Citation: Li Yawen, Na Guangren, Luo Shulin, He Xin, Zhang Lijun. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200701. doi: 10.3866/PKU.WHXB202007015 shu

Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites

  • Corresponding author: He Xin, xin_he@jlu.edu.cn Zhang Lijun, lijun_zhang@jlu.edu.cn
  • Received Date: 6 July 2020
    Revised Date: 10 August 2020
    Accepted Date: 11 August 2020
    Available Online: 17 August 2020

    Fund Project: the Postdoctoral Innovative Talents Supporting Program, China BX20190143the Jilin Province Science and Technology Development Program, China 20190201016JCThe project was supported by the Postdoctoral Innovative Talents Supporting Program, China (BX20190143) and the Jilin Province Science and Technology Development Program, China (20190201016JC)

  • Organic-inorganic hybrid lead halide perovskites have emerged as the most promising materials in the field of optoelectronics due to their unique electronic and optical properties. However, the poor long-term material and device stabilities of these materials have limited their practical application. Compared to organic-inorganic hybrid perovskites, all-inorganic halide perovskites like CsPbX3 (X = Cl, Br, I) show enhanced thermal stability and the potential to resolve the issue of instability. Nevertheless, the structural and physical properties of all-inorganic CsPbX3 halide perovskites with multiple structural polymorphs are still under debate. A recent research article on CsPbI3 reported the wrongly indexed the XRD pattern of γ-CsPbI3 as α-CsPbI3. Consequently, the band gap of γ-CsPbI3 (1.73 eV) was erroneously designated for α-CsPbI3. Therefore, there is a need for systematic research on the relationship between the structural features and electronic properties of CsPbX3. Here, we present a comprehensive theoretical study of the structural, thermodynamical and electronic properties of three polymorphic phases, α-, β-, and γ-CsPbX3. The space group of α-, β-, and γ-CsPbX3 are Pm3m, P4/mbm, and Pnma, respectively. First-principles calculations indicate that the phase transition from the high-temperature α-phase to the low-temperature β-phase and then to the γ phase is accompanied by an increase in the degree of PbX6 octahedral distortion. The zero-temperature energetic calculations reveal that the γ-phase is the most stable. This is consistent with the fact that experimentally, the γ-phase is stabilized at a relatively low temperature. Analysis of the electronic properties indicates that all the CsPbX3 perovskites exhibit a direct-gap nature and the band gap values increase from α to β, and then to the γ phase. From the analysis of the orbital hybridization near the band gap edges, the increase can be explained by the downshift of the valence band edges caused by the gradual weakening of the Pb-X chemical bond. Among all the phases, the strongest Pb-X interaction in the α-phase leads to the most dispersive band-edge states and thus the smallest carrier effective masses, which are beneficial for carrier transport. Additionally, the band gaps decreased by changing the halogen type from Cl to Br and I under the same phase. this is a consequence of the increased X np orbital energies from Cl 3p to Br 4p and then to I 3p that leads to a high valence band edge for CsPbI3 and results in the smallest band gap. Our results provide deep understanding on the relationship between the physical properties and structural features of all-inorganic lead halide perovskites.
  • 加载中
    1. [1]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    2. [2]

      Powalla, M.; Paetel, S.; Ahlswede, E.; Wuerz, R.; Wessendorf, C. D.; Friedlmeier, T. M. Appl. Phys. Rev. 2018, 5, 041602. doi: 10.1063/1.5061809  doi: 10.1063/1.5061809

    3. [3]

      Jost, M.; Bertram, T.; Koushik, D.; Marquez, J. A.; Verheijen, M. A.; Heinemann, M. D.; Köhnen, E.; Al-Ashouri, A.; Braunger, S.; Lang, F.; et al. ACS Energy Lett. 2019, 4, 583. doi: 10.1021/acsenergylett.9b00135  doi: 10.1021/acsenergylett.9b00135

    4. [4]

      Yang, W. S.; Park B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. Science 2017, 356, 1376. doi: 10.1126/science.aan2301  doi: 10.1126/science.aan2301

    5. [5]

      Huang, P.; Chen, Q.; Zhang, K.; Yuan, L.; Zhou, Y.; Song, B.; Li, Y. J. Mater. Chem. A 2019, 7, 6213. doi: 10.1039/C8TA11841H  doi: 10.1039/C8TA11841H

    6. [6]

      Yang, B.; Mahjouri-Samani, M.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. Phys. Chem. Chem. Phys. 2016, 18, 27067. doi: 10.1039/C6CP02896A  doi: 10.1039/C6CP02896A

    7. [7]

      Chen, X.; Tang, L. J.; Yang, S.; Hou, Y.; Yang, H. G. J. Mater. Chem. A 2016, 4, 6521. doi: 10.1039/C6TA00893C  doi: 10.1039/C6TA00893C

    8. [8]

      Schulze, P. S. C.; Bett, A. J.; Winkler, K.; Hinsch, A.; Lee, S.; Mastroianni, S.; Mundt, L. E.; Mundus, M.; Würfel, U.; Glunz, S. W.; Hermle, M.; Goldschmidt, J. C. Interfaces 2017, 9, 30567. doi: 10.1021/acsami.7b05718  doi: 10.1021/acsami.7b05718

    9. [9]

      Azmi, R.; Hwang, S.; Yin, W.; Kim, T. W.; Ahn, T. K.; Jang, S. Y. ACS Energy Lett. 2018, 3, 1241. doi: 10.1021/acsenergylett.8b00493  doi: 10.1021/acsenergylett.8b00493

    10. [10]

      Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y. Science 2017, 355, 722. doi: 10.1126/science.aai9081  doi: 10.1126/science.aai9081

    11. [11]

      Zhao, D.; Li, T.; Xu, Q.; Wang, X.; Zhang, L. Chinese Optics 2019, 12, 964.  doi: 10.3788/CO.20191205.0964

    12. [12]

      Meng, L.; You, J.; Guo, T. F.; Yang, Y. Acc. Chem. Res. 2016, 49, 155. doi: 10.1021/acs.accounts.5b00404  doi: 10.1021/acs.accounts.5b00404

    13. [13]

      https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf (accessed Apr 4, 2020).

    14. [14]

      Wang, P.; Zhang P.; Zhou, Y.; Jiang, Q.; Ye Q.; Chu, Z.; Li X.; Yang, X.; Yin, Z.; You, J. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-018-04636-4  doi: 10.1038/s41467-018-04636-4

    15. [15]

      Wang, X.; Fu, Y.; Na, G.; Li, H.; Zhang, L. Acta Phys. Sin. 2019, 68, 27.  doi: 10.7498/aps.68.20190596

    16. [16]

      Yang, Y.; You, J. Nature 2017, 544, 155. doi: 10.1038/544155a.  doi: 10.1038/544155a

    17. [17]

      Liu, Z.; Na, G.; Tian, F.; Yu, L.; Li, J.; Zhang, L. InfoMat. 2020, 27, 1. doi: 10.1002/inf2.12099  doi: 10.1002/inf2.12099

    18. [18]

      Wang, X.; Li, Y.; Pang, Y. X.; Sun, Y.; Zhao, X. G.; Wang, J. R.; Zhang, L. Sci. China Phys. Mech. Astron. 2018, 61, 107311. doi: 10.1007/s11433-018-9207-9  doi: 10.1007/s11433-018-9207-9

    19. [19]

      Wang, Z.; Zhao, D.; Yu, S.; Nie, Z.; Li, Y.; Zhang, L. Prog. Nat. Sci-Mater. 2019, 29, 316. doi: 10.1016/j.pnsc.2019.03.015  doi: 10.1016/j.pnsc.2019.03.015

    20. [20]

      Ding, X.; Li, X.; Gao, X.; Zhang, S.; Huang, Y.; Li, H. Acta Phys. -Chim. Sin. 2015, 31, 576.  doi: 10.3866/PKU.WHXB201501201

    21. [21]

      Gao, S.; Lan, Z.; Wu, X.; Kan, L.; Wu, J.; Lin, J.; Huang, M. Acta Phys. -Chim. Sin. 2014, 30, 446.  doi: 10.3866/PKU.WHXB201401022

    22. [22]

      Wei, H.; Wang, S.; Wu, H.; Hong, Y.; Li, D.; Meng, Q. Acta Phys. -Chim. Sin. 2016, 32, 201.  doi: 10.3866/PKU.WHXB201512031

    23. [23]

      Xu, Q.; Stroppa, A.; Lv, J.; Zhao, X.; Yang, D.; Biswas, K.; Zhang, L. Phys. Rev. Mater. 2019, 3, 125401. doi: 10.1103/PhysRevMaterials.3.125401  doi: 10.1103/PhysRevMaterials.3.125401

    24. [24]

      Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; et al. Science 2019, 365, 591. doi: 10.1126/science.aav8680  doi: 10.1126/science.aav8680

    25. [25]

      Wang, H.; Bian, H.; Jin, Z.; Zhang, H.; Liang, L.; Wen, J.; Wang, Q.; Ding, L.; Liu, S. F. Chem. Mater. 2019, 31, 6231. doi: 10.1021/acs.chemmater.9b02248  doi: 10.1021/acs.chemmater.9b02248

    26. [26]

      Jia, X.; Zuo, C.; Tao, S.; Sun, K.; Zhao, Y.; Yang, S.; Cheng, M.; Wang, M.; Yuan, Y.; Yang, J.; et al. Sci. Bull. 2019, 64, 1532. doi: 10.1016/j.scib.2019.08.017  doi: 10.1016/j.scib.2019.08.017

    27. [27]

      Zhang, T.; Wang, Y.; Wang, X.; Wu, M.; Liu, W.; Zhao, Y. Sci. Bull. 2019, 64, 1773. doi: 10.1016/j.scib.2019.09.022  doi: 10.1016/j.scib.2019.09.022

    28. [28]

      Shi, J.; Wang, Y.; Zhao, Y. Energy Environ. Mater. 2019, 2, 73. doi: 10.1002/eem2.12039  doi: 10.1002/eem2.12039

    29. [29]

      Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688. doi: 10.1039/C5TA06398A  doi: 10.1039/C5TA06398A

    30. [30]

      Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452. doi: 10.1021/acs.jpclett.5b00968  doi: 10.1021/acs.jpclett.5b00968

    31. [31]

      Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. J. Am. Chem. Soc. 2018, 140, 12345. doi: 10.1021/jacs.8b07927  doi: 10.1021/jacs.8b07927

    32. [32]

      Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Sol. Energy Mater. Sol. Cells 2016, 147, 255. doi: 10.1016/j.solmat.2015.12.025  doi: 10.1016/j.solmat.2015.12.025

    33. [33]

      Lim, A. R.; Jeong, S. Y. Phys. B: Condensed Matter 1998, 245, 277. doi: 10.1016/S0921-4526(97)00883-1  doi: 10.1016/S0921-4526(97)00883-1

    34. [34]

      Haeger, T.; Ketterer, M.; Bahr, J.; Pourdavoud, N.; Runkel, M.; Heiderhoff, R.; Riedl, T. J. Phys. Mater. 2020, 3, 024004. doi: 10.1088/2515-7639/ab749d  doi: 10.1088/2515-7639/ab749d

    35. [35]

      Hirotsu, S.; Harada, J.; Iizumi, M.; Gesi, K. J. Phys. Soc. Jpn. 1974, 37, 1393. doi: 10.1143/JPSJ.37.1393  doi: 10.1143/JPSJ.37.1393

    36. [36]

      Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J. Cryst. Growth & Des. 2013, 13, 2722. doi: 10.1021/cg400645t  doi: 10.1021/cg400645t

    37. [37]

      Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J. M.; Bonnassieux, Y.; Katan, C.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J. ACS Nano 2018, 12, 3477. doi: 10.1021/acsnano.8b00267  doi: 10.1021/acsnano.8b00267

    38. [38]

      Zhang, L., Wang, L., Wang, K., Zou, B. J. Phys. Chem. C 2018, 122, 15220. doi: 10.1021/acs.jpcc.8b05397  doi: 10.1021/acs.jpcc.8b05397

    39. [39]

      Wang, Y., Zhang, Y., Zhang, P., Zhang, W. Phys. Chem. Chem. Phys. 2015, 17, 11516. doi: 10.1039/c5cp00448a  doi: 10.1039/c5cp00448a

    40. [40]

      Liu, Z.; Peters, J. A.; Stoumpos, C. C.; Sebastian, M.; Wessels, B. W.; Im, J.; Freeman, A. J.; Kanatzidis, M. G. Heavy Metal Ternary Halides for Room-Temperature X-ray and Gamma-ray Detection. Proceedings SPIE 8852, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XV, California, United States, September 26, 2013. SPIE press: Unite states, 2013.

    41. [41]

      Sutton, R. J.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Giustino, F.; Snaith, H. J. ACS Energy Lett. 2018, 3, 1787. doi: 10.1021/acsenergylett.8b00672  doi: 10.1021/acsenergylett.8b00672

    42. [42]

      Zhang, T.; Dar, M. I.; Li, G.; Xu, F.; Guo, N.; Grätzel, M.; Zhao, Y. Sci. Adv. 2017, 3, e1700841. doi: 10.1126/sciadv.1700841  doi: 10.1126/sciadv.1700841

    43. [43]

      Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0

    44. [44]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758  doi: 10.1103/PhysRevB.59.1758

    45. [45]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    46. [46]

      Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 50g. doi: 10.1103/PhysRevB.23.5048  doi: 10.1103/PhysRevB.23.5048

    47. [47]

      Hrirotsu, S. J. Phys. Soc. Jpn. 1971, 31, 552. doi: 10.1143/JPSJ.31.552  doi: 10.1143/JPSJ.31.552

    48. [48]

      Møller, C. K. Nature 1958, 182, 1436. doi: 10.1038/1821436a0.  doi: 10.1038/1821436a0

    49. [49]

      Sharma, S.; Weiden, N.; Weiss, A. Z. Phys. Chem. 1992, 175, 63. doi: 10.1524/zpch.1992.175.Part_1.063  doi: 10.1524/zpch.1992.175.Part_1.063

    50. [50]

      Paul, T.; Chatterjee, B. K.; Maiti, S.; Sarkar, S.; Besra, N.; Das, B. K.; Panigrahi, K. J.; Thakur, S.; Ghorai, U. K.; Chattopadhyay, K. K. J. Mater. Chem. C 2018, 6, 3322. doi: 10.1039/C7TC05703B  doi: 10.1039/C7TC05703B

    51. [51]

      Cottingham, P.; Brutchey, R. L. Chem. Mater. 2018, 30, 6711. doi: 10.1023/A:1022836800820  doi: 10.1023/A:1022836800820

    52. [52]

      Gesi, K.; Ozawa, K.; Hirotsu, S. J. Phys. Soc. Jpn. 1975, 38, 463. doi: 10.1143/JPSJ.38.463  doi: 10.1143/JPSJ.38.463

    53. [53]

      Pandey, N.; Kumar, A.; Chakrabarti, S. RSC Adv. 2019, 9, 29556. doi: 10.1039/C9RA05685H  doi: 10.1039/C9RA05685H

    54. [54]

      Zhang, L.; Hu, T.; Li, J.; Zhang, L.; Li, H.; Lu, Z.; Wang, G. Front. Mater. 2020, 6. 1. doi: 10.3389/fmats.2019.00330

    55. [55]

      Saidi, W. A.; Choi, J. J. J. Chem. Phys. 2016, 145, 144702. doi: 10.1063/1.4964094  doi: 10.1063/1.4964094

    56. [56]

      Yin, W.; Yang, J.; Kang, J.; Yan, Y.; Wei, S. J. Mater. Chem. A, 2015, 3, 8926. doi: 0.1039/C4TA05033A

    57. [57]

      Long, M. Q.; Tang, L.; Wang, D.; Wang, L.; Shuai, Z. J. Am. Chem. Soc. 2009, 131, 17728. doi: 10.1021/ja907528a  doi: 10.1021/ja907528a

    58. [58]

      Xie, J.; Zhang, Z. Y.; Yang, D. Z.; Xue, D. S.; Si, M. S. J. Phys. Chem. Lett. 2014, 5, 4073. doi: 10.1021/jz502006z  doi: 10.1021/jz502006z

    59. [59]

      Fang, Z.; Shang, M.; Hou, X.; Zheng, Y.; Du, Z.; Yang, Z.; Chou, K. C.; Yang, W.; Wang, Z. L.; Yang, Y. ano Energy 2019, 61, 389. doi: 10.1016/j.nanoen.2019.04.084  doi: 10.1016/j.nanoen.2019.04.084

    60. [60]

      Giorgi, G.; Fujisawa, J. I.; Segawa, H.; Yamashita, K. J. Phys. Chem. Lett. 2013, 4, 4213. doi: 10.1021/jz4023865  doi: 10.1021/jz4023865

  • 加载中
    1. [1]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    2. [2]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    5. [5]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    6. [6]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    7. [7]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    10. [10]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    11. [11]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    12. [12]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    13. [13]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    14. [14]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    15. [15]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    16. [16]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    17. [17]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    18. [18]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    19. [19]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    20. [20]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

Metrics
  • PDF Downloads(5)
  • Abstract views(249)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return