Citation: Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200701. doi: 10.3866/PKU.WHXB202007017 shu

An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials

  • Corresponding author: Lai Chen, chenlai144@sina.com Yuefeng Su, suyuefeng@bit.edu.cn
  • These authors contribute equally to this work.
  • Received Date: 6 July 2020
    Revised Date: 7 August 2020
    Accepted Date: 18 August 2020
    Available Online: 24 August 2020

    Fund Project: the National Key R & D Program of China 2016YFB0100301the National Natural Science Foundation of China 21875022the National Natural Science Foundation of China 51802020the National Natural Science Foundation of China U1664255the Science and Technology Innovation Foundation of Beijing Institute of Technology Chongqing Innovation Center 2020CX5100006the Beijing Institute of Technology Research Fund Program for Young Scholars, and the Young Elite Scientists Sponsorship Program by CAST 2018QNRC001

  • High-performance rechargeable lithium ion batteries have been widely applied in electrochemical energy storage fields, such as, energy storage grids, portable electronic devices, and electric vehicles (EVs). However, the energy density of lithium ion batteries needs to be increased, and the cost of battery materials could be further reduced for wider commercial applications. An Ni-rich cathode, LiNixMnyCo1-x-yO2 (x > 0.8), with high specific capacity is the most promising material for next-generation Li-ion batteries. LiNixMnyCo1-x-yO2 (x > 0.8) contains three transition metal elements, Ni, Mn, and Co, respectively. The role of Ni2+ is to provide high capacity for recharge The role of Mn4+ is to stabilize the lattice structure during charging-discharging cycling. Crucially, the role of Co3+ in Ni-rich materials is to improve the electrical conductivity and inhibit cation disorder in the lattice during electrochemical cycling. However, Co is both in shortage and expensive, which limits its worldwide commercial application. This work investigates substituting Co with other abundant and cheap transition metals. Transition metal ions Cr3+, Cd2+, and Zr4+ can replace Co3+ in Ni-rich cathode materials. LiNi0.8Cr0.1Mn0.1O2, LiNi0.8Cd0.1Mn0.1O2, and LiNi0.8Zr0.1Mn0.1O2 were synthesized by a co-precipitation method. Zr was found to be the best candidate for replacing Co in Ni-rich cathode materials. This study investigated Zr4+-doped Co-free Ni-rich materials. Initially, a carbonate co-precipitation process was used to synthesize Ni0.8Zr0.1Mn0.1CO3. This is due to that Zr3+/Zr4+ ions are not precipitated in the strong alkali solution, and the pH during hydroxide co-precipitation and carbonate co-precipitation processes are approximately 11 and 8, respectively. Therefore, the carbonate co-precipitation synthesis method was chosen. Ni0.8Zr0.1Mn0.1CO3 was synthesized by carbonate co-precipitation at pH = 7.6, 7.8, 8.0, and 8.2. After electrochemical analysis, pH = 7.8 was identified as the optimal value. The next stage of the research involved completing an electrochemical performance comparison on two lithium sources. The following lithium sources were added to the precursor; LiOH·2O, and a 1:1 mixture of LiOH·2O and Li2CO3. The lithium source with the 1:1 mixture, exhibited better performance for the Ni-rich cathode, LiNi0.8Zr0.1Mn0.1O2. In this study, the ideal doping amount of Zr in Ni-rich materials was 0.05. In conclusion, by careful control of co-precipitation pH and Li source, the Zr doped cobalt free Ni-rich cathode LiNi0.85Mn0.1Zr0.05O2 delivered a discharge capacity of 179.9 mAh·g-1 at 0.2C. This was achieved between the voltage range of 2.75-4.3 V, with an 80 cycle capacity retention of 96.52%.
  • 加载中
    1. [1]

      Wang, Z.; Wu, F.; Su, Y.; Bao, L.; Chen, L.; Li, N.; Chen, S. Acta Phys. -Chim. Sin. 2012, 28, 823.  doi: 10.3866/PKU.WHXB201202102

    2. [2]

      Tarascon, J. M.; Aamand, M. Nature 2001, 414, 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    3. [3]

      Wu, F.; Li, Q.; Chen, L.; Zhang, Q.; Wang, Z.; Lu, Y.; Bao, L.; Chen, S.; Su, Y. ACS Appl. Mater. Interfaces 2019, 11, 36751. doi: 10.1021/acsami.9b12595  doi: 10.1021/acsami.9b12595

    4. [4]

      Zhu, G. -L.; Zhao, C. -Z.; Huang, J. -Q.; He, C.; Zhang, J.; Chen, S.; Xu, L.; Yuan, H.; Zhang, Q. Small 2019, 15, 1805389. doi: 10.1002/smll.201805389  doi: 10.1002/smll.201805389

    5. [5]

      Chen, L.; Chen, S.; Hu, D.; Su, Y.; Li, W.; Wang, Z.; Bao, L.; Wu, F. Acta Phys. -Chim. Sin. 2014, 30, 467.  doi: 10.3866/PKU.WHXB201312252

    6. [6]

      Li, M.; Lu, J.; Chen, Z. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    7. [7]

      Sakti, A.; Michalek, J. J.; Fuchs, E. R. H.; Whitacre, J. F. J. Power Sources 2015, 273, 966. 10.1016/j.jpowsour.2014.09.078  doi: 10.1016/j.jpowsour.2014.09.078

    8. [8]

      Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Adv. Energy Mater. 2017, 8, 1702028. doi: 10.1002/aenm.201702028  doi: 10.1002/aenm.201702028

    9. [9]

      Bessette, S.; Paolella, A.; Kim, C.; Zhu, W.; Hovington, P.; Gauvin, R.; Zaghib, K. Sci. Rep. 2018, 8, 17575. doi: 10.1038/s41598-018-33608-3  doi: 10.1038/s41598-018-33608-3

    10. [10]

      Myung, S. -T.; Maglia, F.; Park, K. -J.; Yoon, C. S.; Lamp, P.; Kim, S. J.; Sun, Y. -K. ACS Energy Lett. 2017, 2, 196. doi: 10.1021/acsenergylett.6b00594  doi: 10.1021/acsenergylett.6b00594

    11. [11]

      Jiang, L.; Luo, Z.; Wu, T.; Shao, L.; Sun, J.; Liu, C.; Li, G.; Cao, K.; Wang, Q. J. Electrochem. Soc. 2019, 166, A1055. doi: 10.1149/2.0661906jes  doi: 10.1149/2.0661906jes

    12. [12]

      Liu, W.; Oh, P.; Liu, X.; Lee, M. -J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Ed. 2015, 54, 4440. doi: 10.1002/anie.201409262  doi: 10.1002/anie.201409262

    13. [13]

      Kou, J.; Wang, Z.; Bao, L.; Su, Y.; Hu, Y.; Chen, L.; Xu, S.; Chen, F.; Chen, R.; Sun, F. Acta Phys. -Chim. Sin. 2016, 32, 717.  doi: 10.3866/PKU.WHXB201512301

    14. [14]

      Yu, H.; Qian, Y.; Otani, M.; Tang, D.; Guo, S.; Zhu, Y.; Zhou, H. Energy Environ. Sci. 2014, 7, 1068. doi: 10.1039/C3EE42398K  doi: 10.1039/C3EE42398K

    15. [15]

      Wu, F.; Wang, M.; Su, Y.; Chen, S. Acta Phys. -Chim. Sin. 2009, 25, 629.  doi: 10.3866/PKU.WHXB20090411

    16. [16]

      Wu, F.; Li, Q.; Chen, L.; Lu, Y.; Su, Y.; Bao, L.; Chen, R.; Chen, S. ChemSusChem 2019, 12, 935. doi: 10.1002/cssc.201802304  doi: 10.1002/cssc.201802304

    17. [17]

      Kong, F.; Liang, C.; Wang, L.; Zheng, Y.; Perananthan, S.; Longo, R. C.; Ferraris, J. P.; Kim, M.; Cho, K. Adv. Energy Mater. 2018, 9, 1802586. doi: 10.1002/aenm.201802586  doi: 10.1002/aenm.201802586

    18. [18]

      Kim, J. -H.; Park, K. -J.; Kim, S. J.; Yoon, C. S.; Sun, Y. -K. J. Mater. Chem. A 2019, 7, 2694. doi: 10.1039/C8TA10438G  doi: 10.1039/C8TA10438G

    19. [19]

      Kim, D.; Lim, J. -M.; Lim, Y. -G.; Yu, J. -S.; Park, M. -S.; Cho, M.; Cho, K. Chem. Mater. 2015, 27, 6450. doi: 10.1021/acs.chemmater.5b02697  doi: 10.1021/acs.chemmater.5b02697

    20. [20]

      Wu, Z.; Ji, S.; Hu, Z.; Zheng, J.; Xiao, S.; Lin, Y.; Xu, K.; Amine, K.; Pan, F. ACS Appl. Mater. Interfaces 2016, 8, 15361. doi: 10.1021/acsami.6b0373  doi: 10.1021/acsami.6b0373

    21. [21]

      Zheng, J.; Teng, G.; Xin, C.; Zhou, Z.; Liu, J.; Li, Q.; Hu, Z.; Xu, M.; Yan, S.; Yang, W.; et al. Phys. Chem. Lett. 2017, 8, 5537. doi: 10.1021/acs.jpclett.7b02498  doi: 10.1021/acs.jpclett.7b02498

    22. [22]

      Whittingham, M. S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c  doi: 10.1021/cr020731c

    23. [23]

      Jian, L. F.; Zhang, M.; Yuan, H. T.; Zhao, M.; Guo, J.; Wang, W.; Zhou, X. D.; Wang, Y. M. J. Power Sources 2007, 167, 178. doi: 10.1016/j.jpowsour.2007.01.070  doi: 10.1016/j.jpowsour.2007.01.070

    24. [24]

      Kim, Y. Int. J. Quantum Chem. 2019, 119, e26028. doi: org/10.1002/qua.26028  doi: 10.1002/qua.26028

    25. [25]

      He, T.; Lu, Y.; Su, Y.; Bao, L.; Tan, J.; Chen, L.; Zhang, Q.; Li, W.; Chen, S.; Wu, F. ChemSusChem 2018, 11, 1639. doi: 10.1002/cssc.201702451  doi: 10.1002/cssc.201702451

    26. [26]

      Han, B.; Xu, S.; Zhao, S.; Lin, G.; Feng, Y.; Chen, L.; Ivey, D. G.; Wang, P.; Wei, W. ACS Appl. Mater. Interfaces 2018, 10, 39599. doi: 10.1021/acsami.8b11112  doi: 10.1021/acsami.8b11112

    27. [27]

      Deng, S.; Lin, Z.; Li, Y.; Xue, L.; Li, H.; Chen, Y.; Lei, T.; Zhu, J.; Li, J.; Zhang, J. Int. J. Mater. Res. 2018, 109, 1043. doi: 10.3139/146.111701  doi: 10.3139/146.111701

    28. [28]

      Ma, Y.; Li, L.; Wang, L.; Luo, R.; Xu, S.; Wu, F.; Chen, R. J. Alloys Compd. 2019, 778, 643. doi: 10.1016/j.jallcom.2018.11.189  doi: 10.1016/j.jallcom.2018.11.189

    29. [29]

      Cui, Y. F.; Cui, J. L.; Man, J. Z.; Cheng, F. P.; Zhang, P. C.; Li, S.; Wen, Z. H.; Sun, J. C. Rare Metal Mat. Eng. 2019, 48, 587.
       

    30. [30]

      Wang, D.; Belharouak, I.; Koenig, G. M., Jr.; Zhou, G.; Amine, K. J. Mater. Chem. C 2011, 21, 9290. doi: 10.1039/C1JM11077B  doi: 10.1039/C1JM11077B

    31. [31]

      Wu, F.; Li, Q.; Bao, L.; Zheng, Y.; Lu, Y.; Su, Y.; Wang, J.; Chen, S.; Chen, R.; Tian, J. Electrochim. Acta 2018, 260, 986. doi: 10.1016/j.electacta.2017.12.034  doi: 10.1016/j.electacta.2017.12.034

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(21)
  • Abstract views(1393)
  • HTML views(339)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return