Citation: Gao Xueqing, Yang Shujiao, Zhang Wei, Cao Rui. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200703. doi: 10.3866/PKU.WHXB202007031 shu

Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation

  • Corresponding author: Zhang Wei, zw@snnu.edu.cn Cao Rui, ruicao@ruc.edu.cn
  • Received Date: 14 July 2020
    Revised Date: 3 August 2020
    Accepted Date: 3 August 2020
    Available Online: 6 August 2020

    Fund Project: the Starting Research Funds of Shaanxi Normal University 21773146The project was supported by the Starting Research Funds of Shaanxi Normal University, and the National Natural Science Foundation of China (21773146, 21872092)the National Natural Science Foundation of China 21872092

  • Asymmetric manganese cluster, the active center of photosystem II (PSII) in nature, is hydrogen-bonded to surrounding amino acid residues and water molecules. This phenomenon is of great inspiration significance for developing and studying artificial Mn-based oxygen evolution reaction (OER) catalysts. Herein, we prepared manganese phosphate nanosheets through intercalation of ethylenediamine ions and water molecules ((EDAI)(H2O)MnPi) using a simple co-precipitation method. (EDAI)(H2O)MnPi is also hydrogen-bonded to interlayer ethylenediamine ions and water molecules, forming a hydrogen-bonding network. The morphology of the (EDAI)(H2O)MnPi sample was characterized by scanning electron microscopy (SEM) and transmission electron microscopy. The thickness of (EDAI)(H2O)MnPi was characterized by atomic force microscopy. The composition and structure of (EDAI)(H2O)MnPi were characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy. For control studies, manganese phosphate (EDAI)MnPi and (H2O)MnPi samples were also synthesized. The structure and morphology of (EDAI)MnPi and (H2O)MnPi samples were characterized by XRD and SEM. The difference between (EDAI)(H2O)MnPi, (EDAI)MnPi, and (H2O)MnPi were further characterized by thermal gravimetric analysis and derivative thermogravimetric analysis. Electrocatalytic properties of the (EDAI)(H2O)MnPi, (EDAI)MnPi, and (H2O)MnPi for OER were studied in 0.05 mol∙L−1 pH = 7 phosphate buffered saline solution, through linear sweep voltammetry, electrochemical impedance spectroscopy, and controlled potential electrolysis (CPE) test. The electrochemical surface area (ECSA) analyses of (EDAI)(H2O)MnPi, (EDAI)MnPi, and (H2O)MnPi samples were recorded by charging currents in the non-Faradaic potential region at different scan rates. Considering the different ECSAs of different materials, the water oxidation activities of three materials were normalized by ECSA. Compared with counterparts of (EDAI)MnPi (610 mV) and (H2O)MnPi (580 mV), manganese phosphate nanosheets (EDAI)(H2O)MnPi exhibited a lower overpotential of 520 mV when driving a current density of 1 mA∙cm−2 in neutral conditions. The CPE experiment revealed that (EDAI)(H2O)MnPi remained active for at least 10 h. Manganese phosphate nanosheets containing a rich, extensive, and continuous hydrogen bond network exhibited improved OER performance in neutral conditions. The hydrogen-bonding network in manganese phosphate nanosheets has similar functions to the hydrogen-bonding network in PSII, which could accelerate the transfer rate of protons and facilitate electrocatalytic water oxidation. This study may provide guidance for the design of water oxidation catalysts with rich hydrogen bond network.
  • 加载中
    1. [1]

      Dogutan, D. K.; Nocera, D. G. Acc. Chem. Res. 2019, 52, 3143. doi: 10.1021/acs.accounts.9b00380  doi: 10.1021/acs.accounts.9b00380

    2. [2]

      Gao, X.; Chen, Y.; Sun, T.; Huang, J.; Zhang, W.; Wang, Q.; Cao, R. Energy Environ. Sci. 2020, 13, 174. doi: 10.1039/c9ee02380a  doi: 10.1039/c9ee02380a

    3. [3]

      Li, P.; Zhao, R.; Chen, H.; Wang, H.; Wei, P.; Huang, H.; Liu, Q.; Li, T.; Shi, X.; Zhang, Y.; et al. Small 2019, 15, 1805103. doi: 10.1002/smll.201805103  doi: 10.1002/smll.201805103

    4. [4]

      Odella, E.; Mora, S. J.; Wadsworth, B. L.; Goings, J. J.; Gervaldo, M. A.; Sereno, L. E.; Groy, T. L.; Gust, D.; Moore, T. A.; Moore, G. F.; et al. Chem. Sci. 2020, 11, 3820. doi: 10.1039/c9sc06010c  doi: 10.1039/c9sc06010c

    5. [5]

      Devi, T.; Lee, Y. -M.; Nam, W.; Fukuzumi, S. Coord. Chem. Rev. 2020, 410, 213219. doi: 10.1016/j.ccr.2020.213219  doi: 10.1016/j.ccr.2020.213219

    6. [6]

      Siegbahn, P. E. M. Acc. Chem. Res. 2009, 42, 1871. doi: 10.1021/ar900117k  doi: 10.1021/ar900117k

    7. [7]

      Harriman, A. Eur. J. Inorg. Chem. 2014, 573. doi: 10.1002/ejic.201301540  doi: 10.1002/ejic.201301540

    8. [8]

      Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Chem. Soc. Rev. 2020, 49, 2215. doi: 10.1039/c9cs00869a  doi: 10.1039/c9cs00869a

    9. [9]

      Ye, S.; Ding, C.; Liu, M.; Wang, A.; Huang, Q.; Li, C. Adv. Mater. 2019, 31, 1902069. doi: 10.1002/adma.201902069  doi: 10.1002/adma.201902069

    10. [10]

      Fukuzumi, S.; Lee, Y.-M.; Nam, W. Dalton Trans. 2019, 48, 779. doi: 10.1039/c8dt04341h  doi: 10.1039/c8dt04341h

    11. [11]

      Mavrokefalos, C. K.; Patzke, G. R. Inorganics 2019, 7, 29. doi: 10.3390/inorganics7030029  doi: 10.3390/inorganics7030029

    12. [12]

      Sun, W.; Lin, J.; Liang, X.; Yang, J.; Ma, B.; Ding, Y. Acta Phys. -Chim. Sin. 2020, 36, 1905025.  doi: 10.3866/PKU.WHXB201905025

    13. [13]

      Shaffer, D. W.; Xie, Y.; Concepcion, J. J. Chem. Soc. Rev. 2017, 46, 6170. doi: 10.1039/c7cs00542c  doi: 10.1039/c7cs00542c

    14. [14]

      Shen, J. R. Annu. Rev. Plant Physiol. 2015, 66, 23. doi: 10.1146/annurev-arplant-050312-120129  doi: 10.1146/annurev-arplant-050312-120129

    15. [15]

      Yano, J.; Yachandra, V. Chem. Rev. 2014, 114, 4175. doi: 10.1021/cr4004874  doi: 10.1021/cr4004874

    16. [16]

      Lubitz, W.; Chrysina, M.; Cox, N. Photosynth. Res. 2019, 142, 105. doi: 10.1007/s11120-019-00648-3  doi: 10.1007/s11120-019-00648-3

    17. [17]

      Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Chem. Rev. 2018, 118, 5201. doi: 10.1021/acs.chemrev.7b00286  doi: 10.1021/acs.chemrev.7b00286

    18. [18]

      Li, Z.; Wang, W.; Ding, C.; Wang, Z.; Liao, S.; Li, C. Energy Environ. Sci. 2017, 10, 765. doi: 10.1039/c6ee03401b  doi: 10.1039/c6ee03401b

    19. [19]

      Zaharieva, I.; Najafpour, M. M.; Wiechen, M.; Haumann, M.; Kurz, P.; Dau, H. Energy Environ. Sci. 2011, 4, 2400. doi: 10.1039/c0ee00815j  doi: 10.1039/c0ee00815j

    20. [20]

      Najafpour, M. M.; Zarei Ghobadi, M.; Sarvi, B.; Madadkhani, S.; Jafarian Sedigh, D.; Rafighi, P.; Tavahodi, M.; Shen, J. -R.; Allakhverdiev, S. I. Int. J. Hydrog. Energy 2016, 41, 5504. doi: 10.1016/j.ijhydene.2016.01.131  doi: 10.1016/j.ijhydene.2016.01.131

    21. [21]

      McCool, N. S.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. J. Am. Chem. Soc. 2011, 133, 11446. doi: 10.1021/ja203877y  doi: 10.1021/ja203877y

    22. [22]

      Ye, S.; Ding, C.; Chen, R.; Fan, F.; Fu, P.; Yin, H.; Wang, X.; Wang, Z.; Du, P.; Li, C. J. Am. Chem. Soc. 2018, 140, 3250. doi: 10.1021/jacs.7b10662  doi: 10.1021/jacs.7b10662

    23. [23]

      Zhang, T.; Wang, C.; Liu, S.; Wang, J. L.; Lin, W. J. Am. Chem. Soc. 2014, 136, 273. doi: 10.1021/ja409267p  doi: 10.1021/ja409267p

    24. [24]

      Hou, H. J. M. Materials 2011, 4, 1693. doi: 10.3390/ma4101693  doi: 10.3390/ma4101693

    25. [25]

      Yamaguchi, A.; Inuzuka, R.; Takashima, T.; Hayashi, T.; Hashimoto, K.; Nakamura, R. Nat. Commun. 2014, 5, 4256. doi: 10.1038/ncomms5256  doi: 10.1038/ncomms5256

    26. [26]

      Kurz, P. Top. Curr. Chem. 2016, 371, 49. doi: 10.1007/128_2015_634  doi: 10.1007/128_2015_634

    27. [27]

      Najafpour, M. M.; Ghobadi, M. Z.; Haghighi, B.; Eaton-Rye, J. J.; Tomo, T.; Shen, J. R.; Allakhverdiev, S. I. Biochemistry-Moscow 2014, 79, 324. doi: 10.1134/s0006297914040026  doi: 10.1134/s0006297914040026

    28. [28]

      Jin, K.; Park, J.; Lee, J.; Yang, K. D.; Pradhan, G. K.; Sim, U.; Jeong, D.; Jang, H. L.; Park, S.; Kim, D.; et al. J. Am. Chem. Soc. 2014, 136, 7435. doi: 10.1021/ja5026529  doi: 10.1021/ja5026529

    29. [29]

      Najafpour, M. M.; Renger, G.; Holynska, M.; Moghaddam, A. N.; Aro, E. -M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J. J.; Shen, J. -R.; Allakhverdiev, S. I. Chem. Rev. 2016, 116, 2886. doi: 10.1021/acs.chemrev.5b00340  doi: 10.1021/acs.chemrev.5b00340

    30. [30]

      Najafpour, M. M.; Zaharieva, I.; Zand, Z.; Hosseini, S. M.; Kouzmanova, M.; Holynska, M.; Tranca, I.; Larkum, A. W.; Shen, J. -R.; Allakhverdiev, S. I. Coord. Chem. Rev. 2020, 409, 213183. doi: 10.1016/j.ccr.2020.213183  doi: 10.1016/j.ccr.2020.213183

    31. [31]

      Dau, H.; Zaharieva, I.; Haumann, M. Curr. Opin. Chem. Biol. 2012, 16, 3. doi: 10.1016/j.cbpa.2012.02.011  doi: 10.1016/j.cbpa.2012.02.011

    32. [32]

      Singh, B.; Indra, A. Inorg. Chim. Acta 2020, 506, 119440. doi: 10.1016/j.ica.2020.119440  doi: 10.1016/j.ica.2020.119440

    33. [33]

      Xiao, Y.; Zhu, Q.; Yang, Y.; Wang, W.; Kuang, T.; Shen, J. -R.; Han, G. Photosynth. Res. 2020, doi: 10.1007/s11120-020-00753-8  doi: 10.1007/s11120-020-00753-8

    34. [34]

      Sugiura, M.; Taniguchi, T.; Tango, N.; Nakamura, M.; Selles, J.; Boussac, A. Physiol. Plant. 2020, doi: 10.1111/ppl.13115  doi: 10.1111/ppl.13115

    35. [35]

      Lee, Y. V.; Tian, B. Nano Lett. 2019, 19, 2189. doi: 10.1021/acs.nanolett.9b00388  doi: 10.1021/acs.nanolett.9b00388

    36. [36]

      Petrie, S.; Terrett, R.; Stranger, R.; Pace, R. J. ChemPhysChem 2020, 21, 785. doi: 10.1002/cphc.201901106  doi: 10.1002/cphc.201901106

    37. [37]

      Mueh, F.; Zouni, A. Protein Sci. 2020, 29, 1090. doi: 10.1002/pro.3841  doi: 10.1002/pro.3841

    38. [38]

      Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Nature 2011, 473, 55. doi: 10.1038/nature09913  doi: 10.1038/nature09913

    39. [39]

      Vogt, L.; Vinyard, D. J.; Khan, S.; Brudvig, G. W. Curr. Opin. Chem. Biol. 2015, 25, 152. doi: 10.1016/j.cbpa.2014.12.040  doi: 10.1016/j.cbpa.2014.12.040

    40. [40]

      Guerra, F.; Siemers, M.; Mielack, C.; Bondar, A. -N. J. Phys. Chem. B 2018, 122, 4625. doi: 10.1021/acs.jpcb.8b00649  doi: 10.1021/acs.jpcb.8b00649

    41. [41]

      Isobe, H.; Shoji, M.; Shen, J. -R.; Yamaguchi, K. J. Phys. Chem. B 2015, 119, 13922. doi: 10.1021/acs.jpcb.5b05740  doi: 10.1021/acs.jpcb.5b05740

    42. [42]

      Shoji, M.; Isobe, H.; Yamanaka, S.; Umena, Y.; Kawakami, K.; Kamiya, N.; Shen, J. -R.; Nakajima, T.; Yamaguchi, K. Mol. Phys. 2015, 113, 359. doi: 10.1080/00268976.2014.960021  doi: 10.1080/00268976.2014.960021

    43. [43]

      Li, Y.; Yao, R.; Chen, Y.; Xu, B.; Chen, C.; Zhang, C. Catalysts 2020, 10, 185. doi: 10.3390/catal10020185  doi: 10.3390/catal10020185

    44. [44]

      Dismukes, G. C.; Brimblecombe, R.; Felton, G. A. N.; Pryadun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009, 42, 1935. doi: 10.1021/ar900249x  doi: 10.1021/ar900249x

    45. [45]

      Escobal, J.; Pizarro, J. L.; Mesa, J. L.; Lezama, L.; Olazcuaga, R.; Arriortua, M. I.; Rojo, T. Chem. Mater. 2000, 12, 376. doi: 10.1021/cm9910815  doi: 10.1021/cm9910815

    46. [46]

      Zhao, H. R.; Xue, C.; Li, C. P.; Zhang, K. M.; Luo, H. B.; Liu, S. X.; Ren, X. M. Inorg. Chem. 2016, 55, 8971. doi: 10.1021/acs.inorgchem.6b01438  doi: 10.1021/acs.inorgchem.6b01438

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    5. [5]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    6. [6]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    7. [7]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    10. [10]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    11. [11]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    12. [12]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    13. [13]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    16. [16]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    17. [17]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    18. [18]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    19. [19]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(4)
  • Abstract views(364)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return