.; Jiang, N.; Zheng, N.; Chen, X.; Mao, J.; Ding; G.; Li, Y. Energy Stor. Mater. 2019, 23, 181. doi: 10.1016/j.ensm.2019.05.014  doi: 10.1016/j.ensm.2019.05.014

    71. [71]

      Fan, L.; Guo, Z.; Zhang, Y.; Wu, X.; Zhao, C.; Sun, X.; Zhang, N. J. Mater. Chem. A 2020, 8, 251. doi: 10.1039/c9ta10405d  doi: 10.1039/c9ta10405d

    72. [72]

      Qian, J.; Li, Y.; Zhang, M.; Luo, R.; Wang, F.; Ye, Y.; Chen, R. Nano Energy 2019, 60, 866. doi: 10.1016/j.nanoen.2019.04.030  doi: 10.1016/j.nanoen.2019.04.030

    73. [73]

      Shi. W. Y.; Shen, J. J.; Shen, L.; Hu, W.; Xu, P. C.; Baucom, J. A.; Ma, S. X.; Yang, S. X.; Chen, X. M.; Lu, Y. F. Nano Lett. 2020, 20, 5435. doi: 10.1021/acs.nanolett.0c01910  doi: 10.1021/acs.nanolett.0c01910

    74. [74]

      Li, B.; Wen, H. M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Adv. Mater. 2016, 28, 8819. doi: 10.1002/adma.201601133  doi: 10.1002/adma.201601133

    75. [75]

      Chu, F.; Hu, J.; Wu, C.; Yao, Z.; Tian, J.; Li, Z.; Li, C. ACS Appl. Mater. Interfaces 2019, 11, 3869. doi: 10.1021/acsami.8b17924  doi: 10.1021/acsami.8b17924

    76. [76]

      Fu, X. T.; Yu, D. N.; Zhou, J. W.; Li, S. W.; Gao, X.; Han, Y. Z.; Qi, P. F.; Feng, X.; Wang, B. CrystEngComm 2016, 18, 4236. doi: 10.1039/C6CE00171H  doi: 10.1039/C6CE00171H

    77. [77]

      Angulakshmi, N.; Zhou, Y.; Suriyakumar, S.; Dhanalakshmi, R. B.; Satishrajan, M.; Alwarappan, S.; Stephan, A. M. ACS Omega 2020, 5, 7885. doi: 10.1021/acsomega.9b04133  doi: 10.1021/acsomega.9b04133

    78. [78]

      Yuan, C. F.; Li, J.; Han, P. F. Lai, Y. Q.; Zhang, Z. A.; Liu, J. J. Power Sources 2013, 240, 653. doi: 10.1016/j.jpowsour.2013.05.030  doi: 10.1016/j.jpowsour.2013.05.030

    79. [79]

      Angulakshmi, N.; Kumar, R. S.; Kulandainathan, M. A.; Stephan, A. M. J. Phys. Chem. C 2014, 118, 24240. doi: 10.1021/jp506464v  doi: 10.1021/jp506464v

    80. [80]

      Zhu, F.; Bao, H.; Wu, X.; Tao, Y.; Qin, C.; Su, Z.; Kang, Z. ACS Appl. Mater. Interfaces 2019, 11, 43206. doi: 10.1021/acsami.9b15374  doi: 10.1021/acsami.9b15374

    81. [81]

      Zhang, Z.; Huang, Y.; Gao, H.; Hang, J.; Li, C.; Liu, P. J. Membr. Sci. 2020, 598, 11780. doi: 10.1016/j.memsci.2019.117800  doi: 10.1016/j.memsci.2019.117800

    82. [82]

      Wu, J.; Guo, X. J. Mater. Chem. A 2019, 7, 2653. doi: 10.1039/C8TA10124H  doi: 10.1039/C8TA10124H

    83. [83]

      Yu, Z.; Mackanic, D. G.; Michaels, W.; Lee, M.; Pei, A.; Feng, D.; Bao, Z. Joule 2019, 3, 2761. doi: 10.1016/j.joule.2019.07.025  doi: 10.1016/j.joule.2019.07.025

    84. [84]

      Zhang, S. S. J. Power Sources 2007, 164, 351. doi: 10.1016/j.jpowsour.2006.10.065  doi: 10.1016/j.jpowsour.2006.10.065

    85. [85]

      Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou. H. Nat. Energy 2016, 1, 16094. doi: 10.1038/nenergy.2016.94  doi: 10.1038/nenergy.2016.94

    86. [86]

      Zang, Y.; Pei, F.; Huang, J.; Fu, Z.; Xu, G.; Fang, X. Adv. Energy Mater. 2018, 8, 1802052. doi: 10.1002/aenm.201802052  doi: 10.1002/aenm.201802052

    87. [87]

      Han, J. G.; Kim, K.; Lee, Y.; Choi, N. S. Adv. Mater. 2019, 31, 1804822. doi: 10.1002/adma.201804822  doi: 10.1002/adma.201804822

    88. [88]

      Chang, Z.; Qiao, Y.; Deng, H.; Yang, H. J.; He, P.; Zhou, H. S. Energy Environ. Sci. 2020, 13, 1197. doi: 10.1039/D0EE00060D  doi: 10.1039/D0EE00060D

    89. [89]

      Li, Q.; Wang, Y.; Wang, X.; Sun, X. R.; Zhang, J. N.; Yu, X. Q.; Li, H. ACS Appl. Mater. Interfaces 2020, 12, 2319. doi: 10.1021/acsami.9b16727  doi: 10.1021/acsami.9b16727

    90. [90]

      Xie, Y.; Chen, S.; Lin, Z.; Yang, W.; Zou, H. B.; Sun, R. W. Y. Electrochem. Commun. 2019, 99, 65. doi: 10.1016/j.elecom.2019.01.005  doi: 10.1016/j.elecom.2019.01.005

    91. [91]

      Lin, J.; Zeng, C.; Chen, Y.; Lin, C.; Xu, C.; Su, C. J. Mater. Chem. A 2020, 8, 6607. doi: 10.1039/D0TA00679C  doi: 10.1039/D0TA00679C

    92. [92]

      Zhong, Y. J.; Xu, X. M.; Liu, Y.; Wang, W.; Shao, Z. P. Polyhedron 2018, 155, 464. doi: 10.1016/j.poly.2018.08.067  doi: 10.1016/j.poly.2018.08.067

    93. [93]

      Manthiram, A.; Fu Y.; Chung, S. H.; Zu, C. X.; Sun, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v  doi: 10.1021/cr500062v

    94. [94]

      Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969. doi: 10.1149/1.1806394  doi: 10.1149/1.1806394

    95. [95]

      Zhou, J.; Li, R.; Fan, X.; Chen, Y.; Han, R.; Li, W.; Li, X. Energy Environ. Sci. 2014, 7, 8. doi: 10.1039/c4ee01382d  doi: 10.1039/c4ee01382d

    96. [96]

      Liu, G.; Feng, K.; Cui, H.; Li, J.; Liu, Y.; Wang, M. Chem. Eng. J. 2020, 381, 122652. doi: 10.1016/j.cej.2019.122652  doi: 10.1016/j.cej.2019.122652

    97. [97]

      Walle, M. D.; Zhang, M.; Zeng, K.; Li, Y.; Liu, Y. N. Appl. Surf. Sci. 2019, 497, 143773. doi: 10.1016/j.apsusc.2019.143773  doi: 10.1016/j.apsusc.2019.143773

    98. [98]

      Han, J.; Gao, S.; Wang, R.; Wang, K.; Jiang, M.; Yan, J.; Jin, Q.; Jiang, K. J. Mater. Chem. A 2020, 8, 6661. doi: 10.1039/D0TA00533A  doi: 10.1039/D0TA00533A

    99. [99]

      Xi, K.; Cao, S.; Peng, X.; Ducati, C.; Kumar, R. V.; Cheetham, A. K. Electrochem. Commun. 2013, 49, 2192. doi: 10.1039/c3cc38009b  doi: 10.1039/c3cc38009b

    100. [100]

      Li, Y.; Lin, S.; Wang, D.; Gao, T.; Song, J.; Zhou, P.; Guo, S. Adv. Mater. 2020, 32, 1906722. doi: 10.1002/adma.201906722  doi: 10.1002/adma.201906722

    101. [101]

      Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1. doi: 10.1149/1.1836378  doi: 10.1149/1.1836378

    102. [102]

      Kumar, J.; Kumar, B. J. Power Sources 2009, 194, 1113. doi: 10.1016/j.jpowsour.2009.06.020  doi: 10.1016/j.jpowsour.2009.06.020

    103. [103]

      Cai, C. X.; Xue, K. H.; Xu, X. Y.; Luo, Q. H. J. Appl. Electrochem. 1997, 27, 793. doi: 10.1023/A:1018416610935  doi: 10.1023/A:1018416610935

    104. [104]

      Mukerjee, S.; Srinivasan, S. J. Electroanal. Chem. 1993, 357, 201.  doi: 10.1016/0022-0728(93)80380-Z

    105. [105]

      Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. J. Electrochem. Soc. 1999, 146, 3750. doi: 10.1149/1.1392544  doi: 10.1149/1.1392544

    106. [106]

      Toda, T.; Igarashi, H.; Watanabe, M. J. Electroanal. Chem. 1999, 460, 258. doi: 10.1016/S0022-0728(98)00361-1  doi: 10.1016/S0022-0728(98)00361-1

    107. [107]

      Streinz, C. C.; Moran, P. J.; Wagner, J. W.; Kruger, J. J. Electrochem. Soc. 1994, 141, 1132. doi: 10.1149/1.2054885  doi: 10.1149/1.2054885

    108. [108]

      Pyun, S. I.; Lee, S. B. J. Power Sources 1999, 77, 170. doi: 10.1016/S0378-7753(98)00191-8  doi: 10.1016/S0378-7753(98)00191-8

    109. [109]

      Jiang, Z.; Sun, H.; Shi, W.; Zhou, T.; Hu, J.; Cheng, J.; Sun, S. Nano Res. 2019, 12, 1555. doi: 10.1007/s12274-019-2388-6  doi: 10.1007/s12274-019-2388-6

    110. [110]

      Gong, H.; Wang, T.; Xue, H.; Lu, X.; Xia, W.; Song, L.; Ma, R. Nano Res.2019, 12, 2528. doi: 10.1007/s12274-019-2480-y  doi: 10.1007/s12274-019-2480-y

    111. [111]

      Yuan, M.; Wang, R.; Fu, W.; Lin, L.; Sun, Z.; Long, X.; Ma, S. ACS Appl. Mater. Interfaces 2019, 11, 11403. doi: 10.1021/acsami.8b21808  doi: 10.1021/acsami.8b21808

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    15. [15]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(72)
  • Abstract views(2136)
  • HTML views(652)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return