Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection
- Corresponding author: Chen Yuetian, yuetian.chen@sjtu.edu.cn Zhao Yixin, yixin.zhao@sjtu.edu.cn
Citation: Wang Tian, Zhang Taiyang, Chen Yuetian, Zhao Yixin. Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200702. doi: 10.3866/PKU.WHXB202007021
Jena, A. K.; Kulkarni, A.; Miyasaka, T. Chem. Rev. 2019, 119, 3036. doi: 10.1021/acs.chemrev.8b00539
doi: 10.1021/acs.chemrev.8b00539
Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. W.; Sargent, E. H. Chem. Rev. 2019, 119, 7444. doi: 10.1021/acs.chemrev.9b00107
doi: 10.1021/acs.chemrev.9b00107
Sutherland, B. R.; Sargent, E. H. Nat. Photonics 2016, 10, 295. doi: 10.1038/Nphoton.2016.62
doi: 10.1038/Nphoton.2016.62
Fu, Y.; Zhu, H.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Nat. Rev. Mater. 2019, 4, 169. doi: 10.1038/s41578-019-0080-9
doi: 10.1038/s41578-019-0080-9
Huang, Y.; Sun, Q. D.; Xu, W., He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.
doi: 10.3866/PKU.WHXB201705042
Xiao, J.; Zhang, H. L. Acta Phys. -Chim. Sin. 2016, 32, 1894.
doi: 10.3866/PKU.WHXB201605034
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014
doi: 10.1038/nmat4014
Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Grätzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Nat. Photonics 2014, 8, 128. doi: 10.1038/nphoton.2013.341
doi: 10.1038/nphoton.2013.341
Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167
doi: 10.1126/science.1243167
Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. Nat. Nanotech. 2014, 9, 687. doi: 10.1038/nnano.2014.149
doi: 10.1038/nnano.2014.149
Hoye, R. L.; Chua, M. R.; Musselman, K. P.; Li, G.; Lai, M. L.; Tan, Z. K.; Greenham, N. C.; MacManus-Driscoll, J. L.; Friend, R. H.; Credgington, D. Adv. Mater. 2015, 27, 1414. doi: 10.1002/adma.201405044
doi: 10.1002/adma.201405044
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272
doi: 10.1126/science.aaa9272
Wang, X.; Wang, Y.; Zhang, T.; Liu, X.; Zhao, Y. Angew. Chem. Int. Ed. 2019, 132, 1485. doi: 10.1002/anie.201911518
doi: 10.1002/anie.201911518
Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X., et al. Science 2019, 365, 591. doi: 10.1126/science.aav8680
doi: 10.1126/science.aav8680
Zhao, Y.; Zhu, K. Chem. Soc. Rev. 2016, 45, 655. doi: 10.1039/c4cs00458b
doi: 10.1039/c4cs00458b
Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A 2015, 3, 8970. doi: 10.1039/c4ta04994b
doi: 10.1039/c4ta04994b
Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4, 2885. doi: 10.1038/ncomms3885
doi: 10.1038/ncomms3885
Ge, Y.; Mu, X. L.; Lu, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039.
doi: 10.3866/PKU.WHXB201905039
Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L. ACS Nano 2015, 9, 1955. doi: 10.1021/nn506864k
doi: 10.1021/nn506864k
Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Adv. Funct. Mater. 2014, 24, 3250. doi: 10.1002/adfm.201304022
doi: 10.1002/adfm.201304022
Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. J. Am. Chem. Soc. 2015, 137, 1530. doi: 10.1021/ja511132a
doi: 10.1021/ja511132a
Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. J. Mater. Chem. A 2014, 2, 705. doi: 10.1039/C3TA13606J
doi: 10.1039/C3TA13606J
Kim, I. S.; Martinson, A. B. F. J. Mater. Chem. A 2015, 3, 20092. doi: 10.1039/c5ta07186k
doi: 10.1039/c5ta07186k
Tiep, N. H.; Ku, Z.; Fan, H. J. Adv. Energy Mater. 2016, 6, 1501420. doi: 10.1002/aenm.201501420
doi: 10.1002/aenm.201501420
Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584. doi: 10.1021/nl500390f
doi: 10.1021/nl500390f
Kato, Y.; Ono, L. K.; Lee, M. V.; Wang, S.; Raga, S. R.; Qi, Y. Adv. Mater. Interfaces 2015, 2, 1500195. doi: 10.1002/admi.201500195
doi: 10.1002/admi.201500195
Kim, A.; Lee, H.; Kwon, H. C.; Jung, H. S.; Park, N. G.; Jeong, S.; Moon, J. Nanoscale 2016, 8, 6308. doi: 10.1039/C5NR04585A
doi: 10.1039/C5NR04585A
Clever, H. L.; Johnston, F. J. J. Phys. Chem.Ref. Data 1980, 9, 751. doi: 10.1063/1.555628
doi: 10.1063/1.555628
Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J. Adv. Energy Mater. 2015, 5, 1500963. doi: 10.1002/aenm.201500963
doi: 10.1002/aenm.201500963
Si, H.; Liao, Q.; Zhang, Z.; Li, Y.; Yang, X.; Zhang, G.; Kang, Z.; Zhang, Y. Nano Energy 2016, 22, 223. doi: 10.1016/j.nanoen.2016.02.025
doi: 10.1016/j.nanoen.2016.02.025
Choudhury, D.; Rajaraman, G.; Sarkar, S. K. Nanoscale 2016, 8, 7459. doi: 10.1039/C5NR06974B
doi: 10.1039/C5NR06974B
George, S. M. Chem. Rev. 2010, 110, 111. doi: 10.1021/cr900056b
doi: 10.1021/cr900056b
Dong, X.; Hu, H.; Lin, B.; Ding, J.; Yuan, N. Chem. Commun 2014, 50, 14405. doi: 10.1039/c4cc04685d
doi: 10.1039/c4cc04685d
Wang, L.; Travis, J. J.; Cavanagh, A. S.; Liu, X.; Koenig, S. P.; Huang, P. Y.; George, S. M.; Bunch, J. S. Nano Lett. 2012, 12, 3706. doi: 10.1021/nl3014956
doi: 10.1021/nl3014956
Prasittichai, C.; Hupp, J. T. J. Phys. Chem. Lett. 2010, 1, 1611. doi: 10.1021/jz100361f
doi: 10.1021/jz100361f
Antila, L. J.; Heikkilä, M. J.; Aumanen, V.; Kemell, M.; Myllyperkiö, P.; Leskelä, M.; Korppi-Tommola, J. E. J. Phys. Chem. Lett. 2009, 1, 536. doi: 10.1021/jz9003075
doi: 10.1021/jz9003075
Dong, X.; Fang, X.; Lv, M.; Lin, B.; Zhang, S.; Ding, J.; Yuan, N. J. Mater. Chem. A 2015, 3, 5360. doi: 10.1039/c4ta06128d
doi: 10.1039/c4ta06128d
Koushik, D.; Verhees, W. J. H.; Kuang, Y.; Veenstra, S.; Zhang, D.; Verheijen, M. A.; Creatore, M.; Schropp, R. E. I. Energy Environ. Sci. 2017, 10, 91. doi: 10.1039/c6ee02687g
doi: 10.1039/c6ee02687g
Kot, M.; Das, C.; Wang, Z.; Henkel, K.; Rouissi, Z.; Wojciechowski, K.; Snaith, H. J.; Schmeisser, D. ChemSusChem 2016, 9, 3401. doi: 10.1002/cssc.201601186
doi: 10.1002/cssc.201601186
Miikkulainen, V.; Leskelä, M.; Ritala, M.; Puurunen, R. L. J. Appl. Phys. 2013, 113, 2. doi: 10.1063/1.4757907
doi: 10.1063/1.4757907
Kim, J.; Kwon, D.; Chakrabarti, K.; Lee, C.; Oh, K.; Lee, J. J. Appl. Phys. 2002, 92, 6739. doi: 10.1063/1.1515951
doi: 10.1063/1.1515951
Higashi, G.; Fleming, C. Appl. Phys. Lett. 1989, 55, 1963. doi: 10.1063/1.102337
doi: 10.1063/1.102337
Raiford, J. A.; Oyakhire, S. T.; Bent, S. F. Energy Environ. Sci. 2020, 13, 1997. doi: 10.1039/d0ee00385a
doi: 10.1039/d0ee00385a
Koushik, D.; Hazendonk, L.; Zardetto, V.; Vandalon, V.; Verheijen, M. A.; Kessels, W. M. M.; Creatore, M. ACS Appl. Mater. Interfaces 2019, 11, 5526. doi: 10.1021/acsami.8b18307
doi: 10.1021/acsami.8b18307
Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/C5EE03874J
doi: 10.1039/C5EE03874J
Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. Angew. Chem. Int. Ed. 2014, 126, 11414. doi: 10.1002/anie.201406466
doi: 10.1002/anie.201406466
Li, X.; Dar, M. I.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H.; Grätzel, M. Nat. Chem. 2015, 7, 703. doi: 10.1038/nchem.2324
doi: 10.1038/nchem.2324
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764. doi: 10.1021/nl400349b
doi: 10.1021/nl400349b
Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Energy Environ. Sci. 2013, 6, 1739. doi: 10.1039/C3EE40810H
doi: 10.1039/C3EE40810H
Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452. doi: 10.1021/acs.jpclett.5b00968
doi: 10.1021/acs.jpclett.5b00968
Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2015, 7, 167. doi: 10.1021/acs.jpclett.5b02597
doi: 10.1021/acs.jpclett.5b02597
Koh, T. M.; Shanmugam, V.; Schlipf, J.; Oesinghaus, L.; Müller-Buschbaum, P.; Ramakrishnan, N.; Swamy, V.; Mathews, N.; Boix, P. P.; Mhaisalkar, S. G. Adv. Mater. 2016, 28, 3653. doi: 10.1002/adma.201506141
doi: 10.1002/adma.201506141
Tsai, H.; Nie, W.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. Nature 2016, 536, 312. doi: 10.1038/nature18306
doi: 10.1038/nature18306
Dou, L. W., A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T.; Ginsberg, N. S.; et al. Science 2015, 349, 1518. doi: 10.1126/science.aac7660
doi: 10.1126/science.aac7660
Yao, K.; Wang, X.; Xu, Y. X.; Li, F. Nano Energy 2015, 18, 165. doi: 10.1016/j.nanoen.2015.10.010
doi: 10.1016/j.nanoen.2015.10.010
Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q. Nat. Commun. 2016, 7, 10228. doi: 10.1038/ncomms10228
doi: 10.1038/ncomms10228
Zhang, T.; Xie, L.; Chen, L.; Guo, N.; Li, G.; Tian, Z.; Mao, B.; Zhao, Y. Adv. Funct. Mater. 2017, 27, 1603568. doi: 10.1002/adfm.201603568
doi: 10.1002/adfm.201603568
Mei, A.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y.; et al. Science 2014, 345, 295. doi: 10.1126/science.1254763
doi: 10.1126/science.1254763
Zhao, Y.; Zhu, K. J. Am. Chem. Soc. 2014, 136, 12241. doi: 10.1021/ja5071398
doi: 10.1021/ja5071398
Zhang, T.; Li, G.; Xu, F.; Wang, Y.; Guo, N.; Qian, X.; Zhao, Y. Chem. Commun 2016, 52, 11080. doi: 10.1039/c6cc05794b
doi: 10.1039/c6cc05794b
Yan, J.; Ke, X.; Chen, Y.; Zhang, A.; Zhang, B. Appl. Surf. Sci. 2015, 351, 1191. doi: 10.1016/j.apsusc.2015.06.025
doi: 10.1016/j.apsusc.2015.06.025
Murali, B.; Saidaminov, M. I.; Abdelhady, A. L.; Peng, W.; Liu, J.; Pan, J.; Bakr, O. M.; Mohammed, O. F. J. Mater. Chem. C 2016, 4, 2545. doi: 10.1039/c6tc00610h
doi: 10.1039/c6tc00610h
Heo, J. H.; Song, D. H.; Im, S. H. Adv. Mater. 2014, 26, 8179. doi: 10.1002/adma.201403140
doi: 10.1002/adma.201403140
Li, X.; Dar, M. I.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H.; Grätzel, M. Nat. Chem. 2015, 7, 703. doi: 10.1038/nchem.2324
doi: 10.1038/nchem.2324
Bi, C.; Shao, Y.; Yuan, Y.; Xiao, Z.; Wang, C.; Gao, Y.; Huang, J. J. Mater. Chem. A 2014, 2, 18508. doi: 10.1039/c4ta04007d
doi: 10.1039/c4ta04007d
Yu, J. C.; Kim, D. W.; Kim da, B.; Jung, E. D.; Park, J. H.; Lee, A. Y.; Lee, B. R.; Di Nuzzo, D.; Friend, R. H.; Song, M. H. Adv Mater 2016, 28, 6906. doi: 10.1002/adma.201601105
doi: 10.1002/adma.201601105
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369