Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites
- Corresponding author: He Xin, xin_he@jlu.edu.cn Zhang Lijun, lijun_zhang@jlu.edu.cn
Citation: Li Yawen, Na Guangren, Luo Shulin, He Xin, Zhang Lijun. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200701. doi: 10.3866/PKU.WHXB202007015
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r
doi: 10.1021/ja809598r
Powalla, M.; Paetel, S.; Ahlswede, E.; Wuerz, R.; Wessendorf, C. D.; Friedlmeier, T. M. Appl. Phys. Rev. 2018, 5, 041602. doi: 10.1063/1.5061809
doi: 10.1063/1.5061809
Jost, M.; Bertram, T.; Koushik, D.; Marquez, J. A.; Verheijen, M. A.; Heinemann, M. D.; Köhnen, E.; Al-Ashouri, A.; Braunger, S.; Lang, F.; et al. ACS Energy Lett. 2019, 4, 583. doi: 10.1021/acsenergylett.9b00135
doi: 10.1021/acsenergylett.9b00135
Yang, W. S.; Park B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. Science 2017, 356, 1376. doi: 10.1126/science.aan2301
doi: 10.1126/science.aan2301
Huang, P.; Chen, Q.; Zhang, K.; Yuan, L.; Zhou, Y.; Song, B.; Li, Y. J. Mater. Chem. A 2019, 7, 6213. doi: 10.1039/C8TA11841H
doi: 10.1039/C8TA11841H
Yang, B.; Mahjouri-Samani, M.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. Phys. Chem. Chem. Phys. 2016, 18, 27067. doi: 10.1039/C6CP02896A
doi: 10.1039/C6CP02896A
Chen, X.; Tang, L. J.; Yang, S.; Hou, Y.; Yang, H. G. J. Mater. Chem. A 2016, 4, 6521. doi: 10.1039/C6TA00893C
doi: 10.1039/C6TA00893C
Schulze, P. S. C.; Bett, A. J.; Winkler, K.; Hinsch, A.; Lee, S.; Mastroianni, S.; Mundt, L. E.; Mundus, M.; Würfel, U.; Glunz, S. W.; Hermle, M.; Goldschmidt, J. C. Interfaces 2017, 9, 30567. doi: 10.1021/acsami.7b05718
doi: 10.1021/acsami.7b05718
Azmi, R.; Hwang, S.; Yin, W.; Kim, T. W.; Ahn, T. K.; Jang, S. Y. ACS Energy Lett. 2018, 3, 1241. doi: 10.1021/acsenergylett.8b00493
doi: 10.1021/acsenergylett.8b00493
Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y. Science 2017, 355, 722. doi: 10.1126/science.aai9081
doi: 10.1126/science.aai9081
Zhao, D.; Li, T.; Xu, Q.; Wang, X.; Zhang, L. Chinese Optics 2019, 12, 964.
doi: 10.3788/CO.20191205.0964
Meng, L.; You, J.; Guo, T. F.; Yang, Y. Acc. Chem. Res. 2016, 49, 155. doi: 10.1021/acs.accounts.5b00404
doi: 10.1021/acs.accounts.5b00404
https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf (accessed Apr 4, 2020).
Wang, P.; Zhang P.; Zhou, Y.; Jiang, Q.; Ye Q.; Chu, Z.; Li X.; Yang, X.; Yin, Z.; You, J. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-018-04636-4
doi: 10.1038/s41467-018-04636-4
Wang, X.; Fu, Y.; Na, G.; Li, H.; Zhang, L. Acta Phys. Sin. 2019, 68, 27.
doi: 10.7498/aps.68.20190596
Yang, Y.; You, J. Nature 2017, 544, 155. doi: 10.1038/544155a.
doi: 10.1038/544155a
Liu, Z.; Na, G.; Tian, F.; Yu, L.; Li, J.; Zhang, L. InfoMat. 2020, 27, 1. doi: 10.1002/inf2.12099
doi: 10.1002/inf2.12099
Wang, X.; Li, Y.; Pang, Y. X.; Sun, Y.; Zhao, X. G.; Wang, J. R.; Zhang, L. Sci. China Phys. Mech. Astron. 2018, 61, 107311. doi: 10.1007/s11433-018-9207-9
doi: 10.1007/s11433-018-9207-9
Wang, Z.; Zhao, D.; Yu, S.; Nie, Z.; Li, Y.; Zhang, L. Prog. Nat. Sci-Mater. 2019, 29, 316. doi: 10.1016/j.pnsc.2019.03.015
doi: 10.1016/j.pnsc.2019.03.015
Ding, X.; Li, X.; Gao, X.; Zhang, S.; Huang, Y.; Li, H. Acta Phys. -Chim. Sin. 2015, 31, 576.
doi: 10.3866/PKU.WHXB201501201
Gao, S.; Lan, Z.; Wu, X.; Kan, L.; Wu, J.; Lin, J.; Huang, M. Acta Phys. -Chim. Sin. 2014, 30, 446.
doi: 10.3866/PKU.WHXB201401022
Wei, H.; Wang, S.; Wu, H.; Hong, Y.; Li, D.; Meng, Q. Acta Phys. -Chim. Sin. 2016, 32, 201.
doi: 10.3866/PKU.WHXB201512031
Xu, Q.; Stroppa, A.; Lv, J.; Zhao, X.; Yang, D.; Biswas, K.; Zhang, L. Phys. Rev. Mater. 2019, 3, 125401. doi: 10.1103/PhysRevMaterials.3.125401
doi: 10.1103/PhysRevMaterials.3.125401
Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; et al. Science 2019, 365, 591. doi: 10.1126/science.aav8680
doi: 10.1126/science.aav8680
Wang, H.; Bian, H.; Jin, Z.; Zhang, H.; Liang, L.; Wen, J.; Wang, Q.; Ding, L.; Liu, S. F. Chem. Mater. 2019, 31, 6231. doi: 10.1021/acs.chemmater.9b02248
doi: 10.1021/acs.chemmater.9b02248
Jia, X.; Zuo, C.; Tao, S.; Sun, K.; Zhao, Y.; Yang, S.; Cheng, M.; Wang, M.; Yuan, Y.; Yang, J.; et al. Sci. Bull. 2019, 64, 1532. doi: 10.1016/j.scib.2019.08.017
doi: 10.1016/j.scib.2019.08.017
Zhang, T.; Wang, Y.; Wang, X.; Wu, M.; Liu, W.; Zhao, Y. Sci. Bull. 2019, 64, 1773. doi: 10.1016/j.scib.2019.09.022
doi: 10.1016/j.scib.2019.09.022
Shi, J.; Wang, Y.; Zhao, Y. Energy Environ. Mater. 2019, 2, 73. doi: 10.1002/eem2.12039
doi: 10.1002/eem2.12039
Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688. doi: 10.1039/C5TA06398A
doi: 10.1039/C5TA06398A
Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452. doi: 10.1021/acs.jpclett.5b00968
doi: 10.1021/acs.jpclett.5b00968
Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. J. Am. Chem. Soc. 2018, 140, 12345. doi: 10.1021/jacs.8b07927
doi: 10.1021/jacs.8b07927
Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Sol. Energy Mater. Sol. Cells 2016, 147, 255. doi: 10.1016/j.solmat.2015.12.025
doi: 10.1016/j.solmat.2015.12.025
Lim, A. R.; Jeong, S. Y. Phys. B: Condensed Matter 1998, 245, 277. doi: 10.1016/S0921-4526(97)00883-1
doi: 10.1016/S0921-4526(97)00883-1
Haeger, T.; Ketterer, M.; Bahr, J.; Pourdavoud, N.; Runkel, M.; Heiderhoff, R.; Riedl, T. J. Phys. Mater. 2020, 3, 024004. doi: 10.1088/2515-7639/ab749d
doi: 10.1088/2515-7639/ab749d
Hirotsu, S.; Harada, J.; Iizumi, M.; Gesi, K. J. Phys. Soc. Jpn. 1974, 37, 1393. doi: 10.1143/JPSJ.37.1393
doi: 10.1143/JPSJ.37.1393
Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J. Cryst. Growth & Des. 2013, 13, 2722. doi: 10.1021/cg400645t
doi: 10.1021/cg400645t
Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J. M.; Bonnassieux, Y.; Katan, C.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J. ACS Nano 2018, 12, 3477. doi: 10.1021/acsnano.8b00267
doi: 10.1021/acsnano.8b00267
Zhang, L., Wang, L., Wang, K., Zou, B. J. Phys. Chem. C 2018, 122, 15220. doi: 10.1021/acs.jpcc.8b05397
doi: 10.1021/acs.jpcc.8b05397
Wang, Y., Zhang, Y., Zhang, P., Zhang, W. Phys. Chem. Chem. Phys. 2015, 17, 11516. doi: 10.1039/c5cp00448a
doi: 10.1039/c5cp00448a
Liu, Z.; Peters, J. A.; Stoumpos, C. C.; Sebastian, M.; Wessels, B. W.; Im, J.; Freeman, A. J.; Kanatzidis, M. G. Heavy Metal Ternary Halides for Room-Temperature X-ray and Gamma-ray Detection. Proceedings SPIE 8852, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XV, California, United States, September 26, 2013. SPIE press: Unite states, 2013.
Sutton, R. J.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Giustino, F.; Snaith, H. J. ACS Energy Lett. 2018, 3, 1787. doi: 10.1021/acsenergylett.8b00672
doi: 10.1021/acsenergylett.8b00672
Zhang, T.; Dar, M. I.; Li, G.; Xu, F.; Guo, N.; Grätzel, M.; Zhao, Y. Sci. Adv. 2017, 3, e1700841. doi: 10.1126/sciadv.1700841
doi: 10.1126/sciadv.1700841
Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
doi: 10.1103/PhysRevB.59.1758
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
doi: 10.1103/PhysRevLett.77.3865
Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 50g. doi: 10.1103/PhysRevB.23.5048
doi: 10.1103/PhysRevB.23.5048
Hrirotsu, S. J. Phys. Soc. Jpn. 1971, 31, 552. doi: 10.1143/JPSJ.31.552
doi: 10.1143/JPSJ.31.552
Møller, C. K. Nature 1958, 182, 1436. doi: 10.1038/1821436a0.
doi: 10.1038/1821436a0
Sharma, S.; Weiden, N.; Weiss, A. Z. Phys. Chem. 1992, 175, 63. doi: 10.1524/zpch.1992.175.Part_1.063
doi: 10.1524/zpch.1992.175.Part_1.063
Paul, T.; Chatterjee, B. K.; Maiti, S.; Sarkar, S.; Besra, N.; Das, B. K.; Panigrahi, K. J.; Thakur, S.; Ghorai, U. K.; Chattopadhyay, K. K. J. Mater. Chem. C 2018, 6, 3322. doi: 10.1039/C7TC05703B
doi: 10.1039/C7TC05703B
Cottingham, P.; Brutchey, R. L. Chem. Mater. 2018, 30, 6711. doi: 10.1023/A:1022836800820
doi: 10.1023/A:1022836800820
Gesi, K.; Ozawa, K.; Hirotsu, S. J. Phys. Soc. Jpn. 1975, 38, 463. doi: 10.1143/JPSJ.38.463
doi: 10.1143/JPSJ.38.463
Pandey, N.; Kumar, A.; Chakrabarti, S. RSC Adv. 2019, 9, 29556. doi: 10.1039/C9RA05685H
doi: 10.1039/C9RA05685H
Zhang, L.; Hu, T.; Li, J.; Zhang, L.; Li, H.; Lu, Z.; Wang, G. Front. Mater. 2020, 6. 1. doi: 10.3389/fmats.2019.00330
Saidi, W. A.; Choi, J. J. J. Chem. Phys. 2016, 145, 144702. doi: 10.1063/1.4964094
doi: 10.1063/1.4964094
Yin, W.; Yang, J.; Kang, J.; Yan, Y.; Wei, S. J. Mater. Chem. A, 2015, 3, 8926. doi: 0.1039/C4TA05033A
Long, M. Q.; Tang, L.; Wang, D.; Wang, L.; Shuai, Z. J. Am. Chem. Soc. 2009, 131, 17728. doi: 10.1021/ja907528a
doi: 10.1021/ja907528a
Xie, J.; Zhang, Z. Y.; Yang, D. Z.; Xue, D. S.; Si, M. S. J. Phys. Chem. Lett. 2014, 5, 4073. doi: 10.1021/jz502006z
doi: 10.1021/jz502006z
Fang, Z.; Shang, M.; Hou, X.; Zheng, Y.; Du, Z.; Yang, Z.; Chou, K. C.; Yang, W.; Wang, Z. L.; Yang, Y. ano Energy 2019, 61, 389. doi: 10.1016/j.nanoen.2019.04.084
doi: 10.1016/j.nanoen.2019.04.084
Giorgi, G.; Fujisawa, J. I.; Segawa, H.; Yamashita, K. J. Phys. Chem. Lett. 2013, 4, 4213. doi: 10.1021/jz4023865
doi: 10.1021/jz4023865
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358