Citation: Wang Tian, Zhang Taiyang, Chen Yuetian, Zhao Yixin. Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200702. doi: 10.3866/PKU.WHXB202007021 shu

Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection

  • Corresponding author: Chen Yuetian, yuetian.chen@sjtu.edu.cn Zhao Yixin, yixin.zhao@sjtu.edu.cn
  • Received Date: 9 July 2020
    Revised Date: 4 August 2020
    Accepted Date: 5 August 2020
    Available Online: 7 August 2020

    Fund Project: the National Natural Science Foundation of China 21777096the National Natural Science Foundation of China 51861145101The project was supported by the National Natural Science Foundation of China (51861145101, 21777096) and the Shanghai Shuguang Grant, China (17SG11)the Shanghai Shuguang Grant, China 17SG11

  • In recent years, hybrid lead halide perovskites have attracted significant research interest in the optoelectronic fields owing to their exceptional physical and chemical properties. However, their commercialization process is limited largely because of the sensitive nature of perovskite materials towards external stresses, such as heat, UV irradiance, oxygen, and moisture. Among various perovskite-stabilization methods, deposition of a protective layer over the vulnerable perovskite film via simple atomic layer deposition (ALD) technology is of great potential. However, the corrosive effect of H2O or O3 on perovskites, which is used as the oxygen source during ALD process, is one of the main obstacles in the application of regular ALD technology for coating compact and highly conformal layer directly onto the perovskite film. In this study, by introducing bifunctional 5-aminovaleric acid (AVA) crosslinking into the layers of CH3NH3PbBr3 (MAPbBr3) units, we propose a simple yet effective strategy to prevent the degradation of sensitive perovskite structure during the ALD process when H2O is used as the oxygen source. The formed crosslinked 2D/3D structure of AVA(MAPbBr3)2 perovskite film was extremely dense and ultra-smooth compared to the coarse MAPbBr3 film. With the passivation and protection of AVA, the AVA(MAPbBr3)2 perovskite film exhibited high moisture resistance, thereby leading to the successful deposition of dense and conformal Al2O3 protective layer onto the perovskite surface. The deposition of Al2O3 layer with different thicknesses had a negligible effect on the crystalline phase and morphology of AVA(MAPbBr3)2 film, as confirmed by X-ray diffraction, UV-Vis absorption spectroscopy, and scanning electron microscopy characterizations. The steady-state photoluminescence (PL) intensity and time-resolved PL lifetime of AVA(MAPbBr3)2 film was kept almost unchanged before and after the coating of Al2O3 layer, suggesting that the thin Al2O3 layer did not significantly alter the optical properties of the perovskite material, thereby enabling the potential usages in optical and optoelectronic devices. The thermal stability and water resistance ability of Al2O3-coated AVA(MAPbBr3)2 film was proven to have greatly improved in accelerated circumstances. No impurities or decomposition were detected for Al2O3-coated AVA(MAPbBr3)2 film after the long-time annealing at high temperature (150 ℃ for 2 h), whereas the crosslinked 2D/3D structure of bare MAPbBr3 film quickly broke down at the elevated temperature. Intriguingly, the AVA(MAPbBr3)2 film with 15-nm-thick Al2O3 coating layer could endure strong water corrosion for at least 10 min when immersed in water. Overall, the proposed strategy could not only give a good reference for successfully depositing metal oxides onto the perovskite films with preservation of the materials' intrinsic properties, but also provide a method of introducing amino acid to passivate and protect the perovskite materials from H2O corrosion during the ALD process. Therefore, the proposed work has practical potential in improving the device stability against various external stresses under different operating conditions, thereby paving way for various applicational advances.
  • 加载中
    1. [1]

      Jena, A. K.; Kulkarni, A.; Miyasaka, T. Chem. Rev. 2019, 119, 3036. doi: 10.1021/acs.chemrev.8b00539  doi: 10.1021/acs.chemrev.8b00539

    2. [2]

      Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. W.; Sargent, E. H. Chem. Rev. 2019, 119, 7444. doi: 10.1021/acs.chemrev.9b00107  doi: 10.1021/acs.chemrev.9b00107

    3. [3]

      Sutherland, B. R.; Sargent, E. H. Nat. Photonics 2016, 10, 295. doi: 10.1038/Nphoton.2016.62  doi: 10.1038/Nphoton.2016.62

    4. [4]

      Fu, Y.; Zhu, H.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Nat. Rev. Mater. 2019, 4, 169. doi: 10.1038/s41578-019-0080-9  doi: 10.1038/s41578-019-0080-9

    5. [5]

      Huang, Y.; Sun, Q. D.; Xu, W., He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.  doi: 10.3866/PKU.WHXB201705042

    6. [6]

      Xiao, J.; Zhang, H. L. Acta Phys. -Chim. Sin. 2016, 32, 1894.  doi: 10.3866/PKU.WHXB201605034

    7. [7]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    8. [8]

      Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Grätzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Nat. Photonics 2014, 8, 128. doi: 10.1038/nphoton.2013.341  doi: 10.1038/nphoton.2013.341

    9. [9]

      Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167  doi: 10.1126/science.1243167

    10. [10]

      Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. Nat. Nanotech. 2014, 9, 687. doi: 10.1038/nnano.2014.149  doi: 10.1038/nnano.2014.149

    11. [11]

      Hoye, R. L.; Chua, M. R.; Musselman, K. P.; Li, G.; Lai, M. L.; Tan, Z. K.; Greenham, N. C.; MacManus-Driscoll, J. L.; Friend, R. H.; Credgington, D. Adv. Mater. 2015, 27, 1414. doi: 10.1002/adma.201405044  doi: 10.1002/adma.201405044

    12. [12]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272  doi: 10.1126/science.aaa9272

    13. [13]

      Wang, X.; Wang, Y.; Zhang, T.; Liu, X.; Zhao, Y. Angew. Chem. Int. Ed. 2019, 132, 1485. doi: 10.1002/anie.201911518  doi: 10.1002/anie.201911518

    14. [14]

      Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X., et al. Science 2019, 365, 591. doi: 10.1126/science.aav8680  doi: 10.1126/science.aav8680

    15. [15]

      Zhao, Y.; Zhu, K. Chem. Soc. Rev. 2016, 45, 655. doi: 10.1039/c4cs00458b  doi: 10.1039/c4cs00458b

    16. [16]

      Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A 2015, 3, 8970. doi: 10.1039/c4ta04994b  doi: 10.1039/c4ta04994b

    17. [17]

      Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4, 2885. doi: 10.1038/ncomms3885  doi: 10.1038/ncomms3885

    18. [18]

      Ge, Y.; Mu, X. L.; Lu, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039.  doi: 10.3866/PKU.WHXB201905039

    19. [19]

      Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L. ACS Nano 2015, 9, 1955. doi: 10.1021/nn506864k  doi: 10.1021/nn506864k

    20. [20]

      Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Adv. Funct. Mater. 2014, 24, 3250. doi: 10.1002/adfm.201304022  doi: 10.1002/adfm.201304022

    21. [21]

      Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. J. Am. Chem. Soc. 2015, 137, 1530. doi: 10.1021/ja511132a  doi: 10.1021/ja511132a

    22. [22]

      Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. J. Mater. Chem. A 2014, 2, 705. doi: 10.1039/C3TA13606J  doi: 10.1039/C3TA13606J

    23. [23]

      Kim, I. S.; Martinson, A. B. F. J. Mater. Chem. A 2015, 3, 20092. doi: 10.1039/c5ta07186k  doi: 10.1039/c5ta07186k

    24. [24]

      Tiep, N. H.; Ku, Z.; Fan, H. J. Adv. Energy Mater. 2016, 6, 1501420. doi: 10.1002/aenm.201501420  doi: 10.1002/aenm.201501420

    25. [25]

      Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584. doi: 10.1021/nl500390f  doi: 10.1021/nl500390f

    26. [26]

      Kato, Y.; Ono, L. K.; Lee, M. V.; Wang, S.; Raga, S. R.; Qi, Y. Adv. Mater. Interfaces 2015, 2, 1500195. doi: 10.1002/admi.201500195  doi: 10.1002/admi.201500195

    27. [27]

      Kim, A.; Lee, H.; Kwon, H. C.; Jung, H. S.; Park, N. G.; Jeong, S.; Moon, J. Nanoscale 2016, 8, 6308. doi: 10.1039/C5NR04585A  doi: 10.1039/C5NR04585A

    28. [28]

      Clever, H. L.; Johnston, F. J. J. Phys. Chem.Ref. Data 1980, 9, 751. doi: 10.1063/1.555628  doi: 10.1063/1.555628

    29. [29]

      Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J. Adv. Energy Mater. 2015, 5, 1500963. doi: 10.1002/aenm.201500963  doi: 10.1002/aenm.201500963

    30. [30]

      Si, H.; Liao, Q.; Zhang, Z.; Li, Y.; Yang, X.; Zhang, G.; Kang, Z.; Zhang, Y. Nano Energy 2016, 22, 223. doi: 10.1016/j.nanoen.2016.02.025  doi: 10.1016/j.nanoen.2016.02.025

    31. [31]

      Choudhury, D.; Rajaraman, G.; Sarkar, S. K. Nanoscale 2016, 8, 7459. doi: 10.1039/C5NR06974B  doi: 10.1039/C5NR06974B

    32. [32]

      George, S. M. Chem. Rev. 2010, 110, 111. doi: 10.1021/cr900056b  doi: 10.1021/cr900056b

    33. [33]

      Dong, X.; Hu, H.; Lin, B.; Ding, J.; Yuan, N. Chem. Commun 2014, 50, 14405. doi: 10.1039/c4cc04685d  doi: 10.1039/c4cc04685d

    34. [34]

      Wang, L.; Travis, J. J.; Cavanagh, A. S.; Liu, X.; Koenig, S. P.; Huang, P. Y.; George, S. M.; Bunch, J. S. Nano Lett. 2012, 12, 3706. doi: 10.1021/nl3014956  doi: 10.1021/nl3014956

    35. [35]

      Prasittichai, C.; Hupp, J. T. J. Phys. Chem. Lett. 2010, 1, 1611. doi: 10.1021/jz100361f  doi: 10.1021/jz100361f

    36. [36]

      Antila, L. J.; Heikkilä, M. J.; Aumanen, V.; Kemell, M.; Myllyperkiö, P.; Leskelä, M.; Korppi-Tommola, J. E. J. Phys. Chem. Lett. 2009, 1, 536. doi: 10.1021/jz9003075  doi: 10.1021/jz9003075

    37. [37]

      Dong, X.; Fang, X.; Lv, M.; Lin, B.; Zhang, S.; Ding, J.; Yuan, N. J. Mater. Chem. A 2015, 3, 5360. doi: 10.1039/c4ta06128d  doi: 10.1039/c4ta06128d

    38. [38]

      Koushik, D.; Verhees, W. J. H.; Kuang, Y.; Veenstra, S.; Zhang, D.; Verheijen, M. A.; Creatore, M.; Schropp, R. E. I. Energy Environ. Sci. 2017, 10, 91. doi: 10.1039/c6ee02687g  doi: 10.1039/c6ee02687g

    39. [39]

      Kot, M.; Das, C.; Wang, Z.; Henkel, K.; Rouissi, Z.; Wojciechowski, K.; Snaith, H. J.; Schmeisser, D. ChemSusChem 2016, 9, 3401. doi: 10.1002/cssc.201601186  doi: 10.1002/cssc.201601186

    40. [40]

      Miikkulainen, V.; Leskelä, M.; Ritala, M.; Puurunen, R. L. J. Appl. Phys. 2013, 113, 2. doi: 10.1063/1.4757907  doi: 10.1063/1.4757907

    41. [41]

      Kim, J.; Kwon, D.; Chakrabarti, K.; Lee, C.; Oh, K.; Lee, J. J. Appl. Phys. 2002, 92, 6739. doi: 10.1063/1.1515951  doi: 10.1063/1.1515951

    42. [42]

      Higashi, G.; Fleming, C. Appl. Phys. Lett. 1989, 55, 1963. doi: 10.1063/1.102337  doi: 10.1063/1.102337

    43. [43]

      Raiford, J. A.; Oyakhire, S. T.; Bent, S. F. Energy Environ. Sci. 2020, 13, 1997. doi: 10.1039/d0ee00385a  doi: 10.1039/d0ee00385a

    44. [44]

      Koushik, D.; Hazendonk, L.; Zardetto, V.; Vandalon, V.; Verheijen, M. A.; Kessels, W. M. M.; Creatore, M. ACS Appl. Mater. Interfaces 2019, 11, 5526. doi: 10.1021/acsami.8b18307  doi: 10.1021/acsami.8b18307

    45. [45]

      Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/C5EE03874J  doi: 10.1039/C5EE03874J

    46. [46]

      Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. Angew. Chem. Int. Ed. 2014, 126, 11414. doi: 10.1002/anie.201406466  doi: 10.1002/anie.201406466

    47. [47]

      Li, X.; Dar, M. I.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H.; Grätzel, M. Nat. Chem. 2015, 7, 703. doi: 10.1038/nchem.2324  doi: 10.1038/nchem.2324

    48. [48]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764. doi: 10.1021/nl400349b  doi: 10.1021/nl400349b

    49. [49]

      Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Energy Environ. Sci. 2013, 6, 1739. doi: 10.1039/C3EE40810H  doi: 10.1039/C3EE40810H

    50. [50]

      Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452. doi: 10.1021/acs.jpclett.5b00968  doi: 10.1021/acs.jpclett.5b00968

    51. [51]

      Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2015, 7, 167. doi: 10.1021/acs.jpclett.5b02597  doi: 10.1021/acs.jpclett.5b02597

    52. [52]

      Koh, T. M.; Shanmugam, V.; Schlipf, J.; Oesinghaus, L.; Müller-Buschbaum, P.; Ramakrishnan, N.; Swamy, V.; Mathews, N.; Boix, P. P.; Mhaisalkar, S. G. Adv. Mater. 2016, 28, 3653. doi: 10.1002/adma.201506141  doi: 10.1002/adma.201506141

    53. [53]

      Tsai, H.; Nie, W.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. Nature 2016, 536, 312. doi: 10.1038/nature18306  doi: 10.1038/nature18306

    54. [54]

      Dou, L. W., A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T.; Ginsberg, N. S.; et al. Science 2015, 349, 1518. doi: 10.1126/science.aac7660  doi: 10.1126/science.aac7660

    55. [55]

      Yao, K.; Wang, X.; Xu, Y. X.; Li, F. Nano Energy 2015, 18, 165. doi: 10.1016/j.nanoen.2015.10.010  doi: 10.1016/j.nanoen.2015.10.010

    56. [56]

      Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q. Nat. Commun. 2016, 7, 10228. doi: 10.1038/ncomms10228  doi: 10.1038/ncomms10228

    57. [57]

      Zhang, T.; Xie, L.; Chen, L.; Guo, N.; Li, G.; Tian, Z.; Mao, B.; Zhao, Y. Adv. Funct. Mater. 2017, 27, 1603568. doi: 10.1002/adfm.201603568  doi: 10.1002/adfm.201603568

    58. [58]

      Mei, A.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y.; et al. Science 2014, 345, 295. doi: 10.1126/science.1254763  doi: 10.1126/science.1254763

    59. [59]

      Zhao, Y.; Zhu, K. J. Am. Chem. Soc. 2014, 136, 12241. doi: 10.1021/ja5071398  doi: 10.1021/ja5071398

    60. [60]

      Zhang, T.; Li, G.; Xu, F.; Wang, Y.; Guo, N.; Qian, X.; Zhao, Y. Chem. Commun 2016, 52, 11080. doi: 10.1039/c6cc05794b  doi: 10.1039/c6cc05794b

    61. [61]

      Yan, J.; Ke, X.; Chen, Y.; Zhang, A.; Zhang, B. Appl. Surf. Sci. 2015, 351, 1191. doi: 10.1016/j.apsusc.2015.06.025  doi: 10.1016/j.apsusc.2015.06.025

    62. [62]

      Murali, B.; Saidaminov, M. I.; Abdelhady, A. L.; Peng, W.; Liu, J.; Pan, J.; Bakr, O. M.; Mohammed, O. F. J. Mater. Chem. C 2016, 4, 2545. doi: 10.1039/c6tc00610h  doi: 10.1039/c6tc00610h

    63. [63]

      Heo, J. H.; Song, D. H.; Im, S. H. Adv. Mater. 2014, 26, 8179. doi: 10.1002/adma.201403140  doi: 10.1002/adma.201403140

    64. [64]

      Li, X.; Dar, M. I.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H.; Grätzel, M. Nat. Chem. 2015, 7, 703. doi: 10.1038/nchem.2324  doi: 10.1038/nchem.2324

    65. [65]

      Bi, C.; Shao, Y.; Yuan, Y.; Xiao, Z.; Wang, C.; Gao, Y.; Huang, J. J. Mater. Chem. A 2014, 2, 18508. doi: 10.1039/c4ta04007d  doi: 10.1039/c4ta04007d

    66. [66]

      Yu, J. C.; Kim, D. W.; Kim da, B.; Jung, E. D.; Park, J. H.; Lee, A. Y.; Lee, B. R.; Di Nuzzo, D.; Friend, R. H.; Song, M. H. Adv Mater 2016, 28, 6906. doi: 10.1002/adma.201601105  doi: 10.1002/adma.201601105

  • 加载中
    1. [1]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    2. [2]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    3. [3]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    4. [4]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    5. [5]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    6. [6]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    7. [7]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    8. [8]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    9. [9]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    10. [10]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    11. [11]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    12. [12]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    13. [13]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    16. [16]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    17. [17]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    18. [18]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    19. [19]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    20. [20]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

Metrics
  • PDF Downloads(6)
  • Abstract views(216)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return